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In this article, we shall discuss the analysis of the
relationship between two quantitative outcomes, say,
height and weight, which is shown graphically by a
scatter plot (see Fig. 1).

Fig. 1 Relationship between height and weight.

From the plot it is obvious that as height increases,
so does weight and we use the correlation coefficient (r)
to describe the degree of linear relationship between
the two variables. In SPSS, go to Analyse, Correlate,
Bivariate to get template I.

Template I

If both height and weight are normally distributed,
we use the Pearson’s correlation; otherwise Spearman’s
correlation coefficient will be presented. Spearman’s

correlation is also applicable for two categorical ordinal
variables like pain intensity (no, mild, moderate, severe)
with burn-surface-area (< 10%, 10% - 19%, 20% - 29%,
≥ 30%).

Table I shows the correlation coefficient between
height and weight (both variables are normally
distributed): Pearson’s r = 0.807 (p<0.001).

Table I. Correlation between Height and Weight.

Weight (kg) Height (m)

Weight (kg) Pearson Correlation 1 .807**

Sig. (2-tailed) . .000

N 277 277

Height (m) Pearson Correlation .807** 1

SIG. (2-TAILED) .000 .

N 277 277

**.  Correlation is significant at the 0.01 level (2-tailed).

How to interpret the value of r? r lies between
-1 and 1. Values near 0 means no (linear) correlation
and values near ± 1 means very strong correlation.
The negative sign means that the two variables are
inversely related, that is, as one variable increases the
other variable decreases. Table II gives a guideline on
the strength of the linear relationship corresponding
to the correlation coefficient value.

Table II. Strength of linear relationship.

Correlation Coefficient value Strength of linear relationship

At least 0.8 Very strong

0.6 up to 0.8 Moderately strong

0.3 to 0.5 Fair

Less than 0.3 Poor

Thus for the above height and weight example,
we have a strong linear relationship (as expected) and
the p-value (affected by sample size) tells us that this
relationship is unlikely to happen by chance (it is
important to understand that we can have a poor
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correlation and yet the p-value is statistically significant
for a large study).

Squaring r gives the Coefficient of determination
which tells us the proportion of variance that the two
variables have in common. For the height-weight
example, r = 0.807 and squaring r gives 0.6512, which
means that the height of a person explains 65% of
the person’s weight; the other 35% could probably be
explained by other factors, perhaps nature and nurture
(for example).

Precautions have to be taken when we suspect
that the overall correlation coefficient is affected by
sub-populations. From the above height-weight
example, is the relationship of 0.807 applicable to
both gender? Fig. 2 shows the scatter plot (again)
with the males and females specified.

Fig. 2 Height-Weight by Gender.

Here, we observe that the height-weight
relationship for both gender is very different! The
strong relationship is only applicable for males but
not for females (as most of them tend to be watchful
of their weight regardless of their height). Table III
shows the correlations by gender.

Another important precaution to note is the
existence of outliers that may affect the correlation.
Fig. 3 shows the scatter plot for the females
with an outlier, perhaps a wrong entry (or a baby
hippo!!), which shows a false negative relationship
(r = -0.006).

Fig. 3 Effect of outliers on the correlation coefficient.

To handle the above two pitfalls, a graphical
presentation should be performed whenever we
want to determine the correlation between two
quantitative variables.

PARTIAL CORRELATION
Table IV shows that the age of a subject is highly
correlated with both the height and weight.

Table IV. Bivariate correlations between Height, Weight
and Age.

Weight (kg) Height (m) AGE

Weight (kg) Pearson Correlation 1 .807** .889**

Sig. (2-tailed) . .000 .000

N 277 277 277

Height (m) Pearson Correlation .807** 1 .984**

Sig. (2-tailed) .000 . .000

N 277 277 277

AGE Pearson Correlation .889** .984** 1

Sig. (2-tailed) .000 .000 .

N 277 277 277

**.  Correlation is significant at the 0.01 level (2-tailed).

If we want to determine the correlation between
height and weight without the effect of age, a partial
correlation analysis to control for age is carried out.
In SPSS, go to Analyse, Correlate, Partial to get
template II.
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GENDER
   female
   male

Table III. Pearson’s Correlations for Height-Weight by Gender.

GENDER Weight (kg) Height (m)

Male Weight (kg) Pearson Correlation 1 .930**
Sig. (2-tailed) . .000
N 207 207

Height (m) Pearson Correlation .930** 1
Sig. (2-tailed) .000 .
N 207 207

Female Weight (kg) Pearson Correlation 1 .383**
Sig. (2-tailed) . .001
N 70 70

Height (m) Pearson Correlation .383** 1
Sig. (2-tailed) .001 .
N 70 70

**.  Correlation is significant at the 0.01 level (2-tailed).
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Template II

Put Height and Weight in the Variables option and Age in the
Controlling for option.

Table V. Partial correlations between Height and Weight:
controlling for Age.

Partial Correlation Coefficients
Controlling for .. Age

Height Weight
Height Pearson Correlation 1.0000 0.6126

(     0) (  274)
p= . p= .000

Weight Pearson Correlation 0.6126 1.0000
(  274) (     0)

p= .000 p= .

The influence of age has been removed from the
correlation between height and weight which is reduced
from 0.807 to 0.6126, see table V. If age has no effect
on height and weight, then there will be not much change
in the original correlation even after controlling for
age. Qualitative variables like gender could also be
used as a controlling for variable and more than one
controlling variables could be factored for.

CORRELATION DOES NOT MEAN CAUSATION
A high correlation does not give us the evidence to
make a cause-and-effect statement. A common example
given is the high correlation between the cost of
damage in a fire and the number of firemen helping to
put out the fire. Does it mean that to cut down the cost
of damage, the fire department should dispatch less
firemen for a fire rescue! We know that there is this
intensity of the fire that is highly correlated with the
cost of damage and the number of firemen dispatched.

Another example is the high correlation between
smoking and lung cancer. However, one may argue
that both could be caused by stress; and smoking
does not cause lung cancer. In this case, a correlation
between lung cancer and smoking may be a result of a
cause-and-effect relationship (by clinical experience +
common sense?). To establish this cause-and-effect
relationship, controlled experiments should be
performed (see table VI for the required sample size

for different correlation values at power of 80% and
90% with a 2-sided 5%).

AGREEMENT BETWEEN TWO QUANTITATIVE
OUTCOMES
Firstly the paired t-test is definitely not appropriate to
show agreement between two quantitative measurements
(for example, two instruments measuring temperature).
Does it mean that we want the p-value to be greater
than 0.05 to imply agreement? Surely by now we know
that the p-value is affected by the sample size and thus
there’s no way to comment on the agreement whether
the paired t-test gives a statistical or non-statistical result.

On the other hand, using correlation to describe
agreement between two quantitative variables needs
caution. Definitely, a high correlation is required but
that does not imply agreement (see Fig. 4a). The
“line of agreement” should be a 45 degrees (x = y) line
(see Fig. 4b)

Fig. 4a

Fig. 4b

Table VI. Sample sizes for different correlation values.

Pearson’s Correlation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Power 80% 780 190 82 44 26 17 11 7 5

(2-sided 5%) 90% 1,045 255 110 58 34 21 14 9 6
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Bland & Altman introduced the Bland-Altman
plot(1) to describe agreement between two quantitative
measurements. There’s no p-value available to describe
this agreement but rather a “quality control” concept.
The difference of the paired two measurements is
plotted against the mean of the two measurements
and they recommend that 95% of the data points
should lie within the ± 2sd of the mean difference.

We shall use Bland Altman plot to assess the
agreement of two temperature-measuring instruments.
One hundred and fifty measurements were taken and
Fig. 5 shows the scatter plot between instrument A vs
instrument B, the correlation is 0.871, p<0.001.

Fig. 5 Scatter plot between Instruments A and B.

To do the Bland Altman plot (see Fig. 6), we have
to compute the differences between the instruments
and the mean of both instruments for all the paired
values. The mean (sd) of the differences is -0.2665
(0.3022), thus the mean ± 2sd are (-0.8709, 0.3379).

Fig. 6 Bland Altman plot.

From the plot, we want the cluster of points to be
around the difference = 0 line and any large deviated
differences have to be checked: whether the “large”

difference is due to wrong data-entry, operator
dependent or the flaw of one (or both) of the
instruments.

From the plot, we observe that 8/150 (5.3%) of the
points are beyond the ±  2sd lines and instrument
A seems to be measuring ‘low’ most of time but have
a trend of high scores amidst the 37 degree value.
The extreme difference is ± 1 degree. The question
now is: are the two instruments agreeable? Well,
if one does not mind a one-degree difference, then
they are agreeable; otherwise the researcher has to
make the judgement call.

Another way to assess the agreement is to set
acceptable tolerances for the differences between the
two instruments; for example, how many percent in
the 0.1 degree difference, 0.2, etc. Table VII shows
the “tolerance” table.

Table VII. “Tolerance” table: absolute differences
between instruments A & B.

Tolerance (degrees) n (%)

0.2 29 (19.3)

0.4 117 (78.0)

0.5 131 (87.3)

0.6 133 (88.7)

0.8 144 (96.0)

1.0 149 (99.3)

At least 87% of the measurements agree on the
0.5 degree tolerance or is it acceptable to have 13%
being more than 0.5 degrees difference?

AGREEMENT BETWEEN TWO INTER-RATERS
ON QUALITATIVE OUTCOMES
Frequently, we are interested to determine whether
two raters agree in the rating of a subject on a qualitative
scale (disease, no disease). Table VIII shows the
responses of two raters on 100 subjects on their
disease-status in a SPSS dataset.

Table VIII. Inter-raters’ dataset in SPSS.

Rater_a Rater_b Count

Disease Disease 40

Disease No disease 5

No disease Disease 5

No disease No disease 50

To measure the agreement between the two raters,
Kappa(2) estimate is used. Kappa lies between zero to
one and has similar interpretation as the strength of
correlation given in Table II. To obtain Kappa from
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SPSS, firstly weight the count(3), then go to Analyse,
Descriptive statistics, Crosstab - choose Statistics and
tick on Kappa, see template 3.

Template 3

Table IX gives a Kappa value of 0.798 (p<0.001), a
strong agreement between the two raters since they
agree on 90% of the subjects.

Table IX. Kappa estimate.

Symmetric Measures

Value Asymp. Approx. Approx.
Std. Errora Tb Sig.

Measure of
Agreement Kappa .798 .061 7.980 .000

N of Valid Cases 100

a. Not assuming the null hypothesis
b. Using the asymptotic standard error assuming the null hypothesis

LIMITATION OF KAPPA
Table X shows the same two raters agreeing on 90%
of the subjects but this time 85% on no-disease and

5% disease but the Kappa value is only 0.444 (and
sometimes could be negative!). See Table XI. This
happens because one of the agreed-category has a
small percentage.

Table X.

RATER_A * RATER_B Crosstabulation

Count

RATER_B

no disease disease Total

RATER_A no disease 85 5 90

disease 5 5 10

Total 90 10 100

Table XI. Kappa estimate.

Symmetric Measures

Value Asymp. Approx. Approx.
Std. Errora Tb Sig.

Measure of
Agreement Kappa .444 .147 4.444 .000

N of Valid Cases 100

a. Not assuming the null hypothesis
b. Using the asymptotic standard error assuming the null hypothesis

Table XII.

Rater B Rater A

1 2 Total

1 A B B1

2 C D B2

Total A1 A2 N

Gwet(4) proposed an alternative statistic referred
as AC1-statistic which is more consistent with the
percentage of agreement between raters in all situations
and is given by (using Table XII)

Using the values from Table X, the AC1-statistic
for agreement is 0.8780 (which is more consistent
with the two raters having the same rating for 90%
of the subjects).

CONCLUSIONS
This article, in a way, ties up the univariate techniques
of analyses for both quantitative and qualitative data.
In such analyses, we have not taken into account
the effect of other variables (confounders/covariates)
except for the technique of partial correlation.

ACI =          where p =             and ø = 2q(1-q), q =
p-ø

1-ø

A + D

N

A1 + B1

2N
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In the next article, we will discuss the multivariate
technique of analysis for the regression model of
quantitative outcomes: Biostatistics 201 – Linear
Regression Analysis.
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