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Abstract

Objective – To review the immunomodulatory effects of opioids.

Data Sources – Original research publications and review articles using the PubMed search engine with the
following keywords – opioids, morphine, immuomodulation, and immunosuppression.

Veterinary and Human Data Synthesis – Opioids have been shown to modulate the immune system in
animal models by affecting both the acquired and innate arms of the immune system. Natural killer cell
activity, T-cell proliferation, antibody production, phagocytic cell function, and cytokine production have all
been shown to be affected by opioids. Many of these effects are reversed by opioid antagonists. Opioids have
also been shown to induce sepsis in laboratory animals. Opioid administration alters immune parameters in
healthy humans at analgesic doses and may increase the risk of infection in some patient populations.

Conclusions – While opioids remain the most powerful and widely used analgesics available, their negative
effects on the immune system are well established in the laboratory setting. Thoughtful consideration should
be given to the use of certain opioids in critically ill patients, especially those with pre-existing
immunocompromise.

(J Vet Emerg Crit Care 2010; 20(4): 376–385) doi: 10.1111/j.1476-4431.2010.00561.x
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Introduction

The term opioid refers to any directly acting compound

that is stereospecifically antagonized by naloxone.1 The

clinical use of opioids stems from more than 5000 years

of medicinal use of opium, which is derived from the

unripe seed capsule of poppy Papaver somniferum. Mor-

phine, a pure mu receptor agonist opioid, was isolated
from opium in 1805; it is also known as an opiate as it is

not a synthetically compounded drug. Since that time

other semisynthetic and synthetic opioids have been

developed in an attempt to produce more efficacious

compounds with reduced abuse potential and adverse

effects.1

Opioids are the most powerful and effective analge-

sic drugs used in clinical medicine. They make up the
backbone of pain management in human and veteri-

nary patients and are used for the management of

moderate to severe pain.2,3 They are potent analgesics,

have few clinically apparent adverse effects on other

organ systems, and have consistent pharmacokinetics.4

Opioids are naturally occurring alkaloids, related syn-

thetic/semisynthetic compounds, and endogenous

opioid peptides (enkephalins, endorphins, and dynor-

phins).5 The exact physiologic function of endogenous

opioids includes modulation of stress-induced analge-

sia and neurotransmitter, neuromodulator, and neuro-

hormonal activity.6 In addition to analgesic properties,

opioid receptor agonists and antagonists modulate the
immune system by interacting with opioid receptors in

the central nervous system (CNS) and on immune cells.

Pharmacology

Opioid receptors are named for their endogenous

ligands and identified by a numerical subscript corre-

sponding to the chronological order of discovery by
cloning and sequencing.1 The receptors for which all

opioids act as agonists have a generic designation of OP

(Table 1). The opioid receptor is made up of an extra-

cellular N-terminal domain, 7 transmembrane guanine

domains connected by 3 extracellular and 3 intracellu-

lar loops and an intracellular C-terminal tail.7,8 Each
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receptor has specific subtypes that have not been com-
pletely defined.9,10 These subtypes may dictate the

physiologic response to endogenous and exogenous

opioids and explain variable analgesic and physiologic

responses associated with OP3 receptor opioids.11

The frequency and distribution of opioid receptors is

organ and species dependent and nonuniform.5,8,12 The

opioid receptor has been shown to be distributed in

many sites throughout the CNS including the cerebral
cortex, thalamus, periaqueductal gray matter, and the

spinal cord dorsal horn. In addition, opioid receptors

have been demonstrated on peripheral sensory neurons

following inflammation and nonneurologic tissue in-

cluding the heart, gastrointestinal tract and cells of the

immune system.6,9,10,13,14 Opioid receptors in these

different areas all exhibit similar molecular structure.13

Opioid receptors signal through a second messenger
system (cyclic AMP) or ion channel (K1).6 They work

by reducing intracellular calcium concentrations lead-

ing to a decrease in presynaptic neurotransmitter re-

lease.6,10 They may also enhance efflux of potassium

leading to hyperpolarization of postsynaptic neurons.6

Opioids inhibit g-aminobutric acid (GABA)ergic trans-

mission in a local circuit, ultimately preventing GABA

inhibition of descending antinociceptive pathways.6,10

Binding of endogenous and exogenous opioid ligands

to the opioid receptor results in receptor activation and

a variety of effects, including analgesia, euphoria, feed-

ing, hormone secretion, respiratory depression, inhibi-

tion of gastrointestinal motility, and anxiolysis.8

Opioids may interact with receptors as agonists, an-

tagonists, or as partial agonists. Morphine is the pro-

totypical agonist of the OP3 receptor and is standard of

comparison for other opioid analgesics.6,15,16 Other
drugs that act as agonists at this receptor include

hydromorphone, oxymorphone, methadone, fentanyl,

and meperidine (Table 2). Buprenorphine has tradi-

tionally been described as a partial agonist at the OP3

receptor and an antagonist at the OP2 receptor.17 Opioid

antagonists lack in vivo or in vitro agonist activity and

may be used to reverse the effect of opioid antago-

nists.12 Naloxone, naltrexone, and nalmephine are
opioid antagonists that block central and peripheral

opioid effects.12 In addition, specific peripheral opioid

antagonists have been developed and are used to block

undesired peripheral effects (ie, altered gastrointestinal

motility) without reversing central analgesic effects of

the drugs.12

Immunomodulatory effects of Opioids

As early as the late 19th century, the immunosuppres-

sive effects of opioids were recognized. Both exogenous

and endogenous opioid peptides have been shown to

cause immunosuppression or immunostimulation.23–25

Morphine-induced immunomodulation has been in-

vestigated most extensively. However, other opioids

have immunomodulatory properties.26

The immunosuppressive effects of opioids are

independent of their antinociceptive properties and ap-

pear to be related to the molecular structure of the

opioid. Some opioids (morphine, fentanyl, methadone,

codeine) are more immunosuppressive than others
(hydromorphone, tramadol, hydrocodone, and oxyco-

done) (Table 3).26–28 Buprenorphine produces little to

no negative immune alterations and may enhance im-

mune function.26,27,29–31 Antagonists at the OP3 receptor

also appear to enhance immune function.13,23,32 Opioids

Table 1: Opioid nomenclature

International Union

of Pharmacology

recommendation

Pharmacology

nomenclature

Molecular biology

nomenclature

OP1 d DOR

OP2 k KOR

OP3 m MOR

Adopted from Dhawan BN et al.145

DOR, delta opioid receptor; KOR, kappa opioid receptor; MOR, mu opioid

receptor.

Table 2: OP3 receptor agonists and their relative potencies to morphine

OP3 receptor

agonist

Administration

route

Relative potency to

morphine Additional comments

Hydromorphone IV, IM, SQ, PO 5–1018 May cause panting in dogs. Minimal to no histamine

release

Oxymorphone IV, IM, SQ, PO 1019 Expensive. Minimal to no histamine release

Fentanyl IV, TD 80–10020 Short acting. Usually given as a constant rate infusion to

attain prolonged therapeutic effects. Transdermal

application takes 12–24 hours to reach therapeutic levels

Methadone IV, IM, SQ, PO 3.4–1021,22 Also has NMDA antagonist properties.

IV, intravenous; IM, intramuscular; SQ, subcutaneous; TD, transdermal; PO, oral; NMDA, N-methyl-D-aspartic acid.
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with no immunosuppressive activity have a carbonyl

substitution at C6, a single bond between C7–8 and a

hydroxyl group at C14.27,33 Molecules like morphine

and fentanyl that carry the hydroxyl group at both C3

and C6 have the greatest immunomodulatory effects;

the mechanism by which these structural differences

dictate immune response is unknown.33

Mechanisms of Immunomodulation

The mechanism by which opioids affect the immune

system is complex and incompletely understood.43

Opioids alter immune response through their actions

in the CNS and in the periphery. Central mechanisms

involve interaction of opioids with opioid receptors in
the CNS, which leads to changes in neuroendocrine and

autonomic function.44 The OP3 receptor is primarily

responsible for the central immunomodulatory effect

of opioids; OP3 receptor knockout mice are protected

from these immunomodulatory effects.23,45,46 Centrally

mediated suppression is responsible for reduction in

natural killer (NK) cell activity (associated with the

sympathetic nervous system), reduction in lymphocyte
proliferation and interferon (IFN)-g activity.47,48 Direct

stimulation of OP1 and OP3 receptors on immune cells

including B lymphocytes, monocytes, and macrophages

is primarily responsible for peripheral immunosup-

pression, although a naloxone-insensitive morphine re-

ceptor may also play a role.23

Centrally mediated immunomodulation

Several studies have demonstrated a centrally mediated

mechanism for opioid-related immunosuppresion.49–52

Hernandez et al49 demonstrated the role of the CNS by
showing that systemic administration of morphine,

which crosses the blood brain barrier, suppressed

lymphocyte activity. In contrast, N-methylmorphine,

an active morphine analog that does not cross the

blood-brain barrier, did not produce any systemic

changes in lymphocyte activity. The role of central

OP3 receptors was further demonstrated by the obser-

vation that injection of N-methylmorphine directly into
the third ventricle suppressed peripheral lymphocyte

and NK cell activity.49,50

The periaqueductal gray matter of the mesencepha-

lon (PAG) is enriched with opiate receptors and

endogenous opioids. Thus, it is not surprising that the

PAG is also the primary area of the brain involved in

opioid-induced immunomodulation.31,47,53 Microinjec-

tions of morphine into the PAG cause rapid suppres-
sion of NK cell function, while injection into other

neuroanatomical sites does not cause immunosuppres-

sion.53 While there are OP1, OP2, and OP3 receptors

present in the PAG and in many areas of the CNS, OP3

receptors appear to be primarily responsible for the

central immunomodulatory effect of morphine.51

Administration of high doses OP1 and OP2 receptor

agonists into the CNS of mice only produced mild

Table 3: Immunomodulating properties of selected opioids

Opioid

Primary

receptor

activity HPA axis

Corticosteroid

secretion NK cell activity Additional information

Morphine OP3 agonist Stimulates31,34 Increases31,34 Decrease28,31,35 Generally upregulates production of

pro-inflammatory mediators and

suppresses the production of anti-

inflammatory mediators. Suppresses

immune cell proliferation31,33

Fentanyl OP3 agonist Stimulates34 Increases34 Decreases, has

also been reported

to increase. May

be dose

dependent29,36,37

Does not stimulate the release of

nitric oxide.38 Suppresses T cell

proliferation, IFN-g and IL-2

production29,39

Hydromorphone OP3 agonist No known

reported effect

No known

reported effect

No effect33 Has no effect on immune cell

proliferation or IL-2 production

Buprenorphine OP3 partial

agonist

No effect31,34 No effect,

decreases29,31

No effect29,31 No effects on immune cell

proliferation or cytokine activity29

Naloxone OP3

antagonist

Variable and

dose

dependent40

Variable40 Increase,

decrease, or no

effect41,42

Not well studied. Decreases IL-4

Increases the production of IL-2 and

IFN-g. Increases T lymphocyte

proliferation42

Naltrexone OP3

antagonist

Variable and

dose40

dependent

Variable40 Increase,

decrease, or no

effect41

Not well studied. Effects likely similar

to naloxone

HPA, hypothalamo-pituitary axis; NK, natural killer; IL, interleukin; IFN, interferon.
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suppression of blood lymphocyte proliferation in com-

parison to OP3 agonists.51

While the role of opioid receptors in immunosuppres-

sion has been established, the pathway by which

activation of central opioid receptors results in immuno-

suppression is debated.54 It has been proposed that

central opioid immunomodulation is either through the
neuroendocrine (hypothalamic-pituitary-adrenal [HPA])

axis or the sympathetic nervous system.53,55,56 Both acute

and chronic administration of morphine appears to alter

the immune response through different pathways. Acute

administration of exogenous opioids primarily affects

immune function through the sympathetic nervous

system while chronic administration may activate the

HPA axis.55,56

Activation of the HPA axis results in the activation

of a hormonal cascade from the hypothalamus,

pituitary (ie, CRH, ACTH) and the secretion of immu-

nosuppressive hormones from the adrenal glands (ie,

glucocorticoids) which exert their effect peripher-

ally.30,56,57 Importantly, opioid agonist administration

has been shown to activate the descending pathways of

the HPA and hypophysectomy, adrenalectomy, and the
use of steroid antagonists abolish the immunosuppres-

sive effects of morphine.58–61

The sympathetic nervous system is another pathway

through which central opioid receptor activation trans-

lates to immunomodulation. Primary (eg, spleen,

thymus) and secondary (eg, Peyer’s patches, lymph

nodes) lymphoid organs are primarily innervated by

the sympathetic nervous system.55 Opioids activate the
sympathetic nervous system and induce catecholamine

release, including epinephrine from the CNS and nor-

epinephrine from the sympathetic nerve terminals and

adrenal medulla. Catecholamines act on primary and

secondary lymphoid organs and suppress lymphocyte

proliferation, NK cell, and macrophage activity.47,62–64

Alpha-adrenergic receptor activation is responsible

for suppressing NK cell activity while beta-adrenergic
receptor activation decrease lymphocyte activity.47,65

Peripherally mediated immunomodulation

Opioid receptors as well as nonclassical opioid-like

receptors are expressed on the surface of immune cells.

Additionally, there is evidence of opioid receptors that

have yet to be cloned that are responsible for altered

immune cell function. For example, novel morphine-

selective receptors have been identified on lympho-
cytes. These opioid receptors are thought to exist in low

density on a restricted population of lymphocytes.25

The OP1 receptor is primarily responsible for periph-

erally mediated immunomodulation, although OP2 and

OP3 receptors may also play a lesser role.43 OP1 recep-

tors on T cells and macrophages are involved in the

maintenance of immune homeostasis. Overstimulation

of OP1 opioid receptors by exogenous or endogenous

opioids may alter the production cytokines (ie, enhanc-

ing or suppressing cytokine production depending on

the agonist and the dose used) and decrease antibody

production.25,55,66

Effects of opioids on specific cells of the immune

system

Opioids mediate their immunosuppressive effects by

acting on various cells of the immune system, affecting

both the innate and the adaptive immune systems.

Opioids interfere with the phagocytic activities of mac-

rophages and neutrophils, inhibit B and T-cell antibody

response, interfere with chemotaxis of immune cells and

modulate inflammatory mediator production.56,67–70

Bone marrow progenitor cells: Roy et al71 discov-

ered in 1991 that bone marrow cells are differentially

sensitive to chronic morphine treatment in vitro. Con-

tinuous in vivo morphine treatment compromised the

ability of macrophage progenitor cells to proliferate

in response to macrophage-colony stimulating factor

(M-CSF) in mice. A 70% reduction in colony formation

was seen as early as 36 hours after continuous mor-
phine exposure although acute injection of morphine

failed to suppress M-CSF induced colony formation.

This effect was not permanent and M-CSF responsive-

ness returned within 5 days after cessation of morphine

treatment.56,71

Macrophages: Morphine suppresses phagocytic

functions of macrophages in vivo and in vitro. Acute
and chronic exposure to morphine affects a variety of

macrophage functions including phagocytosis, tumor-

icidal activity, nitric oxide (NO) production, superoxide

formation, and cytokine expression.56,72–76 Suppressed

macrophage function is antagonized by OP3 antago-

nists but not by OP1 or OP2 antagonists, emphasizing

the importance of the OP3 receptor in immunosuppres-

sion.72 Morphine induced apoptosis in macrophages
of mice, rats, and healthy human volunteers and

this effect was reversed by naloxone.77 Morphine-

induced macrophage apoptosis may be mediated

through the generation of NO, since the administra-

tion of NO-synthase inhibitors attenuated this effect.77

NO is thought to promote macrophage apoptosis

through the generation of p53.78

NK cells: Acute and chronic administration of mor-

phine affects the function of human, monkey, and

rodent NK cells.56,79 Administration of morphine in rats

and healthy human volunteers decreased splenic NK

cell activity within 2–3 hours. This effect was com-

pletely antagonized by naltrexone.48,79,80 The mecha-
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nism by which morphine affects NK cell activity is

thought to be mediated through OP3 receptors in the

CNS.35,50,79 Morphine does not affect NK cell function

in vitro and administration of N-methyl morphine, a

morphine analog that does not cross the blood brain

barrier, fails to inhibit NK activity in vivo.50,61,81

A key aspect of NK cell function is the identification
and eradication of neoplastic cells. Therefore, it is log-

ical that opioid-induced NK suppression would lower

defenses against neoplastic cell growth. However, in

vivo evaluations of this phenomenon have yielded con-

flicting results. Ishikawa et al82 demonstrated that mor-

phine enhanced the growth of tumor cells in vivo and

this effect was inhibited by naloxone. However, other

investigators have demonstrated that morphine con-
trolled metastasis and retarded the growth of tu-

mors.83,84 It is thought that the antitumor effect of

morphine may be the result of analgesia.84

T cells: Chronic administration of morphine affects

the function of T cells and their precursors, in part

through the OP3 receptor.55,85,86 Chronic morphine ad-

ministration interferes with the synthesis of interleukin

(IL)-2 and IFN-g, while the production of IL-4 and IL-5

are upregulated.86,87 This ultimately leads to the differ-

entiation of T helper (Th) cells toward Th2 effector cells,
via killing of Th1 cells in a Fas/FasL-dependent man-

ner, resulting in reduced cellular immunity.86–88

Chronic morphine administration decreases CD4/CD8

ratio in the spleen and thymus of mice.24,46 Morphine

also decreases T-cell responses to the mitogen con-

canavalin A, in mice.89

Inflammatory mediators: In general, morphine in-

creases production of proinflammatory cytokines and

reduces production of anti-inflammatory cytokines, al-

though this effect is dose dependent. The OP3 receptor is

involved in morphine induced reduction of tumor ne-

crosis factor (TNF) synthesis while the role of this

receptor in the modulation of IL-1b and IL-6 synthesis is

unclear.23,56,90 It is speculated that the modulation of IL-
1b and IL-6 synthesis could be mediated by OP2 or OP3

receptors or through a naloxone-insensitive morphine

receptor.56 OP1 selective agonist, U50,488 inhibits the

synthesis of IL-1b and TNF but not IL-6 in a macrophage

cell line.25,91 Modulation of cytokine expression is

thought to be through the nuclear factor-kB pathway.92

Morphine inhibits production of IFN-g, an important

T cell lymphokine responsible for enhancing the micro-
bicidal activity of macrophages, peripheral blood mono-

nuclear cells, and T lymphocytes.93,94 Peng et al95

demonstrated that morphine upregulated the produc-

tion of proinflammatory cytokines, TNF, and IL-12, at

the protein and the mRNA level, and naloxone blocked

those effects. Morphine also inhibited the production of

IL-10, an anti-inflammatory cytokine.95 Morphine re-

duces IL-2 production while hydromorphone and the

OP3 antagonists, naloxone and naltrexone, increase or

have no effect on IL-2 production.33 In one in vitro study,

morphine produced a dose dependent effect. Roy et al92

demonstrated that high doses of morphine reduced the

expression of inflammatory cytokines TNF and IL-6,
while low doses of morphine increased their expression

in vitro. Ultimately, the effect of morphine on inflam-

matory cytokine synthesis and secretion is variable

depending on experimental conditions and the dose of

morphine used.56

Opioids, infection, and sepsis

Certain opioids have been shown to increase infection

rates in humans and animal models.13,43 Morphine in-
creased susceptibility to Klebsiella pneumoniae and

Candida albicans infection in rodents, reduced splenic

and thymic weights, and decreased T cell proliferative

response to mitogens. Additionally, morphine pro-

moted the translocation of intestinal bacteria into the

peritoneal cavity inducing sepsis in mice.14,23,44,96 The

initial serum concentration of morphine attained in

these mice was higher than those achieved with typical
analgesia doses in clinical practice, although those con-

centrations could be attained if higher doses of mor-

phine are used.14 However, after 48–96 hours serum

morphine concentrations were approximately 0.6 mg/

mL, which is comparable to that obtained for analgesia

in clinical practice.14,97

Along with inducing infection, morphine adminis-

tration has detrimental consequences in experimental
models of sepsis and endotoxemia. Cell-mediated

immunity is vital to combat microorganisms during

sepsis, and morphine attenuates cell-mediated immu-

nity in murine models of sepsis.14,98,99 Administration

of morphine before administration of lipopolysaccha-

ride (LPS) significantly enhanced development of

hypotension, intravascular coagulation, leukocyte en-

dothelial adhesion, and production of TNF, IL-1b, and
IL-6 in rats.99 Morphine hastened the progression of

sepsis to septic shock in this group of rodents.99

Conversely, buprenorphine and opioid antag

onists are beneficial in murine models of sepsis.

Buprenorphine improved mean arterial blood pressure,

pH, and base excess in endotoxemic rats and attenu-

ated the development of fever after intrathecal injection

of LPS in rats.98,100 In pigs with Escherichia coli-induced
sepsis, there was significant improvement in hemody-

namic status when buprenorphine was administered.101

Naltrexone reduced plasma TNF concentrations,

improved microcirculation and reduced hepatic dys-

function in endotoxemic rats.102 Additionally, admin-

istration of naltrexone protected mice from developing
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LPS-induced shock by blunting TNF production.103 The

protective effect of naltrexone during endotoxemia was

reversed when morphine was administered.103 In hu-

man clinical trials, naloxone improved mean arterial

blood pressure during septic shock.104–106

Evidence in humans

There is abundant evidence demonstrating the rela-
tionship between intravenous drug users (IVDU) and

increased susceptibility to infectious disease.57,107

Opioid exposure alone, in the absence of other con-

founding factors, markedly affects a wide variety of

immune parameters in this population.57,108 While a

large percentage of infections in IVDU are associated

with high-risk behaviors (eg, use of unsterilized

needles) and lifestyle practices, IVDU also have an
increased incidence of infections (eg, tuberculosis,

pneumocystic pneumonia, systemic candidiasis)

that cannot be attributed to high-risk behaviors

alone.57,108,109 Individuals that are infected with the

human immunodeficiency virus (HIV) that are not

IVDU have a lower frequency of infectious diseases and

nonacquired immunodeficiency syndrome related

deaths than HIV patients who are IVDU.110

Heroin users frequently develop lymphadenopathy,

lymphocytopenia, hypergammaglobulinemia, and de-

creased monocyte adhesion and neutrophil func-

tion.57,111 Additionally, IVDU develop opioid-induced

endocrine and metabolic dysfunction.112 Heroin, which

activates the OP3 receptor, attenuates the immune sys-

tem and is thought to be a cofactor in the pathogenesis

of HIV infection.30,113–115

Opioids have also been shown to affect the progres-

sion of disease in HIV infection. Opioids enhance

immunodeficiency and increase the viral load in

humans infected with HIV.114,116–118 Cessation of IVDU

in HIV-positive individuals resulted in a lower inci-

dence of acquired immunodeficiency syndrome.119 In

vitro, morphine has been shown to promote production

of HIV virus in lymphocytes.114

Healthy human volunteers exhibited a dose depen-

dent reduction in NK cell activity 2 hours after receiv-

ing morphine at analgesic doses. This reduction in NK

cell activity persisted for more than 24 hours.79 Sacer-

dote et al28 investigated the effect of morphine and

tramadol in a group of human patients after abdominal

tumor resection. Tramadol was shown to enhance NK

cell activity while morphine suppressed lymphocyte
proliferation in this population of patients. Opioids

may also contribute to increased infection rates in

hospitalized patients. For example, patients with mild-

to-moderate burn injuries are more likely to develop

infectious complications when treated with opioids.120

In another study, men that underwent radical pros-

tatectomy surgery were given either systemic opioids

or epidural analgesia for pain control. Patients who had

an epidural anesthesia were 57% less likely to have

tumor reoccurrence when compared with those who

received systemic morphine for pain control.121 The

authors speculated that the use of regional anesthesia

reduces the neuroendocrine stress response to surgery,
blocked the descending efferent activation of the sym-

pathetic nervous system, and reduced the amount of

general anesthesia required (all of which contribute to

immunosuppression).121 Regional anesthesia also pro-

vides adequate pain relief and may obviate the need for

postoperative opioids and the consequent adverse

effects on immune function and tumor growth.121

Naloxone has been shown to improve mean arterial
blood pressure during septic shock in rats and human

patients. Authors of a meta-analysis evaluating the use

of naloxone in septic shock in humans concluded that

naloxone administration may have hemodynamic ben-

efits.104 In one study, continuous infusion of naloxone

decreased mortality but this effect has not been con-

firmed in subsequent studies.104–106,122,123 The use of

naloxone in septic shock is still controversial.

Evidence in veterinary species

The effects of opioids on the immune system have pri-

marily been studied in murine rodents. Opioid recep-

tors are present in many species including dogs, cats,

horses, cows, monkeys, and sheep.124–127 There are few

studies evaluating the effects of opioids on immuno-

modulation in other species. It is possible that other

species will demonstrate the same response to opioids
seen in murine and human models but more controlled

studies need to be performed to establish the effects of

opioids in other species.

The immunomodulatory properties of opioids have

been evaluated in pigs and cats. Bearing in mind the

limited evaluation, morphine appears to have similar

immunomodulatory effects in pigs as it does in mice

and humans. Administration of high-dose morphine
(3.3 mg/kg) to pigs downregulates neutrophil and

monocyte activity.128,129 Morphine also reduces T lym-

phocyte and NK cell activity in pigs when administered

before vaccination with the Bacille-Calmette-Guérin

vaccine. This vaccine stimulates T lymphocyte prolif-

eration in humans and mice and has the same effect in

the pig.46,79

In cats, the impact of morphine administration
and withdrawal on lentivirus-related disease progres-

sion has been evaluated.130 Morphine-treated feline

immunodeficiency virus (FIV)-positive cats did not

experience increase incidence or severity of FIV-related

diseases.130 While this study did not demonstrate an

opioid-related increase in susceptibility to FIV-related
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diseases, the results should be interpreted with caution

because of small sample size and large variation in

viremia severity.

Clinical implications

Most opioids used in clinical practice affect the immune

system to varying degrees. Many ICU patients are

immunocompromised and it is important to select
analgesic drugs carefully to avoid promoting further

immunosuppression.27 A healthy patient would likely tol-

erate immune modulations without clinically important

consequences but there are situations (young, elderly, or

immunocompromised patients) where the risks associated

with opioid-related immunomodulation may be of clinical

concern. In critically ill patients or patients with risk

factors for immune dysfunction, opioids with minimal
or no immunomodulatory properties (buprenorphine,

hydromorphone, tramadol, oxycodone, and oxymor-

phone) may be more advantageous compared with

opioids with known immunomodulatory properties (mor-

phine, fentanyl, methadone, and codeine).

While the risks of immunosuppression with the use

of opioids should be considered in the critical patient,

the importance of adequate analgesia cannot be over-
stated. Untreated pain produces a generalized symp-

thathetic response, leading to tachycardia, increased

cardiac output and peripheral vasoconstriction that

may cause hypertension and contribute to hemody-

namic instability in the critical patient.131 In some cases,

pain may cause a generalized vagal response consisting

of bradycardia and systemic hypotension, which

may produce end-organ damage as a result of poor
perfusion.132 Indeed, untreated pain alone may

ultimately lead to immunosuppression.133,134 Unfortu-

nately, the ability of specific opioids to reverse pain-

induced immunosuppression has not been assessed

clinically. Because opioids are the most effective anal-

gesic drugs available for treating pain, their use in the

critical patient is still advocated when pain is recog-

nized or suspected.
Multimodal analgesia, using a combination of differ-

ent classes of analgesics is an important strategy to im-

prove the efficacy of pain management. In addition, this

approach has the potential to reduce the amount of

opioids required for analgesia and thus may help min-

imize potential immunosuppressive effects associated

with the use of opioids. However, it should be noted

that many analgesic medications have been shown to
alter immune responses so careful consideration of each

medication selection is recommended.135–138 N-methyl-

D-aspartate antagonists, sodium channel blockers and

nonsteroidal anti-inflammatory drugs have been used

with great success in human and veterinary medicine to

provide multimodal analgesia.139,140 Neuraxial analge-

sia will also significantly reduce the amount of systemic

opioids needed and should be utilized as often as pos-

sible when managing the critical patient. The use of

multimodal analgesia in veterinary species has been

reviewed elsewhere.141–144

While there is compelling evidence demonstrating

the immunomodulatory effects of endogenous and
exogenous opioids in animal models and humans, a

consensus on the appropriate use of opioids in critical

patients has not been reached. In light of the fact that

there is little clinical evidence evaluating the impact of

opioids on outcome, additional research is needed in

the clinical veterinary patient population. In the mean-

time, patients should be treated for pain, using opioids

when clinically appropriate. Opioids that cause mini-
mal immunosuppression should be considered in favor

of opioids that cause immunosuppression whenever

possible.
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