
Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 1

arXiv Technical Infrastructure Workshop: Synopsis & Recommendations

Cornell University Library
June 9, 2016

* please do not distribute *

Introduction

The arXiv team is undertaking a series of surveys and workshops to help us create a cohesive
vision for the future of arXiv and seek major funding for implementation over the next few
years. On April 28-29, 2016, a technical infrastructure workshop was held to brainstorm and
refine a set of possible technology options for the re-implementation of all or parts of arXiv,
and to provide a solid foundation for additional development. Appendix B presents the agenda
and Appendix C provides a list of participants. This report summarizes the discussion issues and
presents recommendations for the arXiv team. The synopsis includes sections on architectural
choices, technology candidates, moderation system and workflows, and funding. It also
includes a set of recommendations related to organizational model, resources, and
partnerships. The outputs of the workshop will be used to develop a technology plan for arXiv
that will allow it to support existing functionality, and for the development of new functionality
that aligns with the vision. An important component of this process is to identify partners and
funders, and assemble a team with technical and project management skills to carry out such
an ambitious project.

Architectural Choices

The workshop framed the discussion of rearchitecting arXiv around a spectrum of possibilities:
 Do nothing: Despite very high user satisfaction with arXiv in its current state, the

consensus is that this is not a viable option.
 Incremental: Maintain the status quo as a baseline, but make selected changes over

time. This would be undesirable in the long term since continuing on this path could
inhibit taking a fresh view of requirements.

 Midpoint: Develop a new architecture using modern design, but potentially incorporate
existing modules (e.g., TeX engine) and external components. (Referred to as “hybrid
modular integration”).

 Complete rewrite: INSPIRE completed a rewrite (based on Invenio 1). ADS has a beta
rewrite operational. DSpace tried and failed on a complete rewrite 3 times. The Fedora
4 rewrite succeeded.

 Replacement: Find an existing system that could be used or customized to replace the
entire existing codebase.

We discussed a number of technical scenarios that fall within this spectrum. Participants
reflected on the pros and cons of each scenario based on their overall knowledge and

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 2

experiences in similar situations. Appendix A presents our options and assesses their pros and
cons. Five scenarios are summarized in the following sections.

1. Adopt a Similar System

Adopting a similar system would involve identifying possible off-the-shelf (turnkey) systems or
systems that could otherwise be adapted to meet arXiv’s requirements.

Finding a system that is easily modifiable and extensible would have the benefit of requiring
less new development. Other important benefits include shared maintenance and security
updates, potential access to community support, and ongoing refinement of the underlying
system. This is especially the case if we are able to leverage the knowledge and development
efforts of a system’s wider community.

It is also unclear how the migration to a new system would best work. The wholesale
switchover of a monolithic system (i.e. arXiv) would likely pose more difficulties than a gradual
introduction of new components to a new, more hybrid system. Any changes in the data model
would add the burden of keeping it synchronized with the old model. Software examples:

 Invenio 3 (as a complete solution rather than using components of the framework)
 Open Journal Systems (OJS)
 Ambra (PLoS)

2. Rebuild Using Generic Open Source Software (OSS) Stack

The Ruby/Rails and Hydra stacks are heavily used within CUL and peer libraries. There exists
strong community around these technologies. This approach would be oriented to selecting an
open source stack that can be used for many types of applications, mostly by means of being
able to customize or extend functionality as needed. Ideal use of such a stack would be to make
changes that can be generally useful and contributed back to the open source community to
become part of the core software, but also some customizations may be necessary that serve
arXiv’s unique needs. Further investigation will be required to assess the appropriateness of
this approach. Software examples:

 Hydra/Fedora 4/Sufia
 Ruby/Rails

3. Adapt a Known Framework for Scientific Communication

This approach is similar to the OSS stack scenario, but with better alignment with the needs of
scientific communities. Frameworks that are designed for scientific communities may be more
likely to be in alignment with the needs of the arXiv stakeholders (e.g., authors, readers,
moderators).

Invenio 3 is a modular open source framework with ties to CERN and other institutions that
overlap with the arXiv community. It is more modular and less monolithic than its predecessors
(e.g., Invenio 1) and may offer some more flexible options for reimplementing some of arXiv’s
workflows. Substantial development is still needed before it is ready for production

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 3

environments. Possible benefits to this approach are that arXiv already has strong connections
to this community and that it’s early enough to establish collaborative work through
partnerships.

The Open Science Framework provides open source software to address scientific research
processes and workflows, broadly, but is less specifically focused on scientific publication. The
scope may not be a fit for arXiv’s more focused mission.

The arXiv team would need to assess the merit of this scenario more thoroughly. This would
involve relating previous experiences with Invenio 1 and better understanding of the OSF
approach. Software examples:

 Invenio 3
 Open Science Framework (OSF)

4. Redesign/Rebuild Selected Modules from arXiv Codebase

This approach would be incremental and would maintain the existing arXiv codebase while
selectively rebuilding pieces of arXiv. Modules might evolve in-place or be completely
rewritten. The disadvantage of this approach is that it would not allow the team to stand back
and take a fresh view of what a new architecture could be. It would run the risk of path
dependencies to the older codebase that may hamper future innovations. Incremental changes
would be made to an old codebase that has numerous dependencies and fragilities.

Rebuilding selected modules from an existing codebase is an approach Oxford and DPLA
applied successfully for some of its services. For arXiv, following this path would require a
deeper evaluation of its APIs and modules. Software examples:

 Catalyst framework for Perl (already in use)
 Oxford, DPLA approaches

5. Assemble Heterogeneous Modules

This scenario would involve judiciously selecting existing application components and using APIs
to integrate/combine them to deliver desired functionality and evaluating existing pieces of
code, applications and services. OSS (e.g. Invenio 3, Hydra) and commercial components would
potentially coexist with the scavenged components as microservices, with new code being
written to integrate and fill in the gaps.

Part of the appeal of a hybrid architecture is in the ability to combine cherry-picked
components. A multi-platform environment would also lend itself to loose coupling via good
use of APIs. ADS has restructured some parts of its code around microservices. This has allowed
them to reuse existing code, but often at the expense of many customizations.

The increased complexity in managing change and testing with multiple codebases can be
difficult, however. Adopting OSS and commercial components would require participation in
multiple, potentially disparate user communities. Software examples:

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 4

 Invenio 3 (selected parts)
 Hydra (selected parts)
 Microservices approaches

Of the major architectural approaches there was broad agreement that it will be best to pursue
a modular approach that builds on either an open-source stack or framework. Incremental
approaches would not allow the high-level rearchitecting recommended, and a complete
rewrite from the ground up would be costly and risky. The two strongest candidates are:
Invenio 3 framework & Ruby on Rails, possibly leveraging Hydra (based on Fedora 4) and/or
other gems.

Technology Candidates

Within the various architectural choices there are still a number of technology choices for the
components of arXiv. The following sections summarize discussions about a few key
components.

Search

arXiv’s current search is based on an old version of Lucene and a custom front-end. Metadata is
indexed separately from fulltext; the latter index is wholly maintained by Cornell’s CS
department, and has been fragile. Software examples:

 Elasticsearch
 Solr
 Blacklight (uses Solr but requires significant customizations)
 Invenio 3 (uses Elasticsearch)

Object Store

arXiv currently uses a “filesystem+” model of storing objects, in which a database supplements
a traditional filesystem. One of arXiv’s architectural weaknesses is its single database, so it
would be beneficial to have a high-availability solution. Updated storage architecture might also
be important if arXiv relaxes ancillary materials rules and starts accepting more materials that
are large. Software examples:

 MongoDB
 Filesystem+ (hybrid approach)
 Ceph

The question remains whether arXiv should look specifically at storage or repository
architecture.

Community and Code

It is unlikely that arXiv as a complete platform would be useful to a wider community, if it were
put on Github, for example; arXiv is not a general repository system, but a centralized service
that is designed for specific subject areas. It might however be useful to look at modularizing
particular components, like moderation or the TeX system, and make those available for reuse.

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 5

arXiv is exploring partnerships with CERN, INSPIRE, Max Planck and others. With new services
such as citation analysis, should arXiv try to do its own citation analysis or try to integrate
services better and not reinvent the wheel? There are off the shelf solutions now for issues that
arXiv has had to solve for itself previously.

Moderation System, Policies, and Workflows

The reconfiguration of the moderation system requires that we work closely with moderators.
We get involved in about 15% of the 600 daily submissions. How can we continue to scale this
human effort? We also need to address moderator preferences if we want these tools to be
used. Some tools look conceptually valuable but may not be embraced for supporting daily
workflows. For instance, we have a web interface that shows a list of held submissions. But
some moderators don’t use it. Some only use email and some are consistent web users. There
are inconsistencies between moderators. We’re hearing from some moderators that the tools
are inefficient to scale the work but we don’t have their input yet. We will survey the
moderators’ needs within a few months.

In addition to automated processes, there is a significant level of human moderation and
heuristics involved in running arXiv. Paul Ginsparg’s expertise has not been captured or
documented. We should not underestimate the importance of capturing such expertise as
technologies alone would not be sufficient to address important issues. It’s not just a set of
modern tools, it requires constant human recognition and input to recognize user behavior if
we want to constantly improve our quality parameters. Some questions raised include:

 Is constant monitoring and tweaking at this level indeed essential? What would be the
quality consequences if the monitoring was looser?

 What makes the moderation system unique?
 Why is it different from PLOS ONE, which has a rich review process?
 Policies and workflows are unique but should the supporting technologies be unique

too? It needs to be rapid, distributed, global, and scalable.

Approximately 150 volunteer moderators interact with arXiv via email and web interfaces. Due
in part to the daily high volume of submissions, the process is necessarily different from
traditional peer review. Despite these differences, it is worth investigating whether some
external solutions might be suitable for use or informative. Software examples include
Easychair (not open source) & MIT’s OpenConferenceWare.

Policy and technological features are symbiotic as they inform each other. The current
moderation workflows demonstrate how the arXiv technologies were developed in a
customized way to accommodate user communities. For instance, arXiv’s classification system
is based on communities as it expanded organically and is not based on a schema. Automation
is a tool for handling an increasing volume of daily transactions with fixed resources and staff. It
also requires formalizing policy to implement technical solutions and offload decision making to
clearly defined processes and procedures.

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 6

Funding

Although the focus of the workshop was on technological infrastructure issues, matters related
to funding often emerged in the discussions. Some key points to highlight include:

 NSF wants innovation and will respond to a vision that is innovation driven. arXiv should
not expect to get funding from NSF simply to re-architect. The US federal agency
budgets seem to be flat. One potential scenario is funding coming from NSF, NASA and
DOE.

 Do we want to do what’s compelling from a funding perspective (and engage in
unnecessary innovation) or stick to core services? For instance, some funders might get
excited about turning arXiv into a social media platform, but users might really balk. The
general recommendation is to focus on the core mission, maintain and improve the
fundamental systems, and make sure the current system runs well before doing
something new. The user study confirms that users are happy with core services.

 CERN is funded by European Commission (EC). If repurposing infrastructure from other
domains is a requirement, it could be useful for certain funders. We should consider
approaching the EC, and collaborations where NSF could leverage international
partnership; think on a global scale.

 There are several foundations such as Simons, Sloan, Moore, Mellon, and Arnold that
are investing in developing a scholarly communication infrastructure.

 Specifically from the point-of-view of moderation, if part of the goal is not just to
improve architecture, but also how to get funding, which seems innovation-oriented,
there’s really interesting research that can be done. There exists a massive user
community that is very interested in the health and long-term success of arXiv. This
could be a good opportunity to get some sort of funding (e.g. IMLS) to do a user study of
arXiv and the mod system because we want it to be efficient. If mods are willing to
change workflow or be open to a more efficient mod system, that potentially pushes UI
research for digital libraries forward.

 Can arXiv be pitched as a general repository framework that might also fit other subject
domains? Could innovation around moderation lead to funding? arXiv needs to be
informed by a strategic vision of new capabilities, not re-implementing the existing
system with a new coat of paint on it. Need to separate deliverables to a funding agency
and how it’s implemented, one piece at a time.

 Be cautious about funding core arXiv components & services through grants, whether
NSF or possibly a European group. Such funds are more for one-time investment and
could disappear at any point. Always be mindful of how the service/system will be
maintained and developed after the initial development effort. You need to put in place
a strong configuration of operational core staff

 This could possibly be 3-year project with a $3-4 million budget: 1 year design and
component evaluation, 1 year intense development and testing, 1 year of deployment,
configuration, iteration. Incremental is probably the least desirable as a fresh view of
overall requirements is needed. Consider the notion of running parallel systems as you

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 7

are developing a new one. You can shut off the original arXiv when you are done with
migration and testing.

arXiv as Sociotechnical System

In addition to the above recommendations in regard to the architectural choices & technology
candidates, the discussion generated several ideas in regard to sociocultural aspects of the
operation:

1. Technologies alone will not be sufficient to solve arXiv’s problem. There needs to be
expertise, vision, & drive. Process & change management strategies really matter, and
the transition must be well-managed. The advisors emphasized that it is almost never
about the technology, rather it is always about the process. They cautioned not to fixate
solely on tech choices.

2. Be careful not to base arXiv’s strategies entirely on a bump in funding for 2-3 years. It is
not always possible to get everything right the first time around. Mistakes will happen
and if you’re boxed in, then it could be a funding problem. Keep the options open as
much as possible. Testing and iterative development strategies are important.

3. It is important for the arXiv team to pick strategic partners to help share the load.
However, the group recognizes that developing a partnership is a non-trivial effort in
itself. For instance, arXiv team’s Invenio 1 implementation failed because small
mismatches turned into big problems. The team underestimated the task of moving the
browse component, and was not fully committed with staffing. There was also the need
to modify workflows. The lesson learned was that it is not all about finding a logical
partnership opportunity but also committing resources, providing oversight and
maintaining consistent communication.

4. The project needs a full time software development director to work closely with Jim
Entwood, Operations Manager & Martin Lessmeister, Lead Programmer. The director
needs to be an experienced architect who is strategic, diplomatic, big-picture thinker,
and skillful in communicating with a range of stakeholders. Also critical is filling the
Scientific Director position.

5. The advisors reinforced concerns around resources and number of staff. A good strategy
is to do away with part-time people as much as possible as such individuals end up with
several different commitments with different schedules, making it difficult to focus.

6. It is important to make sure that any replacements for Paul Ginsparg's tools are
integrated within the main system as production modules, not as research code.

7. The advisors emphasized that the corpus (papers, usage logs, and applications) is a high-
value asset for studying the social aspects and trends in science and needs continued
support and additional funding. For instance, maintaining and releasing the TeX engine
as a VM or a service would be a great asset to the research community for advancing
text mining.

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 8

Concluding Remarks

USERS: arXiv is a production service, not a technology experiment. The service needs to be
stable; the software under it can undergo changes. Ideally the user only will notice that the UI is
faster, sleeker, and responsive with better functionality. What if users don’t like the new
arXiv? We need to be prepared to respond. For instance, the Inspire team had extensive UI
testing with remote video and also the new system is designed in a way the UI can be very
quickly adjusted. The arXiv team needs to be prepared to mitigate damage very quickly.
Infrastructure improvements should also help underpin efforts to enhance the usability of
arXiv. The interface needs to be enhanced based on sound user-centered design principles and
guidelines, and will increase ease of use, accessibility compliance and responsiveness.

STAKEHOLDERS: There needs to be a careful stakeholder analysis to understand use cases.
There is an ecosystem of scientists, moderators, partners such as ADS and Inspire, related
scientific communication initiatives and standards (e.g., ORCID), supporting libraries, advisory
boards, etc. In order to set priorities and manage expectations, we need to map the
stakeholder types, document the key requirements for each group, and identify
priorities. Otherwise, we might get distracted and confused trying to achieve goals that mean
different things to different stakeholders.

CODE BASE: It has become clear that no single system can replace everything that arXiv does. A
solution somewhere in the middle of the spectrum seems like the most plausible option. The
core is what needs to be improved while maintaining simplicity. One key concern is that the
code base is 20+ years old. Infrastructure is at risk. Developers newly hired will not necessarily
be fluent in the environment. Finding developers who know or want to learn Perl is a challenge.
Going forward, arXiv should not rely entirely on Perl.

ARCHITECTURAL OPTIONS: The workshop was extremely useful in helping to lay out options for
re-implementing arXiv, and reviewing them in the light of experiences with other systems. Of
the major architectural approaches there was broad agreement that it will be best to pursue a
modular approach that builds on either an open-source stack or framework. Any new software
should be openly developed using modern languages, testing practices, and frameworks to
lower development and maintenance costs. The two strongest candidates are: Invenio 3
framework & Ruby on Rails, possibly leveraging Hydra (based on Fedora 4) and/or other gems.
Additional investigation will be required to consider these and other options in more
detail. arXiv team will begin with an examination of Invenio 3 first as we will be able to
leverage the knowledge and development efforts of the system’s wider community.

PROCESS MATTERS: The workshops concluded with the advisors stressing that process really
matters and managing the transition and putting in place a sound project oversight is as critical
as making the right technological choices. As one of the advisors said, “It’s almost never about
the technology.” The arXiv team needs to create a balanced plan that factors in a range of
issues extending from architectural choices to sustainability requirements, and from resource
needs to skills required to succeed in such an ambitious undertaking.

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 9

Appendix A: Pros and Cons of Technical Scenarios

 Technical Scenario Approach to Make

Happen

Software Examples Pros Cons

1 Adopt similar

system

 Identify plausible

turnkey

 Identify systems

that could be

adapted

 Invenio3

 Open Journal Systems

(OJS)

 Ambra (PloS)

 Not alone; not

reinventing

 Less new

development if

system can be

modified and

extended easily

 May be incomplete

or mismatch for

arXiv needs

 Not clear how to do

incrementally vs.

wholesale adoption

2 Rebuild using an

existing generic

Open Source

Software (OSS)

stack

 Articulate and

define motivation

for this approach

 Evaluate candidate

OSS stacks

 Hydra/Fedora4/Sufia

 Ruby/Rails

 Community

development

 May be amenable to

a piecemeal or

evolutionary

approach

 Incremental

migration from old

to new system

 May be too early in

process to know how

good/bad the fit is

 Popular solutions

may not improve the

situation

 Library-centric OSS

community (vs.

science-centric)

3 Adopt a known

framework for

scientific

communication

 Find out what we

do and don’t know

about the OSF

approach

 Deeper analysis of

Invenio3 due to its

close relationship

with arXiv and

overlapping

communities

 Invenio3 Framework

 Open Science

Framework (OSF)

 Invenio3 is modular

and extensible

 Invenio3 comes out

of scientific

community

 Learn from Invenio1

experience

 OSF platform

addresses full

research process

 Invenio3 still

requires substantial

development

 Invenio3 is still

being tested

(integration, scale,

performance testing)

 OSF primary focus

more on workflows,

less on publishing

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 10

4 Redesign/rebuild

selected modules

from arXiv codebase

 Deeper evaluation

of arXiv APIs and

modules

 look at projects

that have taken this

approach

 Understand

dynamics of the

development team

culture

 Oxford approach

(stepwise evolution

 DPLA approach

 Catalyst framework

for Perl

 Evolve in place

 New modules of

code can exist

within the existing

Perl framework

 This does not allow

team to stand back

and take a fresh look

at arXiv

 Incremental change

is on an OLD

codebase

 Dependencies and

fragilities to

navigate

5 Assemble

heterogeneous

 Scavenge and

evaluate existing

pieces (code, apps,

services)

 New coding to fill

gaps

 Consider both OSS

and commercial

components

 Invenio3 (partial)

 Hydra (selected parts)

 Micro-services

approach

 Heterogeneous could

be good or bad; not

known

 Can be hybrid

architecture of best

of breed components

 Allows multi-

platform

environ; loosely

coupled with good

use of APIs

 Heterogeneous could

be good or bad; not

known

 Change management

on multiple

codebases

 More complex to test

 Temptation to

migrate away from

generic/core OSS

codebase to retrofit

 Need for

participation in

multi- communities

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 11

Appendix B: Workshop Schedule

9am-noon Introductions

1. Welcome & general introduction – Oya Rieger (workshop goals, org structure, business
model, highlights from SAB/MAB vision setting survey; some early results from the arXiv
user study)

2. Overview of the moderation system - Jim Entwood
3. IT overview & discussion – Simeon Warner & Martin Lessmeister

Noon-1pm Lunch

1pm-5pm Discussion moderated by Sandy Payette
1. Goals, Scope, Desired Outcomes (1pm-1:30pm)
a. Review of arXiv user stories

 “arXiv provides [what] to [whom] for the purpose of [why]
 Stakeholders (authors, moderators, readers, sw developers...]

b. arXiv next generation – What is it? What is it not?

c. Tensions and constraints, consider:

 Funding
 Sustainability
 Architectural principles for code - modular, extensible, evolvable, APIs,
 Iv. Expose arXiv data: reusable, open, multiple formats

2. Discussion: Architecture and spectrum of approaches (1:30-2:30pm)
a. arXiv software components (see diagram)

b. Spectrum of approaches (see diagram)

c. Why consider each approach?

 What are examples of each?
 What are the risks and benefits of each?
 What effort/cost/maintenance implications are there?

c. Process for sw development (in-house, multi-institution collaboration, outsource?)

3. Deep Dive – consider essential characteristic of arXiv (3:00-4:30)

 Moderation system and user experience
 Author functions and user experience
 Reader functions and user experience

4. Analysis and Outputs of day (4:30-5:00)
a. Outputs Table (see slide)

b. Summary and set agenda for Friday

Friday April 29, 2016

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 12

8:30am-10am Breakfast meeting with Paul Ginsparg (arXiv Founder, SAB member, and
Professor of Physics & Computing and Information Science, Cornell University) and the external
consultants (not including the Cornell team)

10am-noon
1. Recap Day 1 & Goals Day 2
2. Discussion of potential scenarios – pros, cons, risks
3. Final recommendations, Conclusions and Next Steps

Appendix C: Workshop Participants

Alberto Accomazzi
Principal Investigator
NASA Astrophysics Data System
Harvard-Smithsonian Center for Astrophysics

Robert J. Hanisch
Director, Office of Data and Informatics
Material Measurement Laboratory
National Institute of Standards and Technology

Thorsten Schwander
SLAC National Accelerator Laboratory
Technical Lead INSPIRE@SLAC
Member INSPIRE Director Group

Mark Matienzo
Director of Technology
Digital Public Library of America

Dave Lifka
Interim CIO & Vice President, Cornell Information Technologies
Director, Cornell University Center for Advanced Computing

Matthew McGrattan
Head of Technical Strategy
Bodleian Digital Library Systems and Services
University of Oxford

Cornell University Library, arXiv Technical Infrastructure Workshop Synopsis & Recommendations, Page 13

Cornell University Library Participants

 Deborah Cooper, arXiv Special Projects Assistant, Meeting Note Taker
 Jim Entwood, arXiv Operations Manager
 Dean Krafft, Director of IT &CTS
 Martin Lessmeister, arXiv Lead Programmer
 Sandy Payette, Director of Land Grant and Research IT Cornell
 Oya Rieger, Associate University Librarian, arXiv Program Director
 Gail Steinhart, Scholarly Communication Librarian
 Simeon Warner, Director of Repository Development and Services, arXiv IT Director

