
Flexible Tubing Function

Jennifer Gass

November 30, 2012

1 Problem De�nition

1.1 Introduction

The current plant design requires the use of �exible tubing to join certain sec-
tions. This type of plumbing is needed to connect the end of the CDC to the
dosing in the rapid mix pipe, the end of the stock tank plumbing to the constant
head tank, the bottom of the constant head tank to the new CDC manifold sys-
tem, and more. However, the design tool does not depict these �exible tubes
in the CAD drawings, so I will create a function that automates the drawing of
the �exible tubing in the plant where it is required. Figure 1 shows the current
CDC drawing which does not display any actual �exible tubing. It's important
for us to convey to our users how the CDC is incorporated into the plant by
drawing �exible tubing and provide a simple depiction of the connection.

Figure 1: Current CDC drawing within the Design Tool

1

1.2 Design Details

The Fall 2011 design team worked on creating a �exible tubing function Flex-
TubeF which draws out a pipe between two points, given a path de�ned by an
array of points. Although their functions draw a proper �exible tube, there are
still two steps that need to be taken in order to integrate it into the overall
design tool. First, I have to �nd a way to calculate the points required in the
path of the tube, based on the constraints of the design. Second, I'll need to
generalize the function enough (or, break into separate functions) so that any
two inlet and outlet orientations can have �exible piping implemented.

FlexTubeF (located in PlumbingF), which calls on FlexCylinderF (located
in MtoA Translators), creates a spline based on the point array given, and the
sweeps a circle across this spline to form the pipe. It doesn't orient the ends
of the cylinder in any sort of direction, so �rst I'll need to determine a method
of orienting the spline to re�ect the nature of the �exible tube being held in a
rigid pipe at the ends.

I'll use a parabolic function to model the path of a hanging tube �xed at
two ends, from which I'll easily be able to extract the points for the array.
These path points will comprise an array that can be used in FlexTubeF. This
function will run di�erently based on what the orientation of the two ends of �ex
pipe are�both ends vertical, both ends horizontal, or one end vertical and one
horizontal. 2, 3, and 4 show a few of the di�erent orientations that need to be
considered when designing the �exible pipe function. ParPointF, the function
I'm creating which calculates the path points, will take in the locations of the
end points, the tube length, and the orientation of inlet and outlet of the pipe.

Figure 2: Both ends of tube horizontal

2

Figure 3: Both ends of tube vertical

Figure 4: One end of the tube horizontal, one vertical

2 Documented Progress

2.1 Catenary Solution

Originally I had planned on modeling the �exible tubing with a catenary func-
tion. For the catenary function, the constants [u, v, β] would be calculated
using a system of 3 equations solved simultaneously.1

x(t) = xin + t·(xout−xin)
n

y(t) = m
(
xin + t·(xout−xin)

n

)
+ b

z(t) = u · cosh(x(t)−v
u) + β

Plug x(t) into z(t):

z(t) = u · cosh(n·xin−n·v+t·(xout−xin)
n·u) + β

1http://www.infogoaround.org/JBook/Catenary.pdf

3

We also know the inlet and outlet points for z (zin and zout) to acquire two
equations in terms of the 3 unknown variables:

zin = u · cosh(xin−v
u) + β

zout = u · cosh(xout−v
u) + β

Since L as a pre-de�ned constant we can get one more equations from this.
The equation for arc length of a three dimensional equation is given by the
following, where t/n is a predetermined arbitrary step size (so, t acts as an
index in these equations)2:

L =
´ √

[x′(t)]2 + [y′(t)]2 + [z′(t)]2dt
The integral would be evaluated from 0 to however many divisions, n, are

chosen. This will be an arbitrary number; a higher n will give a curve with
more de�ned points. While Mathcad can calculate the set of points for a low
n, I have found that AutoCAD produces some window errors when I change n,
which may be an issue with the spline function within FlexCylinderF.

The three equations are now:
[1]zin = u · cosh(xin−v

u) + β
[2] zout = u · cosh(xout−v

u) + β

[3] L =
´ √[(xout−xin)

n

]2
+
[
m·(xout−xin)

n

]2
+ [sinh(n·xin−n·v+t·(xout−xin)

n·u)]2dt

From here, the identities of the three constants could ideally be determined
using a Mathcad solve block. However, this point is where Mathcad has issues
solving the integral of the square root part of the function, and indicates that

the block is unsolvable. I have tried rewriting sinh(t) as et−e−t

2 , but this did not
help. Eliminating the square root operator results in a solution, indicating that
my indexing and calculations are probably correct, so I will consider a di�erent
way of approaching this problem.

I found that the path points in a parabola given the inputs are more solvable
in Mathcad than are the points in a catenary. I looked into using an equation
for a parabola instead of a catenary (i.e. y = ax2 + bx + c), which may not
model the curve as accurately, but is a much simpler calculation that Mathcad
is de�nitely able to perform. The parabolic equation will still accurately depict
the �exible tubing in the design tool.

2.2 ParPointF

Inputs and Theory The �ve �xed inputs for ParPointF are the inlet coordi-
nates, the outlet coordinates, orientation of inlet, orientation of outlet, tubing
length, and the number of divisions which will be iterated through in the calcula-
tion of the parabolic points. The inlet and outlet coordinates should correspond
to the points in the center of the end of each of the �ttings. The orientations
can be determined by referencing Figure 5, in the form:

[inlet outlet] .

2http://members.chello.nl/j.beentjes3/Ruud/cat�les/catenary.pdf

4

Figure 5: Inlet and outlet orientation conventions

Overall, the function will estimate the curve by calculating the path of the
points in one dimension (either x or y) with respect to z, then project this path
onto the diagonal to make the equation less complicated. The determination of
which of these dimensions will be chosen will just be based on a comparison of
∆x and ∆y. The parabola function will be applied to the longer side, and the
other variable (x or y) will just be linear with respect to z, i.e. y(t) = mx(t)+b.
A 'straight' looking part will be appended to each of the ends so that each will
be tangent to the respective �tting.

To solve the end tangency issue, I am going to add an o�set the x and y
coordinates of each pair of points so that there is a small segment in each the
inlet and outlet where the pipe is �at. This solution works for the case when
there are two horizontal ends, and in a vertical case the ends will be tangent to
the z-axis. Since ParPointF will use the orientation of the inlet and outlet as
an input, it will �rst create the o�set for the inlet and outlet, and then draw

5

out the parabola between those o�set points.
I'll use the same linear relationship between x(t) and y(t), and the same

comparison of ∆x and ∆y to determine which variable the z(t) function will be
based on. The following equations will still apply for what I'll call Case X (|∆x|
>|∆y|) :

x(t) = xin + t·(xout−xin)
n

y(t) = m
(
xin + t·(xout−xin)

n

)
+ b

z(t) = A · x(t)2 +B · x(t) + C
To �nd m and b, I've set up a solve block with the following equations:
yin = m · xin + b
yout = m · xout + b.
Since the actual function needs to account for the case in which |∆y| > |∆x|

(Case Y), the code also includes an alternate solve block with the following
equations:

xin = m · yin + b
xout = m · yout + b.
Going back to Case X, the next solve block will determine z(t) using the

length equation and the boundary conditions at the ends of pipe:

L =
´ √[(xout−xin)

n

]2
+
[
m·(xout−xin)

n

]2
+ [2A ·

[
xin + t(xout−xin)

n

]
+B]2dt

z(t) = A · x(t)2 +B · x(t) + C
z(t) = A · x(t)2 +B · x(t) + C
The length integral will be evaluated from 0 to n; these three equations

together will determine the values for A, B, and C which will create a parabola
between the end points speci�ed. Case X uses A, B, and C as the outputs to
the These variables are then used in ParPointF, which loops through values of t
from 0 to n and creates a point array containing the path points of the parabola.
ParPointF includes calculations for both Case X and Case Y, and chooses the
appropriate case based on the comparison of ∆y and ∆x.

Parabola Details One issue encountered with the parabola is that it can
point either up or down (think convex or concave), leading to two sets of solu-
tions for the variables A, B, and C. The direction of the parabola is de�ned by
whether the constant A is positive or negative, so the solve blocks will choose a
solution based on the sign of that variable.

One of the primary modi�cations I was working on is the orientation of the
ends of the tube. At �rst, I had the function draw a parabola between the two
input points. It would then concatenate a row of points directly before and after
the parabola points based on whichever orientation is speci�ed for each the inlet
and outlet. My goal was to have Autocad connect the straight parts with the
parabola with the spline function to ensure a smooth inlet and outlet of the tube
and make the �exible tube look rigid over the couplings. However, an issue I
ran into was that the straight ends would sometimes change orientations and
cause the appearance of a shifted tube (Figure 6). While some end orientations
worked out �ne, there was no easy way to eliminate the spiraling at the ends. I

6

tried changing the distance and number of points within the straight portions,
and changing the number of points within the parabola, but nothing seemed to
�x that issue. Finally I found a spline property that would make the ends of the
spline tangent to a given point. It seems like such a simple �x, but I originally
overlooked changing the actual spline code, as it had been previously written
by other members of the design team.

While the tangency issue is now �xed, there remains a problem where Auto-
CAD will occasionally not sweep a circle over a spline, for unknown reasons. To
solve this, I looked into possible causes for the error. I tried drawing the circle
at the other end of the spline and sweeping in the other direction, but this only
�xed the error in a few cases. In the case of both the inlet and outlet being
horizontal (I tested it in the x-direction), the non-speci�c sweep error comes up
regardless of which end I sweep from.

Many forums online suggested converting the spline to a polyline, so I have
done this and this manages to extrude a tube which looks identical to the tube
originally swept over the spline. However, the ends of the tube turn out are not
as tangent as they were in the spline form, which I would need to �x (Figure
7). I brought back my idea of appending the straight part to the end, so the
�nal code combines the spline tangency property with an extra straight portion
(Figure 8).

The �nal design can take a variety of forms, one of which is depicted in
Figure 9.

2.3 Future Work

While the �exible tubing should work for most cases, it is not designed to
handle cases in which the inlet and outlet have the same y-value. This is simply
because of the equation I've used (y=mx+b). There is no solution to a line with
an 'in�nite' slope, so the function cannot be used on pieces of tubing which have
a constant (i.e. run directly in the y-z plane). Although ideally I could make a
separate solveblock case to cover for this (i.e., determine that |∆y| > |∆x| and
then calculate a slope of dx/dy=0 and use an equation x(t) = m ·y(t)+ b), both
solveblocks would need to run simultaneously and one would output an error.
Unfortunately, any error will not allow the code to run, so this is something
that may need to be addressed in the future.

7

Figure 6: Spline with straight portion added

Figure 7: Spline with end tangency added

8

Figure 8: Spline with end tangency and straight portion added

Figure 9: Example of �nal design

9

