MAE 3250 Fall 2013 Project 3 Fatigue Tutorial

Fatigue Properties in ANSYS

- Under Life category, import Alternating Stress Mean Stress by double clicking on it
- Expand it to display a table of properties and interpolation choices

Fatigue Properties in ANSYS

- Input the mean stress value and fatigue data necessary
- Use CES to determine values for number of cycles and alternating stress

Fatigue Properties in CES

- Use CES to determine fatigue data required in ANSYS
 - number of cycles and stress amplitude (alternating stress)
- Make sure to understand what "stress range" refers to and how to obtain the stress amplitude from it
- Specify an R-ratio such that the there is completely reversed loading

Fatigue Properties in CES

- Use CES to determine fatigue data required in ANSYS
 - number of cycles and stress amplitude (alternating stress)
- Make sure to understand what stress range refers to and how to obtain the stress amplitude from it
- Specify an R-ratio such that the there is completely reversed loading

Fatigue Properties in ANSYS

- Specify how your data is distributed (ie linear, semi-log, log-log). A good guess is the Log-Log scale.
- Return to Project and save your data

- Complete the static analysis before performing the fatigue analysis
- Once you have a solution to the static analysis, under Tools, select Fatigue Tool

- Click on Fatigue Tool
- Under Loading Type in the details window, select Ratio and specify fatigue loading ratio
- Under Mean Stress Theory select Goodman
 - This will require having specified the ultimate tensile strength material property

- Right click on Fatigue tool, and insert desired values to solve
 - Safety factor (make sure to specify the desired number of cycles)
 - Equivalent alternating stress
 - These values will also give an indication of the most susceptible point of failure in fatigue

- Solve for the fatigue properties
 - Should give you an idea for the most susceptible point of failure in fatigue
- Another fatigue tutorial also available online
 - https://confluence.cornell.edu/display/SIMULATION/ANSY
 S+-+Fatigue+Analysis