Effect of intravenous corticosteroids on death within 14 days in 10 008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial

CRASH trial collaborators*

Summary

Background Corticosteroids have been used to treat head injuries for more than 30 years. In 1997, findings of a systematic review suggested that these drugs reduce risk of death by 1–2%. The CRASH trial—a multicentre international collaboration—aimed to confirm or refute such an effect by recruiting 20 000 patients. In May, 2004, the data monitoring committee disclosed the unmasked results to the steering committee, which stopped recruitment.

Methods 10 008 adults with head injury and a Glasgow coma score (GCS) of 14 or less within 8 h of injury were randomly allocated 48 h infusion of corticosteroids (methylprednisolone) or placebo. Primary outcomes were death within 2 weeks of injury and death or disability at 6 months. Prespecified subgroup analyses were based on injury severity (GCS) at randomisation and on time from injury to randomisation. Analysis was by intention to treat. Effects on outcomes within 2 weeks of randomisation are presented in this report. This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN74459797.

Findings Compared with placebo, the risk of death from all causes within 2 weeks was higher in the group allocated corticosteroids (1052 [21·1%] vs 893 [17·9%] deaths; relative risk 1·18 [95% CI 1·09–1·27]; p=0·0001). The relative increase in deaths due to corticosteroids did not differ by injury severity (p=0·22) or time since injury (p=0·05).

Interpretation Our results show there is no reduction in mortality with methylprednisolone in the 2 weeks after head injury. The cause of the rise in risk of death within 2 weeks is unclear.

Introduction Every year, millions of people worldwide are treated for head injury. A substantial proportion die or are permanently disabled. Although much damage is done at the time of injury, post-traumatic inflammatory changes are believed to contribute to neuronal degeneration. Corticosteroids have been used to treat head injury for more than 30 years. A survey of UK neurosurgical intensive-care units in 1996 showed that these drugs were used in 14% of units to treat head injuries, and a survey of intensive-care management of patients with a head injury in the USA reported that corticosteroids were used in 64% of trauma centres. Corticosteroids are also used for management of head injury in Asia.

Previous randomised trials of corticosteroids in head injury have included no more than a few hundred patients, and altogether only about 2000 patients have been studied. In 1997, a systematic review of available trials suggested that the absolute risk of death in the corticosteroid-treated group was about 1–2% lower than in controls, but the 95% CI was from 6% fewer to 2% more deaths.

The second US National Acute Spinal Cord Injury Study (NASCIS-2) compared 24 h of methylprednisolone with placebo in 333 patients with acute spinal-cord injury. At 6 months, people receiving methylprednisolone within 8 h of injury seemed to have greater improvement in motor function and sensation to pinprick and touch than did those given placebo. Similar results were reported in a Japanese trial of the same regimen.

Results of NASCIS-3 indicated slightly more neurological recovery with 48 h of treatment than with 24 h. Use of corticosteroids to treat acute spinal-cord injury led to renewed interest in their role in the treatment of head injury. The CRASH trial (corticosteroid randomisation after significant head injury) is a large, international, randomised placebo-controlled trial of the effect of early administration of 48 h infusion of methylprednisolone on risk of death and disability after head injury. The trial aimed to inform clinical decision-making in an area of increasing global health importance. Reliable demonstration of even a small absolute benefit from corticosteroids would have the potential to avoid thousands of deaths and disabilities. Similarly, because corticosteroids are widely used to treat head injury, reliable refutation of any benefit would protect thousands of patients from possible side-effects and avoid unnecessary cost.

Patients and methods

The protocol for the CRASH trial has been published elsewhere (http://www.crash.lshtm.ac.uk). All collaborating investigators were required to secure local ethics or research committee approval before recruitment could begin. Patients with clinically significant head injury are
unable to give valid informed consent. Local ethics committees set consent procedures for participating hospitals. Some allowed consent waiver and others consent from a legal representative. We always adhered to these requirements.

Patients
Adults (age 16 years or older) with head injury were screened for inclusion in the study if they were within 8 h of injury and were noted in hospital to have a Glasgow coma score (GCS) of 14 or less (maximum score 15). Such patients were eligible if, after assessment, the treating doctor was substantially uncertain whether or not to treat with corticosteroids—ie, the uncertainty principle. Thus, if we noted a clear indication for corticosteroids, the patient was not randomised. Likewise, those we judged to have a clear contraindication were not randomised.

Procedures
We randomised patients in one of two ways. If the hospital had reliable telephone access and the recruiting doctor could provide baseline data and receive the treatment allocation in English then they used the central telephone randomisation service provided by the clinical trial service unit (CTSU) in Oxford, UK. During the call, which lasted 2–3 min, we obtained and recorded baseline data on the central computer. Data were checked for range and consistency and only after they were complete did the computer generate a treatment allocation. The allocation was balanced for sex, age (16–24 years, 25–34 years, 35 years and older), time since injury (<1 h, >1 to <3 h, >3 to <8 h), GCS (severe 3–8, moderate 9–12, mild 13–14), pupil reactiveness, and country. The allocated treatment pack number was then given to the recruiting doctor and recorded on the trial entry form.

Hospitals at which use of this central randomisation was not feasible used a local pack system. We obtained baseline information on the trial entry form and the next consecutively numbered treatment pack was taken from a box of eight packs—with an allocation sequence based on a block size of eight, also generated by CTSU. The pack number was recorded on the form, which was then sent by fax or as an encrypted e-mail attachment to the trial coordinating centre in London. We then entered data into the central computer at CTSU. Once the pack number was recorded, the patient was included in the trial whether or not the pack was opened or the allocated treatment started.

An independent clinical trial supply company (DHP Clinical Supplies, Abergavenny, UK) prepared the treatment packs. We randomly allocated patients to 48 h infusion of either methylprednisolone or placebo. Every participant was assigned a uniquely numbered treatment pack, containing 11 vials of either methylprednisolone or placebo, one 20 mL ampoule of sterile water, one 100 mL bag of 0·9% NaCl (for use with the loading dose), CRASH trial stickers to attach to the infusion bags and patient’s notes, a patient’s information leaflet in the appropriate language, and two copies of the form for collection of early outcome data. We translated the stickers and early outcome forms into local languages if needed. The loading dose was 2 g methylprednisolone (or placebo) over 1 h in a 100 mL infusion. The maintenance dose was 0·4 g methylprednisolone (or placebo) per h for 48 h in a 20 mL per h infusion. The methylprednisolone and placebo vials were identical and the solutions looked the same. This treatment regimen was based on that used in the NASCIS trials, but fixed doses were used to simplify procedures. Emergency unmasking of treatment allocation was possible by telephoning the randomisation service in Oxford or via a call to the 24 h emergency pager.

Primary outcome measures were death from any cause within 2 weeks of injury and death or disability at 6 months. We obtained mortality data within 2 weeks of injury from the early outcome form that was completed at death, discharge, or at 2 weeks, whichever happened first. These data were obtained electronically (with electronic data forms and the CRASH-Net website [http://crashnet.lshtm.ac.uk]) and by fax and post. The early outcome form included patient’s contact details, cause of injury, short-term outcome, management and complications, results from the first computerised tomography (CT) scan, and adherence to trial treatment. Data on management and complications included number of days in intensive care and occurrence of seizure, haematemesis or melaena requiring transfusion, wound infection with pus, pneumonia treated with antibiotics, use of antibiotics for other reasons, whether the patient had a neurosurgical operation, and whether they had sustained major extracranial injury. Events were recorded if they arose while the patient was still in hospital and within 14 days of randomisation. Non-fatal events happening after discharge but within 14 days of randomisation were not recorded.

We assessed disability at 6 months with a questionnaire that was mailed to patients or their carers, administered by telephone interview, or undertaken during a home visit or hospital appointment. Before the start of the trial, a simple questionnaire version of the Glasgow outcome scale was developed and shown to be both reliable and valid. The questionnaire was translated into relevant languages for use in every country, with back-translation into English to ensure accuracy. Completed questionnaires were sent to the coordinating centre in London to be entered into the trial database.

With respect to prespecified subgroup analyses, we planned to report the effects of treatment subdivided by two main baseline characteristics of patients: time from injury to randomisation (<1 h, >1 to <3 h, >3 to ≤8 h)
and severity of head injury based on the GCS at randomisation (severe 3–8, moderate 9–12, mild 13–14).

Statistical analysis

We initially estimated that risk of death in patients allocated to placebo might be around 15%. Because even a 2% survival difference would be clinically important, the trial had to be large enough to detect a difference of this size. A trial of 20 000 patients would have a good chance of showing a 2% survival difference at convincing levels of significance—ie, more than 90% power to achieve p<0.01. All analyses were undertaken on an intention-to-treat basis, that is, patients were analysed on the basis of the group to which they were randomised, irrespective of whether they actually received their allocated treatment. Effect measures were relative risk and absolute risk reduction. Precision was quantified with 95% CIs for overall risk and 99% CIs for subgroup results. We assessed homogeneity in treatment effects within subgroups by the χ² test at a 5% significance level.

During the study, interim analyses of in-hospital mortality, complications, and 6-month outcome were supplied at least once a year to the independent data monitoring and ethics committee. This committee had responsibility for deciding whether, while randomisation was in progress, the unmasked results should be revealed to the trial steering committee. The data monitoring and ethics committee terms of reference stated that they would unmask results only if the randomised comparisons in the trial provided both (1) proof beyond reasonable doubt of a difference in outcome between the study and control groups and (2) evidence that would be expected to alter substantially the choice of treatment for patients whose doctors were, in view of data from other randomised controlled trials, substantially uncertain whether to give corticosteroids to patients with head injury.

This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN74459797. The protocol for this study was peer-reviewed and accepted by *The Lancet*; a summary of the protocol was published on the journal’s website, and the journal then made a commitment to peer-review the primary clinical manuscript.

Role of the funding source

The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

Patients were enrolled in 239 hospitals from 49 countries: 2141 (21%) were enrolled by central telephone randomisation and 7867 (79%) were non-centrally randomised. The first patient was enrolled in...
April, 1999. In May, 2004, the data monitoring and ethics committee disclosed the unmasked results to the trial steering committee, which then stopped recruitment. 10008 patients were randomised to corticosteroid or placebo infusions (figure 1); 62 were subsequently found to be younger than 16 years of age, and the trial infusion was stopped in three at the request of a relative. Recruitment of 10008 patients was randomised to corticosteroid or placebo infusions (figure 1): 62 were subsequently found to be younger than 16 years of age, and the trial infusion was stopped in three at the request of a relative. All these patients are included in the analysis.

The table shows baseline data for all patients (n=3916). The usual reason for emergency unmasking was that patients were subsequently found to have a disorder that the doctor wished to treat with corticosteroids.

Discussion

The results of the MRC CRASH trial of methylprednisolone treatment reliably refute any reduction in mortality in the 2 weeks after head injury: this treatment was associated with a significant rise in risk of death within 2 weeks. The apparent increase in mortality did not differ in the prespecified subgroups, although the hazard might be enhanced in patients presenting at a later time. Although the apparent hazard could be a statistical artifact, due in part to the data-dependent stopping of the trial, we believe that our results provide evidence that could substantially alter the choice of treatment for patients with head injury. For this reason, we opted for early publication of the 2-week outcome data. The effect of corticosteroids on disability at 6 months will be reported later.

Our study has many strengths. Our randomisation methods ensured that participating clinicians could not have foreknowledge of treatment allocation and that baseline prognostic factors were well balanced between treatment groups. Data on the primary outcome of death...
from any cause within 2 weeks were available for more than 99% of randomised patients, and all analyses were undertaken on an intention-to-treat basis. The CRASH trial had sufficient power to reliably detect modest but nevertheless clinically important treatment benefits or harms. It was undertaken in more than 200 hospitals in 49 countries. The patients included would have undergone several concurrent interventions that would have varied between hospitals. We did not obtain data on all concurrent interventions, but similar numbers of patients in every hospital were allocated corticosteroids or placebo. Furthermore, because doctors were unaware of treatment allocation, use of concomitant therapies would not have been influenced.

The CRASH trial had one limitation. To establish the main cause of death is difficult when multiple factors relating to trauma are present, so we did not ask participating clinicians what they judged to be the cause of death. We saw no evidence of a large rise in risk of infectious complications or gastrointestinal bleeding from corticosteroid treatment. We are still unsure of the mechanism of the increased mortality with corticosteroids.

Before starting the CRASH trial, a systematic review and meta-analysis of the existing trials of corticosteroids in head injury was done. When all previous trials were combined, risk of death in the corticosteroid-treated group seemed lower than in the control group (relative risk 0.96 [95% CI 0.85–1.08]; figure 5). When this meta-analysis is updated to include the findings of the CRASH trial, risk of death in the corticosteroid-treated group seems to be higher than in the control group (1.18–1.27 [1.05–1.20]). The CRASH trial result, judged either separately or in combination with previous trials, clearly refutes any material reduction in mortality with corticosteroids, although the size of the CRASH trial has a major influence on the result of the meta-analysis. We noted some statistical heterogeneity in the updated meta-analysis that might be accounted for by the data-dependent stopping of the trial.11

Our early results show that corticosteroids should not be used routinely to treat head injury, whatever the severity. By clearly refuting a mortality benefit from corticosteroids in head injury, the CRASH trial results should protect many thousands of patients from any increased risk of death associated with these drugs. However, our results could also have implications for use of corticosteroids in spinal-cord injury. After publication of NASCIS-2,17 in which some evidence of neurological benefit was seen in the subgroup of patients with spinal-cord injury treated within 8 h, corticosteroids have been widely used to treat this type of injury, although this approach is controversial.16,17 Because trials of corticosteroids in spinal-cord injury have been small (even when combined they include about 500 patients),16 and because of the emphasis on subgroup effects, use of corticosteroids in spinal-cord injury should remain an area for debate.
The effect of corticosteroid treatment on disability 6 months after head injury will be reported as soon as these data are available. Many other treatments of uncertain effectiveness for head injury are in widespread use,19 and further large-scale randomised trials are needed. The CRASH trial has shown that we can enrol many trauma patients into clinical trials in the emergency setting. Every year, about 3 million people worldwide die from trauma, many after reaching hospital.20 Of those who do survive to reach hospital, blood loss accounts for nearly half of in-hospital trauma deaths.21 Hypotension from such loss is one of the strongest predictors of poor outcome after head injury that is amenable to therapeutic modification.22 A large placebo-controlled trial of the effects of an antifibrinolytic drug on death and transfusion use,19 and further large-scale randomised trials are needed. These data are available. Many other treatments of uncertain effectiveness for head injury are in widespread use,19 and further large-scale randomised trials are needed.
Jonathan Wasserberg, Helen Shale; Russell’s Hall Hospital (18): Colin Read, John McCarron; Princess Alexandra Hospital (16): Aaron Pen nell; Princess Royal Hospital (14): Gaurim Ray; Darent Valley Hospital (13): John Thurston, Emma Brown; Royal Liverpool University Hospital (12): Lawrence Jaffey, Michael Graves; Chesterfield and North Derbyshire Royal Hospital (10): Richard Bailey, Nancy Loveridge; Withybush General Hospital (10): Geraint Evans, Shireen Hughes, Major Kafeel Ahmed; Aberdeen Royal Infirmary (8): Jeremy Richardson, Claire Gallagher; Doncaster Royal Infirmary (8): Titus Odeudon, Karen Lees; Queen Mary’s Hospital (8): David Foley, Nick Payne; Arrowe Park Hospital (6): Alan Pennycook, Carl Griffiths; City Hospital Birmingham (5): David Moore, Denise Byrne; St Hele rHospital (4): Sunil Dasan; Whittington Hospital (4): Ashis Baterjee, Steve McGuinness; Duncaster Royal Infirmary (2): Claude Chikhan i; Leeds General Infirmary (2): Nigel Zolite, Ian Barlow; Bromley Hospital (1): Ian St ell; Harrogate District Hospital (1): William Hulse, Jacqueline Crossley; Institute of Neurology (1): Laurence Watkins; Queen Elizabeth Hospital Gateshead (1): Balu Dorai.

Vietnam (2)—Cho Ray Hospital (2): Truong Van Viet.

NC—national coordinator. RC—regional coordinator.

CRASH trial coordination

Trial coordinating team—Haleema Shakur (trial manager from 2002), Ian Roberts (clinical coordinator), Phil Edwards (research fellow/programmer), Maria Ramos (trial administrator), Lin Barnett (data manager from 2004), Janice Fernandes (follow-up coordinator from 2001), Donna Tooth (assistant trial coordinator from 2004), Caroline Free (clinical research fellow from 2003), Leena Narayanan (assistant programmer from 2003), Johan Collander (trial assistant from 2002), Julia Abernethy (trial assistant from 2004), Josephine Bardswell (team secretary from 2003), Nin Ritchie (trial manager from 2002), Reshma Mashru (data manager to 2004), Catherine Godward (follow-up coordinator from 2000), Liz Afolabi (assistant coordinator 2001–2003), Adrian Ritchie (assistant programmer to 2003), Tessa Hosford (trial assistant 2001–2002, assistant trial coordinator 2003–2004).

Writing committee—Ian Roberts, David Yates, Peter Sandercock, Barbara Farrell, Jonathan Wasserberg, Gabrielle Lomas (UK), Rowland Cottingham (UK), Peti Svoboda (Czech Republic), Nigel Brayley (UK), Guy Mazzacur (Belgium), Véronique Laloé (Sri Lanka), Angeles Muñoz-Sánchez (Spain), Miguel Arango (Colombia), Bennie Hartzenberg (South Africa), Hussein Khamsi (Egypt), Surakrant Yutthakasemsun (Thailand), Edward Komolafe (Nigeria), Fatos Olldashi (Albania), Yadram Yadav (India), Francisco Murillo-Cabezas (Spain), Haleema Shakur, Phil Edwards (Chair).

Acknowledgments

Central randomisation and statistical support was provided by CTU, Oxford, UK. The trial was funded by the UK Medical Research Council. Pharmacia and Upjohn (Pfizer from 2003) provided the MRC (without charge) the methylprednisolone needed for the trial, a grant-in-aid for preparation of the placebo, and support for collaborators’ meetings.

References