# Evolution of natriuretic peptides-Current applications in human and animal medicine

### The ABC of natriuretic peptides

- Atrial natriuretic peptide (ANP)
  - Produced in both atria
  - Triggered by increased atrial-wall tension following increased intravascular volume or pressure
  - Stored in granules to be released
  - Urodilatin-version of ANP found in the kidneys
    - Produced in renal distal tubules
    - Locally controls sodium and volume
    - Decreases renin secretion from macula densa
    - Inhibits aldosterone release from zona glomeruosa
    - Inhibits angiotensin II-stimulated proximal tubular Na<sup>+</sup> and H<sub>2</sub>O reabsorption
- B-type natriuretic peptide (BNP)
  - Found predominantly in the ventricles
  - Rapidly produced by cardiomyocytes w/ myocardial stretch & hypoxia
  - Actions:

| • | Diuresis and natriuresis via direct tubular |
|---|---------------------------------------------|
|   | actions (as above for urodilatin)           |

- Inhibits cardiac sympathetic nervous system
- Inhibits RAAS by suppressing norepinephrine and aldosterone levels
- Anti-proliferative, antifibrotic and relaxation effects on heart and vascular tissues
- C-type natriuretic peptide (CNP)
  - Paracrine and autocrine functions
  - Found in vascular endothelial cells, central nervous system, kidney, chondrocytes, pituitary gland

Renal

**↑**GFR

**♦**Na+ resorbtion

Vascular

**♦**Arterial Tone

**↓**Venous tone

Antiproliferative

- Actions:
  - Neurotransmitter function
  - Regulation of vascular tone
  - Inhibition of fibroblast activation
  - · Role in enchochondral ossification
  - Role in testicular endocrine function, spermatogenesis and adequate placental function during pregnancy
  - Minimal diuretic/natriuretic actions
- Dendroaspis natriuretic peptide (DNP)
  - Isolated from the venom gland of the green mamba-unknown function
- Ventricular natriuretic peptide (VNP)
  - Role in the fluid homeostasis of primitive ray-finned bony fish

# Natriuretic peptide receptors and neutral endopeptidase

- Natriuretic peptide receptor A
  - Expressed in lungs, brain, heart, adrenals, kidney, and terminal ileum
  - Actions:
    - Production of intracellular cGMP
    - Leads to further signal transduction
    - Natriuresis, inhibition of renin and aldosterone
    - Vasorelaxation
    - Anti-fibrotic, anti-hypertrophic and lusitropic
- Natriuretic peptide receptor B
  - Expressed in lungs, brain, skin, adrenals, kidneys, uterus and ovaries
    - Expression in veins predominantly over arteries
    - Activated predominantly by CNP
  - Actions:
    - Production of intracellular cGMP
    - Mediates vasorelaxation by actions on smooth muscle
    - Has a hypotensive effect in comparison to NPR-A



Cardiac

Lusitropic

Antifibrotic

Antiproliferative



SNS/RAAS

**↑**Vagal tone

**♥**SNS activity

**♥**Renin release

**♦**Aldosterone release



- Natriuretic peptide receptor C
  - · Expressed in lungs, brain, heart, adrenals, kidneys, mesenterium, fat tissue, placenta, veins and aorta
  - Modulates naturetic peptide activity at target organs-ie downregulates NP activity
- Natriuretic peptide receptor D-only found in the eel
- Neutral endopeptidase
  - Induced by adenylate cyclase, glucocorticoid, thrombin, calcitonin, and cytokines
  - Actions
    - Inactivation of enkephalins, neuropeptides (ie substance P) and  $\beta$ -amyloid peptide
    - Active elimination of natriuretic peptides from circulation by hydrolysis

## Processing of pre-proBNP and its products

- Pre-proBNP
  - Stimulated production by cardiomyocytal stretch and ischemia/hypoxia
  - Also stimulated by
    - Endothelin-1
    - Angiotensin-II
    - Interleukin 1  $\beta$
    - Adrenergic agonists
  - Rapid removal of an amino acid terminal results in proBNP
- proBNP cleaved into two parts by corin or furin
  - Forms NT-proBNP and the active substance BNP
- Elimination of BNP via NPR-C, neutral endopeptidase activity, and renal clearance
- NT-proBNP cleared entirely by the kidneys

#### BNP and NT-proBNP testing in humans and animals

- Human testing considerations
  - BNP levels are decreased in obesity and increased in kidney disease
  - Excellent in predicting prognosis in short and long term for acute or chronic heart failure
  - Also useful in the full spectrum of cardiovascular diseases
  - Decreases in NT-proBNP was associated with improved outcome
- Veterinary applications
  - BNP able to discriminate between heart failure and non-heart failure in dogs and is correlated with severity of heart failure
    - Confirmed on two separate studies (DeFrancesco 2007 and Oyama 2008)
  - In comparing BNP to NT-proBNP, the later was diagnostically superior in evaluating canine respiratory distress
  - Aortic banding in 6 male beagles showed NT-proBNP to be better correlated with LVEDP compared to NT-proANP

#### **Ouestions**

- 1. Interaction of BNP with NPR-A will ultimately result in
  - a. Inositol triphosphate production
  - b. Protein kinase activation
  - c. Diacylglycerol production
  - d. Adenylyl cyclase activation
- List two mechanisms of elimination of BNP
  - a. NPR-C
  - b. Neutral endopeptidases
- 3. As opposed to ANP, BNP is
  - a. Stored in granules for release
  - b. Triggered by increased atrial wall tension
  - c. Homologous to urodilatin
  - d. Stimulated for production during stretch of cardiomyocytes
- 4. CNP predominantly exerts its effects
  - a. In a paracrine and autocrine manner
  - b. On angiotensin II-mediated sodium reabsorption mechanisms
  - c. On aquaporin channels in ray-finned bony fish
  - d. On osteoblasts
- Diagram the processing of pre-proBNP to active BNP





