Pathophysiology-Local response

• Zone of coagulation

• Zone of stasis

• Zone of hyperemia
Local Response

- Zone of coagulation
 - Point of maximal damage
 - Irreversible tissue loss
Local Response

• Zone of coagulation

• Zone of stasis
 – Decreased tissue perfusion
 – Potentially salvageable
Local Response

• Zone of coagulation
• Zone of stasis
• Zone of hyperemia
 – Invariably recovers unless prolonged hypotension
Local Response
Systemic response

• Represented as 2 phases

 – Resuscitation phase

 – Hyperdynamic, metabolic phase
Resuscitation phase

• Starts at time of injury
• Lasts 24-72 hours
• Characterized by
 – Intravascular volume depletion
 – Increased vascular permeability
 – Edema formation
 – Reduced cardiac output
Resuscitation phase

• Mechanisms driving intravascular volume depletion
 – Increased capillary permeability → loss of intravascular protein and fluids to intersitium
 – Disruption of sodium-ATPase pump → increased intracellular sodium concentration
Resuscitation phase

• Inflammatory mediators of edema and systemic derangements
 – ROS
 • Overproduction of ROS overwhelming the natural antioxidant capabilities
 • Inflammatory cells accumulate within the tissues
 Contributes to organ damage in severe burn injuries
Resuscitation phase

• Inflammatory mediators of edema and systemic derangements
 – ROS
 – Histamine
 • Released from mast cells w/in minutes of tissue damage
 • Contraction of the venular endothelial cells → intracellular gaps
 – Increases vascular permeability
 • Increased hydrostatic pressure exacerbates burn associated edema
Resuscitation phase

- Inflammatory mediators of edema and systemic derangements
 - ROS
 - Histamine
 - Prostaglandins/prostacyclins/thromboxananes
 - Released from burned tissues
 - Mediate fever and pain
 - Prostaglandin/prostacyclin cause vasodilation → edema from altered intravascular hydrostatic pressures
 - Thromboxane causes vasoconstriction
Resuscitation phase

- Inflammatory mediators of edema and systemic derangements
 - ROS
 - Histamine
 - Prostaglandins/prostacyclins/thromboxanes
 - Kinins (bradykinin)
 - Produced at burn injury site
 - Causes venular dilation and increased microvascular permeability, smooth muscle contraction, and pain
Resuscitation phase

- Mechanisms of reduced cardiac output:
 - Reduced plasma volume
 - As discussed before
 - Results in a reduced preload
• Mechanisms of reduced cardiac output:
 – Reduced plasma volume
 – Increased afterload
 • Driven by a sympathetic stimulation and hypovolemia
 • Mediated by release of catecholamines, vasopressin, angiotensin II and thromboxane A2-potent vasoconstrictors
Resuscitation phase

• Mechanisms of reduced cardiac output:
 – Reduced plasma volume
 – Increased afterload
 – Reduced myocardial contractility
 • Due to circulating myocardial depressant factors
 • Likely multifactorial
 • TNF-alpha results in release of including IL-6 and IL-1B
 • Cardiomyocyte apoptosis driven by caspase activation
 • May be associated with macrophage migration inhibitor factor
Resuscitation phase

- Goals:
 - Restore and preserve tissue perfusion
 - Avoid ischemia and cellular shock
 - Avoid or support other organ dysfunctions
Hyperdynamic phase

• Characterized by:
 – Decreased peripheral vascular resistance
 – Increased cardiac output
 – Marked increase in metabolic rate
Hyperdynamic phase

- Pathophysiology of hypermetabolic state
 - Protein catabolism
 - Gluconeogenesis
 - Glycogenolysis
 - Lipolysis
 - Hepatic insulin resistance
 - Increased glucose and oxygen consumption
 - Decreased lean body mass
 - Fever
Hyperdynamic phase

- Pathophysiology of hypermetabolic state
 - Mediated by augmented release of counter regulatory hormones
 - Cortisol
 - Glucagon
 - Catecholamines
Burn Depth

• Partial thickness
 – Superficial: only epidermis, no dermis
 – Superficial dermal: through epidermis and upper layers of the dermis, through the papillary layer
Burn Depth

- Partial thickness
- Deep dermal: through epidermis and into deep layers of the dermis, not through all of the dermis
Burn Depth

- Partial thickness
- Deep dermal
- Full thickness: through all skin layers into hypodermis
Burn Depth

<table>
<thead>
<tr>
<th>Classification of burn wound</th>
<th>Dermal layers involved</th>
<th>Wound characteristics</th>
<th>Healing</th>
</tr>
</thead>
</table>
| Superficial | Epidermis only | Erythematous desquamation
| | | Dry, flaky appearance | Heals in 3–5 days via re-epithelialization
| | Epidermis | Erythematous, moist blanches | Minimal scar formation |
| | Upper 1/3 of dermis | Painful blisters may be present | Heals in 1–2 weeks via re-epithelialization |
| | (papillary layer) | Edema may be present
| | | Eschar formation | Minimal scar formation |
| Deep partial-thickness | Epidermis | Red-waxy white | Heals in 2–3 weeks |
| | All dermis | Reduced pain sensation | Recommend surgical intervention to prevent significant scar formation |
| | | Blisters absent | |
| | | Eschar formation | |
| Full-thickness | Epidermis dermis | Bloodless pearl-white Eschar formation | Requires surgical intervention |
| | Subcutaneous tissue | Hair easily plucked | |
Estimating Burn Depth

• Bleeding test
 – Prick with 21 gauge needle
 – Superficial or superficial dermal: Brisk bleeding
 – Deep dermal: Delayed bleeding
 – Full thickness: No bleeding
Estimating Burn Depth

- **Bleeding test**
- **Sensation**
 - Superficial or superficial dermal: obviously painful
 - Deep dermal: Non-painful but retained sensation
 - Full thickness: Insensate
Estimating Burn Depth

• Bleeding test

• Sensation

• Appearance and blanching to pressure
 – Superficial: Red, moist wound, obvious blanching, rapid refill
 – Superficial dermal: Pale, dry but blanching wound that slowly regains colour
 – Deep Dermal: Mottled cherry red, no blanching
 – Full thickness: Dry, leathery, hard wound that does not blanch
Mechanisms of injury

• Thermal injuries
 – Scald—superficial to superficial dermal burns
 – Flame—deep dermal or full thickness burns
 – Contact—deep dermal or full thickness burns
Mechanisms of injury

- Thermal injuries
- Electrical injury
 - Current travels through the body-creates and entry and exit point
 - Tissue between points can be damaged by current
 - Amount of heat generated = \[0.24 \times (\text{voltage})^2 \times \text{resistance}\]
 - Divided into two categories
Mechanisms of injury

- Thermal injuries
- Electrical injury
 - Low voltage
 - Typically due to exposure to domestic electrics
 - Causes small, deep contact burns at entry and exit site
 - Alternating nature of domestic currents → arrhythmias
Mechanisms of injury

- **Thermal injuries**
- **Electrical injury**
 - **High voltage**
 - True high tension injury-current passes through patient
 - Voltage $> 1000V$
 - Extensive tissue damage
 - Complicated by rhabdomyolysis and renal failure
 - Flash-tangential exposure to high voltage current arc
 - Superficial burns to exposed body parts
 - Can set clothing alight
Mechanisms of injury

• Thermal injuries
• Electrical injury
• Chemical injury
 – Deep burns, significant coagulative necrosis
 – Alkaline burns tend to penetrate deeper than acidic
 – Immediate irrigation of effected tissues limits depth of the burn
Burn Area

- < 20% of TBSA are called local
- >20-30% of TBSA are called severe
- Local burns do not result in metabolic derangements
 - Aggressive systemic therapy is typically not required
- Methods of estimation
 - Palmar surface
 - Wallace Rule of Nines
 - Lund and Browder Chart
Wallace Rule of Nines

- Body is divided into areas of 9%
- Known to be inaccurate in children
Lund and Browder Chart

% Total Body Surface Area Burn
Be clear and accurate, and do not include erythema
(Lund and Browder)

<table>
<thead>
<tr>
<th>REGION</th>
<th>PTL</th>
<th>FTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ant. trunk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post. trunk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right arm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left arm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buttocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitalia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right leg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left leg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total burn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA</th>
<th>Age 0</th>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = % OF HEAD</td>
<td>0%</td>
<td>8%</td>
<td>6%</td>
<td>5%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>B = % OF ONE THIGH</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>C = % OF ONE LOWER LEG</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>3%</td>
<td>3%</td>
<td>2%</td>
</tr>
</tbody>
</table>
Treatments

• General therapies
 – Cooling
 – Fluid therapy
 – Pain management
 – Nutrition

• Specific wound management
 – Medical
 – Surgical
Cooling

• Benefits
 – Prevents ongoing tissue damage
 – Reduces edema formation
 – Increases epithelialization
 – Contributes to analgesic regimen

• Initiate within 30 minutes of injury

• 59° tap water for 20 minutes

• Avoid hypothermia
Fluid therapy

• Goal is to maintain perfusion to the zone of stasis
• Greatest amount of fluid loss in burn patients in 1st 24 hrs
 – More fluid is typically required for high tension electrical injury or inhalation injury
• First 8-12 hrs general shift from intravascular to interstitial
• Bolus therapy thought to be of little benefit
Fluid Creep

- Tendency to overuse crystalloid fluids with excessive initial resuscitation
- Prejudice against colloids
- Lack of attention to fluid volumes by clinicians
- Inaccurate estimation of total body surface areas
- Results in several of the complications we will talk about later
Resuscitation Formulae

• In human medicine, resuscitation is formula driven
• Most common is the Consensus or Parkland formula
• Crystalloid only

Parkland formula for burns resuscitation

Total fluid requirement in 24 hours =

\[
4 \text{ ml} \times (\text{total burn surface area } (\%)) \times (\text{body weight } (\text{kg}))
\]

50% given in first 8 hours

50% given in next 16 hours

Children receive maintenance fluid in addition, at hourly rate of

- 4 ml/kg for first 10 kg of body weight \textit{plus}
- 2 ml/kg for second 10 kg of body weight \textit{plus}
- 1 ml/kg for \(> 20 \) kg of body weight \textit{plus}

End point

Urine output of 0.5-1.0 ml/kg/hour in adults

Urine output of 1.0-1.5 ml/kg/hour in children
Resuscitation Formulae

• Colloids
 – 0.5 mL x total burn surface area (%) x body weight (kg) and maintenance crystalloid is continued at 1.5 ml x (burn area) x (body weight)

• End point UOP:
 – 0.5-1 mL/kg/hr in adults
 – 1-1.5 ml/kg/hr in children
Resuscitation Formulae

• Hypertonic saline
 – Controversial
 – Reduces the amount of fluid need
 – Decreased risk of abdominal compartment syndrome
 – Increased risk of kidney injury and death
 – Requires very close monitoring of sodium levels
Pain management

- Fluctuates from day to day
- Opioid doses may exceed traditional dosing
- Benzodiazepines decrease background/procedural pain
- Ketamine or propofol have been shown to reduce procedural pain

<table>
<thead>
<tr>
<th>Type of pain</th>
<th>Pain stimulus</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedural pain</td>
<td>Debridement</td>
<td>Burning and stinging with sharp pains</td>
</tr>
<tr>
<td></td>
<td>Dressing changes</td>
<td>Persists for minutes to hours after dressing changes</td>
</tr>
<tr>
<td></td>
<td>Hydrotherapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Occurs at rest</td>
<td></td>
</tr>
<tr>
<td>Background pain</td>
<td>Normal daily activity</td>
<td>Relatively constant nature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Continuous “burning” or “throbber”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mild to moderate intensity</td>
</tr>
<tr>
<td>Breakthrough pain</td>
<td>Movement after long period of</td>
<td>Occurs despite stable analgesic regimen</td>
</tr>
<tr>
<td></td>
<td>immobility</td>
<td>Severe intensity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short duration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unpredictable</td>
</tr>
</tbody>
</table>
Pain management

- Degree of pain mediated by several factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Relationship to pain intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of burn</td>
<td>Relationship unclear</td>
</tr>
<tr>
<td>Depth of burn</td>
<td>Superficial: initially acutely painful, recedes with healing</td>
</tr>
<tr>
<td></td>
<td>Dermal and deeper: initial dull sensation, may develop increasing and complex pain</td>
</tr>
<tr>
<td>Location of burn</td>
<td>Worse in high mobility areas</td>
</tr>
<tr>
<td>Anxiety and depression</td>
<td>Direct relationship to pain perception</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Inflammatory mediators modulate sensation</td>
</tr>
<tr>
<td>Long-term effects (scar and nerve)</td>
<td>Healing progression results in a wide range of complex neural abnormalities</td>
</tr>
<tr>
<td>Early grafting</td>
<td>Reduces incidence of chronic pain</td>
</tr>
</tbody>
</table>
Pain management

• Non-pharmacological therapies
 – Aromatherapy
 – Massage
 – Distraction therapy
 – TENS
 – Hypnosis
Nutrition

- Hypermetabolic response
 - Mediated by systemic response to burn
 - Related to the extent of the burn injury
 - Resting energy expenditure may be >100% basal expenditure
- Institution of enteral feeding should occur w/in 24-48 hours postburn injury

<table>
<thead>
<tr>
<th>Management of the hypermetabolic response</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reduce heat loss—environmental conditioning</td>
</tr>
<tr>
<td>• Excision and closure of burn wound</td>
</tr>
<tr>
<td>• Early enteral feeding</td>
</tr>
<tr>
<td>• Recognition and treatment of infection</td>
</tr>
</tbody>
</table>
Nutrition

• Antioxidants
 – No clinical data available
 – Vitamin C reduces fluid requirements in sheep
 – Currently recommended by ABA
Medical management

• All burn wounds should be cleansed
 – 1:40 dilution of chlorhexadine solution
 – 1:9 dilution of povidone iodine
 – 1-2 times daily, initially
 – Water cleansing with a handheld shower spray nozzle

• Variable recommendations based on burn depth
Epidermal burns

- Consider analgesia or other supportive measures
- Healing occurs rapidly, 3-5 days
Superficial partial thickness

- Expect healing in 2 weeks
- Deroof blisters by 2 days
- Aimed at preventing wound progression
- Topical antibiotics and occlusive dressings
 - Must be changed on alternate days
Deep partial thickness

- Slow to heal due to low density of skin adnexae
- More contraction is seen
- Extensive wounds or wounds over functionally important areas may be best managed by excision and grafting
- Will heal if optimized to encourage endogenous healing
 - Moist/warm
 - Free of infection
 - TransCyte
Full Thickness

- All regenerative elements destroyed
- Healing only occurs from the edge of the wound
- Associated with considerable contraction
- Should be excised and grafted

<table>
<thead>
<tr>
<th>Type of excision</th>
<th>Technique</th>
<th>Utility</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangential</td>
<td>Shave layers of devitalized tissue off until exposing a viable tissue bed (capillary bleeding noted)</td>
<td>Small burns</td>
<td>More cosmetic procedure</td>
<td>More blood loss</td>
</tr>
<tr>
<td>Fascial</td>
<td>Complete excision of skin, subcutaneous fat, involved muscle fascia</td>
<td>Large, deep life-threatening burns</td>
<td>Preserves body contours</td>
<td>Longer procedure time</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Faster procedure time</td>
<td>Severe cosmetic deformity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Less skin grafting</td>
<td>Loss of cutaneous nerves</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Less blood loss</td>
<td></td>
</tr>
</tbody>
</table>
Timing of surgery

- Perform within 5 days to minimize blood and fluid loss, avoid inflammatory or infectious complications, and achieve best success
 - Large areas of burnt tissue may result in MOF or severe infections
 - Early excision results in reduction in the concentrations of IL-1, IL-6 and TNF-a
 - Eschar provides a good medium for bacterial growth
 - Exudation of fluid at the eschar worsens fluid, protein, immunoglobulin, and electrolyte losses
Escharotomy

• Indications
 – Circumferential deep dermal or full thickness wounds leading to high tissue pressures
 – Circumferential chest burns limiting chest excursion and impair ventilation

• Only separate burned tissue
Skin grafting

• Options:
 - Split skin autograft
 - Mesh graft
 - Rotation of donor sites
 - Temporary covering
 • Cadaveric allograft
 • Xenograft
 • Synthetic products
 • Cultured epithelial autograft
Complications

- Airway burns
- Heart failure
- Kidney injury
- Cerebral failure
- Ocular injury
- Infection
- Hypothermia
- Compartment syndrome
Airway burns

- Diagnosis based on PE and history
- ≥ 1 warning sign \rightarrow high index of suspicion
- Clinical manifestation often delayed by 24hrs

Warning signs of airway burns

Suspect airway burn if:
- Burns occurred in an enclosed space
- Stridor, hoarseness, or cough
- Burns to face, lips, mouth, pharynx, or nasal mucosa
- Soot in sputum, nose, or mouth
- Dyspnoea, decreased level of consciousness, or confusion
- Hypoxaemia (low pulse oximetry saturation or arterial oxygen tension) or increased carbon monoxide levels ($>2\%$)

Onset of symptoms may be delayed
Airway burns

- Compromised pulmonary function is multifactorial
 - Upper airway obstruction
 - Airway control may be necessary
 - Swelling following resuscitation may lead to airway compromise

<table>
<thead>
<tr>
<th>Mechanisms of pulmonary insult after lower airway burns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mucosal inflammation</td>
</tr>
<tr>
<td>Mucosal burn</td>
</tr>
<tr>
<td>Bronchorrhoea</td>
</tr>
<tr>
<td>Bronchospasm</td>
</tr>
</tbody>
</table>
Airway burns

• Compromised pulmonary function is multifactorial
 – Upper airway obstruction
 – Lower airway obstruction
 • Sloughing of tracheal membrane
 • Cast formation
 • Segmental atelectasis

Mechanisms of pulmonary insult after lower airway burns

- Mucosal inflammation
- Mucosal burn
- Bronchorrhoea
- Bronchospasm
- Ciliary paralysis
- Reduced surfactant
- Obstruction by debris
- Systemic inflammatory response
Airway burns

- Compromised pulmonary function is multifactorial
 - Upper airway obstruction
 - Lower airway obstruction
 - Decreased pulmonary compliance
 - Bronchospasm, atelectasis, and pulmonary edema

Mechanisms of pulmonary insult after lower airway burns

- Mucosal inflammation
- Mucosal burn
- Bronchorrhoea
- Bronchospasm

- Ciliary paralysis
- Reduced surfactant
- Obstruction by debris
- Systemic inflammatory response
Airway burns

- Compromised pulmonary function is multifactorial
 - Upper airway obstruction
 - Lower airway obstruction
 - Decreased pulmonary compliance
 - Reduced chest wall compliance
- Torso burns
- Pain
- May require escharotomy to improve compliance
Airway burns

Ventilatory strategies to improve outcome have been proposed:

- Low volume ventilation
- Permissive hypercapnia
- High frequency percussive ventilation
- Nitric oxide
- Surfactant replacement
- Partial liquid ventilation (experimental)
- Extracorporeal membrane oxygenation (limited application)
Heart failure

• Myocardial dysfunction
 – Myocardial depressant factors → diastolic dysfunction
 – Myocardial edema
• Burn shock
• Electrical burn associated with arrhythmias
• Treatment
 – Correct underlying shock, as able
 – Inotropic drugs should not be used until adequate fluid resuscitation has occurred
Kidney Injury

- Early onset due to delayed or inadequate fluid resuscitation
- Delayed onset due to sepsis and associated multiorgan failure
Cerebral failure

- Hypoxic cerebral insult and closed head injury are associated with burn wounds

- Cyanide or carbon monoxide toxicities can result in forebrain signs
Ocular injury

- Multifactorial
 - Exposure keratopathy
 - Corneal ulceration

- Orbital compartment syndrome
 - Progressive periorbital tissue swelling alongside eyelid contracture
 - Results in increased intraocular pressure and optic neuropathy
 - Treatment by lateral canthotomy
Infection

- Contributory factors
 - Destruction of skin or mucosal surface barrier
 - Presence of necrotic tissue and exudate
 - Invasive monitoring devices
 - Impaired immune function

- Most common infections are pulmonary infections
 - 50-70% of patients with smoke inhalation develop pneumonia

Risk factors for pneumonia

- Inhalational injury:
 - Destruction of respiratory epithelial barrier
 - Loss of ciliary function and impaired secretion clearance
 - Bronchospasm
 - Mucus and cellular plugging
- Intubation
- Circumferential, full thickness chest wall burns
- Decreased chest wall compliance
- Immobility
- Uncontrolled wound sepsis
- Can lead to secondary pneumonia from haematogenous spread of organisms from wound
Infection

• Pathogenesis
 – Burn injury destroys most surface microbes
 • Not gram positive organisms in the hair follicles
 – Gram positive colonization at 48 hours
 • Minimized by the use of topical antibiotics
 – Gram negative bacteria colonization at 3-21 days after injury
 – Invasive fungal infections seen later
Infection

• Prevention
 – Early aggressive surgery
 – Topical antimicrobials
 • Slows wound colonization
 • Of use in delayed definitive surgery
 – Systemic antibiotics is controversial
 • Generally agreed use of gram positive is not indicated
 • Broad spectrum antibiotics not indicated if wound covers <40% of total body surface area
Advantages and adverse effects of topical antimicrobials

Silver sulfadiazine
- **Water soluble cream**
- **Advantages**—Broad spectrum, low toxicity, painless
- **Adverse effects**—Transient leucopenia, methaemoglobinaemia (rare)

Cerium nitrate-silver sulfadiazine
- **Water soluble cream**
- **Advantages**—Broad spectrum, may reduce or reverse immunosuppression after injury
- **Adverse effects**—As for silver sulfadiazine alone

Silver nitrate
- **Solution soaked dressing**
- **Advantages**—Broad spectrum, painless
- **Adverse effects**—Skin and dressing discoloration, electrolyte disturbance, methaemoglobinaemia (rare)

Mafenide
- **Water soluble cream**
- **Advantages**—Broad spectrum, penetrates burn eschar
- **Adverse effects**—Potent carbonic anhydrase inhibitor—osmotic diuresis and electrolyte imbalance, painful application
Infection

• Diagnosis
 – Wound biopsy
 – Clinical evaluation
 • Local signs
 • Systemic signs
 – Alteration of mental status
 – Worsening pulmonary function
 – Impaired renal function
 – Intolerance of enteral feedings
 – Persistent hyperglycemia

• Treatment
 – Antibiotics +/- debridement

Signs of wound infection
- Change in wound appearance:
 a) Discoloration of surrounding skin
 b) Offensive exudate
- Delayed healing
- Graft failure
- Conversion of partial thickness wound to full thickness
Hypothermia

• Potential adverse effects
 – Hypocoagulability
 – Altered drug metabolism
 – Increased oxygen consumption
 – Increased risk of infection

• Various methods can be used to minimize its incidence
Compartment syndrome

- Extremity compartment syndrome
- Abdominal compartment syndrome
 - Decreased abdominal wall compliance from circumferential wounds
 - As IAP increases, hypertension ensues
 - Can result in pressure-induced organ dysfunction
 - Non-invasive therapies are suggested in IAP increases above 20 cm H2O in dogs and cats

<table>
<thead>
<tr>
<th>Improve compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedation and analgesia to decrease thoracoabdominal muscle tone</td>
</tr>
<tr>
<td>Perform escharotomy on circumferential torso burns</td>
</tr>
</tbody>
</table>

Alter gastrointestinal motility and volume
- Prokinetics (eg, erythromycin or metoclopramide)
- Nasogastric drainage
- Enemas

Evacuate intraperitoneal fluid
- Percutaneous catheter abdominal decompression
Prognostication

• Increased risk of death with
 – Increasing age
 – Increasing burn size
 – Presence of inhalational injury