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Abstract

Trauma remains the leading cause of death with bleeding as the primary cause of preventable 

mortality. When death occurs it happens quickly, typically within the first 6 hours after injury. 

The principle drivers of the acute coagulopathy of trauma have been characterized but another 

group  of  patients  with  early  evidence  of  coagulupathy  both  physiologically  and 

mechanistically distinct from this  systemic aquired coagulopathy has been identified.  This 

distinct phenotype is present in 25-30% of patients with major trauma without being exposed 

to the traditional triggers and is associated with higher morbidity and a fourfold increase in 

mortality.  Despite improvements in the resuscitation of exsanguinating patients, one of the 

remaining keys is to expeditiously and reproducibly identify the patients most likely to require 

transfusion including massive transfusion (MT) with damage control resuscitation principles. 

Several predictive scoring systems/algorithms for transfusion including MT in both civilian 

and military trauma populations have been introduced. The models developed usually suggest 

combinations  of  physiologic,  haemodynamic,  laboratory,  injury severity  and demographic 

triggers identified on the initial evaluation. Many use a combination of dichotomous variables 

that are readily accessible after the patients´s arrival to the trauma bay but others rely on time-

consuming  mathematical  calculations  and  may  thus  have  limited  real-time  application. 

Weighted  and more  sophisticated  systems  including  higher  numbers  of  variables  perform 

superior.  A common limitation to all  models  is  their  retrospective  nature and prospective 

validations  are  needed.  Point-of-care  viscoelasatic  testing  may  be  an  alternative  to  early 

recognize  trauma-induced  coagulopathy  with  the  risk  of  on-going  haemorrhage  and 

transfusion. 
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Introduction

Trauma is the leading cause of death world-wide in persons under the age of 40 years (1) and 

accounts  for  approximately  10%  of  all  deaths  in  general  (2).  Despite  substantial 

improvements in acute trauma care, uncontrolled haemorrhage is still responsible for more 

than 50% of all trauma-related deaths in both civilian and military settings within the first 48 

hours after  hospital  admission (3). Haemorrhage has also been determined to be the most 

common  cause  of  preventable  deaths  (4-6).  Clinical  observations  together  with  recent 

research emphasize the central role of coagulopathy in acute civilian and military trauma care 

(7-15) but rapid identification of patients with active ongoing bleeding requiring transfusion 

or even massive transfusion (MT) remains unsatisfactory. Vice-versa, the early identification 

of trauma patients  at  risk for ongoing bleeding and transfusion is  of fundamental  clinical 

importance in order to rapidly address and correct the acute coagulopathy of trauma including 

potential triggers via early activation of damage control resuscitation (DCR) strategies, MT 

protocols and timely adequate mobilization of resources, for example blood bank resources in 

the civilian setting as well as activation of whole blood donation in the military setting (16-

19). 

To  date,  several  authors  have  shown that  early  recognition  of  the  acute  coagulopathy  of 

trauma accompanied by adequate and aggressive management including the balanced use of 

blood components can correct coagulopathy, control bleeding, reduce blood product use and 

improve outcome in severely injured patients (20-22). However, the optimum ratio of packed 

red blood cell concentrates (pRBCs), fresh frozen plasma concentrates (FFPs), and platelet 

concentrates (PCs) is still under investigation (PROPPR: Prospective Randomized Optimum 

Platelet and Plasma Ratios Study).  As an alternative approach, other groups have reported 

improved survival rates by using thromelastometry guided individualized coagulation therapy 

based  on  the  administration  of  coagulation  factor  concentrates  (23).  But  also  here,  no 
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randomized controlled study has been performed to date assessing this concept and safety data 

are still lacking. In this review we present the current understanding and concepts of the acute 

coagulopathy of trauma as well as clinically relevant strategies for its early detection. These 

concepts, in principle, are based upon the constructive discussions among key opinion leaders 

in the field during the 8th  Wiggers-Bernard-Conference on „Trauma-induced Coagulopathy“ 

held in Salzburg (Austria), February 16-18, 2011 (see also Supplement to Shock xx).

The Acute Coagulopathy of Trauma

The priniciple triggers to drive the acute coagulopathy of trauma are summarized in Figure 1 

(7,24,25).  Direct  loss  and  the  consumption  of  coagulation  factors,  dilution,  hypothermia, 

acidosis and fibrinolysis and the release of anticoagulation factors, e.g. activated protein C, all 

interfere with coagulation and diminish haemostasis.  There seems to be an additive effect 

among the clinical drivers of the process as the probability of life-threatening coagulopahy 

increases with the number of triggers present.  Cosgriff and co-workers (26), for example, 

have shown that the conditional probability of developing coagulopathy after trauma was 1% 

in moderate injury without the presence of additional triggers but increased to 39% in severe 

injury (ISS > 25) combined with hypotension, to 58% when injury occurred with acidosis (pH 

< 7.1), and to 98% in cases of ISS > 25 together with hypotension (systolic blood pressure < 

70mmHg), hypothermia (<34oC), and acidosis (pH < 7.1). 

Dilution may occur both physiologically and iatrogenically. In trauma-associated physiologic 

haemodilution, the unopposed osmotic activity of plasma in states of hypotension is prompted 

by a water shift into the intravascular space thus diluting plasma proteins until equilibrium is 

re-established.   In  this  scenario  each  protein  is  diluted  to  the  same  amount  and  their 

interactions,  for example the intrinsic „tenase complex“ comprising combined factors IXa, 

VIIIa and X, are reduced proportionally to their individual factor concentrate changes. In this 
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model, Monroe calculated a 37% reduction in single factor concentration to result in a 75% 

reduction in overall complex activity (27). 

Iatrogenic dilution is caused by unguided and often over administration of fluids in the acute 

phase  of  trauma  care.  In  patients  from  the  TR-DGU  database  (TraumaRegistry  of  the 

Deutsche  Gesellschaft  für  Unfallchirurgie/German  Trauma  Society)  coagulopathy  upon 

Emergency Room (ER) admission was observed in > 40% of patients with > 2000mls, in > 

50% with > 3000 mls, and in > 70% with > 4000 mls of fluids administered during the pre-

hospital phase of care (13). More recently, a pre-hospital intravenous colloid:crystalloid ratio 

≥ 1:2 and the amount of pre-hospital intravenous fluids ≥ 3000 ml have been identified as 

independent  contributors  to  the  acute  coagulopathy  of  trauma  (25).  This  dilution  is 

accompanied by consumption and inactivation not only of cogulation factor substrates but 

also coagulation enzymes with magnitudes matching the degree of individual injury (28). 

Meng and co-workers have frequently demonstrated the effects  of temperature and pH on 

coagulation factor and complex activity (29,30). Both, temperature and acidosis, contribute to 

coagulopathy by reducing the pace of plasma coagulation factor biochemical reactions. This 

activity is slowed down by approximately 5% with each 1oC drop in temperature. The von 

Willebrand-Factor  (vWF)-glycoprotein  Ib interaction  which activates  platelets  is  absent  in 

75% of individuals at 30oC (31,32). Similarly, drops in pH to values of 7.2 have been shown 

to reduce coagulation factor complex activities by half and down to 20% of normal activity at 

pH 6.8 (30). Figure 2 shows an example for reduced plasma coagulation factor and complex 

activity if pH drops to values of 7.0. The correlation between the activity or activation of 

different coagulation factors and negative base excess (BE) assuming non-respiratory acidosis 

is demonstrated in Figure 3. 

5

ACCEPTED



Copyright © 2012 by the Shock Society. Unauthorized reproduction of this article is prohibited.

Under physiological conditions the coagulation system modulates fibrinolysis in that blood 

clots  are  maintained stable  for a given time to control  bleeding and to promote  adequate 

wound healing. High concentrations of thrombin inhibit plasmin activation via the activation 

of  TAFI  (thrombin-activated  fibrinolysis  inhibitor)  and  PAI-1  (plasminogen  activator 

inhibitor-1).  Vice-versa,  if  the  thrombin  burst  is  weak,  TAFI  remains  unactivated. 

Furthermore, if thrombin encounters thrombomodulin on endothelial cells, protein C may be 

activated which then inactivates PAI-1. 

Hyperfibrinolysis  (HF) has been identified as a major contributor of mortality in bleeding 

trauma patients (33,34). For example, Schöchl and co-workers have reported a mortality rate 

of  approximately  88% in  trauma patients  with  hyperfibrinolysis  present  upon Emergency 

Room (ER) admission as detected by viscoelastic testing (33). Even a small reduction of the 

maximum amplitude in thromelastography (TEG > 15%) is likely to be associated with higher 

transfusion requirements including MT, coagulopathy and haemorrhage-related death (34). 

Acute Coagulopathy in Trauma and Shock

More recently, it has been recognized that another group of trauma patients presents to the ER 

with early evidence of coagulopathy both physiologically and mechanistically distinct from 

this  above  referrenced  traditional  sytemic  aquired  coagulopathy.  Several  studies  have 

identified an acute traumatic coagulopathy, according to standard coagulation tests, present in 

25-30% of patients with major trauma without being exposed to the traditional triggers of 

coagulopathy. For example, Brohi and colleagues have reported a series of patients who had 

received < 500 mls of fluids during pre-hospital  care of whom one out of four presented 

coagulopathic upon arrival to the trauma bay as indicated by a prothrombin time (PT) ≥ 1.5 

(12). This finding was confirmed by other investigators reporting even larger patient series 

(13,14) and also in children (35). Our own group has reported the presence of coagulopathy 
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upon admission even in trauma patients who had received no fluid resuscitation at all during 

their pre-hospital phase of care (13). In all studies, the presence of coaguloathy was associated 

with a higher magnitude of injury sustained as refleced by higher Injury Severity Scores (ISS) 

as well as a dramatic increase in mortality up to two- to four-fold (12-14,35,36) (Figure 4). In 

Brohi´s study, increasing injury severity predicted a stepwise increasing fraction of patients 

with increased PT upon admission with presence in 45% of all patients with an ISS > 45 (12). 

Abnormalities in other conventional tests such as fibrinogen levels and platelet counts showed 

a similar stepwise increase together with increased injury severity (36). Among the 28% of 

the 20,000 trauma center admissions with any initial PT prologantion reported by MacLeod 

and colleagues, there was a 35% increase in the risk of in-hospital death; among the 8% of 

patients with prolonged partial thromboplastin time (PTT), the increase in risk of dying was 

42% (14). Noteworthy, all of these deaths occurred within the first five hours after admission 

and were due to uncontrolled primary haemorrhage.

In their analysis from data from the German TR-DGU database, Wafaisade and co-workers 

reported an ongoing state of shock after trauma (on scene and upon admission to the trauma 

bay)  to  be  associated  with  an  almost  three-fold  increase  in  risk  for  the  development  of 

coagulopathy (25). Figure 5 shows an increasing frequency of coagulopathy upon ER arrival 

with increasing levels of shock as reflected by base excess (BE). This finding corresponds to 

other  reports  (7,15)  and  has  also  been  described  in  children  (35).  Hypoperfused  tissue 

inducing  acidemia  may  be  one  potential  mechnism underlying  this  shock/trauma-induced 

coagulopathy, as acidemia interferes with with the coagulation enzyme activity (see above). 

More recently,  several authors have shown that shock may also activate anticoagulant and 

hyperfibrinolytic pathways. In this context, Brohi and colleagues have suggested that, in the 

presence  of  shock  and  hypoperfusion,  the  endothelium  releases  thrombomodulin  which 

complexes with thrombin to divert it into an anticoagulant function. Thus, reduced amounts of 
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thrombin are available to cleave fibrinogen, and thrombin complexed to thrombomodulin may 

also activate protein C which inhibits the extrinsic pathway and antifibrinolytic  factors (8; 

Figure 6).  Of course,  this  relatively  new identified  pathway still  needs  further  and more 

detailed investigation.

Thus,  direct  tissue  trauma  and  shock/hypoperfusion  may  represent  the  primary  drivers 

responsible for the development of this distict form of coagulopathy apart and independent 

from  the  traditional  factors.  This  coagulopathy  is,  in  addition,  associated  with  a  higher 

transfusion requirement, a greater incidence of multi organ dysfunction syndrome, longer ICU 

and overall  in-hospital  length-of-stays  (LOSs) as well  as a four-fold increase in  mortality 

compared to those patients with normal coagulation. The early undetected presence of this 

distinct coagulopathy almost certainly contributes to the development and aggravation of the 

above  mentionned  coagulopathy  which  is  considered  systemically  aquired  and  frequently 

observed after severe injury. 

Strategies and Tools for Early Detection and Stratification of Risk

Pertubations in blood coagulation are common after major trauma and are associated with 

poor outcomes.  A substantial  proportion of trauma patients  is already coagulopathic  upon 

admission (11-14) and incidence rates up to 60% have been reported according to definition 

(37). The human coagulation system can be rapidly overwhelmed by severe injury (38) and 

death from traumatic exsanguination usually occurs early, typically within the first six to 12 

hours  after  initial  impact  but  heavily  weighted  toward  the  first  1-2  hours  (15,39-41). 

Approximately 10% of all trauma patients are transfused with at least one unit of blood and 

up to 30% of these require massive transfusion (MT) as defined by transfusion of ≥ 10 units 

within the first 24 hours after Emergency Room (ER) admission (42,43). Even with improved 

triage, evacuation, early surgical intervention (for example Damage Control Surgery (DCS)), 
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problems associated  with bleeding and the inability  to  control  it  remain  chellenging.  The 

classic definition of massive transfusion is being changed by some to reflect the changing 

practice of early blood use with damage control resuscitation (44) and some prefer to instead 

focus on defining massive bleeding instead of massive transfusion. Until massive bleeding 

can be more accurately characterized or quantified we will continue to determine the risk of 

haemorrhagic death by using transfusion requirement as a surrogate. 

Despite  substantial  improvements  in  the  knowledge on how to adequately  resuscitate  the 

exsangiunating patient, one of the fundamental issues to improve the outcome still remains 

the early identification of patients in the need for transfusion including those requiring MT. 

Although  the  criteria  that  trigger  the  activation  of  massive  transfusion  protocols  (MTPs) 

remain highly center and provider dependent, the benefits of timely MTP activation have been 

frequently demonstrated given the identification of appropriate patients (45,46). However, not 

all investigators were able to show improved survival after MTP implementation or activation 

(47).  Allogeneic  blood  transfusion  increased  significantly  without  being  associated  with 

mortality.  A similar  oberservation was made by Simmons and colleagues  (48). Therefore, 

early and reliable prediction of the need for MT is highly demanded. 

The inappropriate use of massive transfusion protocols (MTPs) in patients not in the need of 

MT may result in a higher incidence of side effects of FFP and PC transfusion without an 

improvement  in  survival  (49-51).  Although  blood  transfusion  has  the  obvious  benefit  of 

volume restoration and improved oxygen carrying capacity in the injured patient, there are 

quite a few risks and immunosuppressive and infectious consequences associated with blood 

products  including  transfusion  reaction,  transmission  of  blood-borne  pathogens,  and  the 

impact  of  limited  supply  (52-55).  For  these  reasons,  there  has  been  a  trend  to  restrict 

transfusion in non-urgent clinical settings and to limit transfusion to ongoing and imminently 
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life-threatening situations. However, the hazards of transfusion may appear somewhat trivial 

relative to the need of care for an exsanguinating patient.

Substantial problems in the use of conventional coagulation testing for the early identification 

of patients in the need for transfusion including those requiring MT include delayed turn-

around times,  incomplete  characterization,  and their  poor  predictive  nature not  accurately 

reflecting the patient´s true coagulation status (12,56,57). Although international normalized 

ratio (INR) and base deficit (BD) are good predictors of mortality, by themselves, they cannot 

discriminate between patients to may go or not go on for MT (58). Second, surgical relevant 

bleeding due to thoracic and/or retro-/ intraperitoneal organ injury is difficult to detect and 

often  requires  time  consuming  diagnostics  (59).  Thus,  significant  haemorrhage  and 

coagulopathy may be underestimated or even missed during early resuscitation (14,60). 

Scoring Systems and Algorithms

Over the past few years, a considerable number of scoring systems has been developed and 

introduced for the initial evaluation of the bleeding trauma patient in both civilian (17,45,61-

69) and military seetings (70-73). The authors have just recently published a comprehensive 

overview of the most commonly discussed scoring systems and algorithms for the need of 

transfusion including massive transfusion in severely injured patients  (74).  These systems 

may  provide  clinically  useful  information  that  potentially  gives  freedom  to  providers  to 

deviate  from  established  algorithms  toward  the  more  aggressive  and  early  use  of  blood 

products with the assumption that early product use improves outcome. These scoring systems 

may be used to guide the activation of massive transfusion protocols and could help providers 

of  all  experience  levels  know  when  it  is  likely  that  the  patient  will  require  a  massive 

transfusion. 
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The  scoring  systems  developed  to  date  usually  suggest  combinations  of  physiologic, 

haemodynamic, laboratory, injury severity and demographic triggers identified on the initial 

evaluation of the bleeding trauma patient. Many of them use a combination of dichotomous 

variables that are obtained rapidly after the patients´s arrival to the trauma bay but others rely 

on time-consuming mathematical calculations or complex scoring algorithms that are required 

to determine the patients who will need MT and may thus have limited real-time application. 

The most  commonly proposed triggers  that  were correlated  with the need for transfusion 

including massive transfusion in the civilian setting are shown in Table 1 and include systolic 

blood pressure which is present in 9/9 scoring systems, followed by heart rate (present in 6/9 

scoring  systems),  haemoglobin/haematocrit  (present  in  5/9  scoring  systems),  and  positive 

focused assessment for the sonography of trauma (FAST+; present in 4/9 scoring systems). 

Parameters that can be quickly obtained via point-of-care (POC) ABG (arterial blood gas)-

analyzers,  for  example  base  excess/deficit  (BE/BD),  lactate,  and  pH  are  included  in  6/9 

civilian scoring systems.  Six out  of nine systems consider  anatomical  injury including its 

magnitude or mechanism of injury as component of their assessment. However, the severity 

of  injury  as  reflected  by  the  Injury  Severity  Score  (ISS)  or  the  overall  pattern  of  the 

anatomical injury may be difficult to calculate and to assess during initial assessment. 

A major and common limitation to all scoring systems and algorithms with one exception is 

their  retrospective  nature.  All  systems  have  been  developed  retrospectively  based  upon 

datasets derived from single or multi center civilian or military databases. Some models have 

been developed using a classical datasplit approach with half of the dataset for development 

and the other half for internal validation. Meanwhile, some scores and algorithms have been 

internally re-validated on data from the same database, for example the Trauma-associated 

Severe Haemorrhage-Score (TASH-Score; 62). The only score that has been prospectively 
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validated on data from a subset of 481 Emergency Room (ER) patients is the Emergency 

Transfusion Score (ETS; 69). 

To  date,  several  systems  and  algorithms  have  been  applied  onto  other  external  but  also 

retrospective datasets and have thus been externally validated. In developing their ABC-Score 

Nunez and co-workers,  for  example,  have  applied  both the  TASH- and the McLaughlin-

Scores  onto  their  local  trauma  center  database  including  596  trauma  patients  for  score 

comparison (45). In result, all three scores (TASH AUROC = 0.842; McLaughlin AUROC = 

0.846; ABC AUROC = 0.842) were considered as equally good predictors for MT without a 

statistically significant difference between the scores. In another retrospective study, Cotton 

and  colleagues  (75)  have  applied  the  ABC-Score  onto  adult  trauma  datasets  from three 

different Level I trauma centers in the United States (n = 513 from trauma center 1; n = 373 

from trauma center 2; and n = 133 from trauma center 3) and compared the predictive ability 

of the score at each institution. The sensitivity and specificity for the ABC score to predict 

massive transfusion ranged from 75% to 90% and from 67% to 88%, respectively. Correctly 

classified patients and AUROCs, however, were 84% to 87% and 0.83 to 0.90, respectively. 

Recently, Mitra and co-workers (76) compared the performance of the PWH-Score (63) to the 

ABC- (45) and TASH-Scores (61,62) by a retrospective review of a subgroup of major trauma 

patients (n = 1.234) derived from The Alfred Trauma Registry (Victoria/Australia). In this 

analysis, the performance of the TASH-Score was best with an AUROC of 0.8986, followed 

by the PWH-Score (AUROC = 0.8419) and the ABC-Score.

Our own group has recently applied a total of six scores and algorithms to predict transfusion 

in trauma patients, i.e. ABC, Larson, PWH, Schreiber, TASH, and Vandromme, onto a large 

subset of trauma patients derived from the most up-dated database of the German TR-DGU (n 

= 5.047/ unpublished observation; manuscript in preparation by Brockamp et al.). This extract 
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included data from adult severely injured trauma patients (ISS > 16) with all variables present 

from each patient to calculate all six scores. Although we had initially attempted to validate 

all scores on our database, the remaining scores had to be excluded from this analysis due to 

missing or non-captured data within our registry for model calculation. For the TASH-Score, 

this  analysis  served again as  an internal  validation  while  all  other  scores  were externally 

validated  by  being  subjected  onto  our  datasets.  Not  surprisingly  that  the  TASH-Score 

performed best (AUROC 0.889) followed by the PWH-Score (AUROC 0.860) which is also a 

weighted score with structure and content variables very similar to the TASH-Score (Figure 

7).  In  this  analysis,  the  non-weighted  and  more  simple  scores  performed  less  accurate 

(AUROCs for Vandromme-Score: 0.840; Larson-Score: 0.823; Schreiber-Model: 0.800; and 

ABC-Score: 0.763). 

Viscoelastic Testing Methods

An  alternative  to  scoring  systems  and  algorithms  to  early  recognize  trauma-induced 

coagulopathy with the risk of on-going haemorrhage and transfusion requirement is the early 

use of viscoelastic testing methods. To date, similar to the above referenced scoring systems 

and algorithms prospective data is also limited for this approach. However, low maximum 

clot  firmness  (MCF)  in  thrombelastometry  EXTEM  (activates  haemostasis  via  the 

physiological activator tissue factor), INTEM (activates the contact phase of haemostasis) and 

FIBTEM (an EXTEM based assay for the fibrin part of the clot) or maximum amplitude (MA, 

the equivalent TEG parameter) have been identified as important determinants of packed red 

blood cell  transfusion (57,58,77-79). Cotton and colleagues (77) recently presented results 

from a pilot study in which they had prospectively evaluated the timeliness of real-time rapid 

thrombelastography results (r-TEG), their correlation with conventional coagulation tests, and 

the  ability  of  r-TEG to  predict  early  blood  transfusion  in  272  consecutive  major  trauma 

activations over a 5-month time period.  Early r-TEG values (activated clotting time [ACT], r-
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value [reaction time = time to first evidence of a clot], k-time [time from the end of r until the 

clot reaches 20mm > represents the speed of clot formation]) were available within 5 minutes, 

late r-TEG values (maximal amplitude [MA = reflects clot strength] and α-angle [tangent of 

the curve made as the k is reached]) were available within 15 minutes, in contrast to results 

from conventional  coagulation  testings  with turn-around times  of  48 minutes  on average. 

Activated clotting time, r-value, and k-time showed strong correlations with later incoming 

results from conventional testings and linear regression demonstrated activated clotting time 

to predict the need for red blood cells,  plasma, and platelet  transfusions within the first 2 

hours of arrival. In addition, an activated clotting time <105 seconds predicted patients who 

did not receive any transfusions during the first 24 hours of admission. Similar results have 

been reported by Davenport and colleagues (57). In their study a threshold of clot amplitude 

of ≤ 35 mm at 5 minutes of rotational thrombelastometry was indicative for acute traumatic 

coagulopathy and the need for transfusion including massive transfusion. These findings are 

in concert  with reports by Leemann and co-workers who demonstrated low INTEM MCF 

along with low haemoglobin levels to be an independent risk factor for massive transfusion 

(78). An overview of the most relevant studies conducted to date on the use of viscoelastic 

testing  in  the context  of  the  acute  coagulopathy of  trauma including main  conclusions  is 

provided in Table 2.

Point-of-care viscoelastic testing may offer the unique potential to predict transfusion even 

faster  as  compared  to  scoring  systems  involving  conventional  coagulation  testing  and  to 

activate and guide resusucitations more objectively. A recent retrospective analysis of major 

trauma patients revealed low FIBTEM amplitudes (< 4mm) and/or low EXTEM amplitudes at 

10 minutes (CA 10) to be highly predictive for massive transfusion  (79). Independent from 

the viscoelastic test used, time to effective clot formation, clot strength and sustained stability 

of the clot appear to have the highest clinical value. The authors have recently published a 
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comprehensive  review on the early and individualized  goal-directed  therapy for  the acute 

coagulopathy of trauma including their local hospital algorithm for managing this potentially 

life-threatening disorder based on the use of viscoelastic testing (80). Other algorithms have 

been published elsewhere (81,82).

Conclusion

Trauma  remains  the  leading  cause  of  death  and  bleeding  is  the  primary  cause  for  this 

mortality usually occurring quickly within the first 6 hours after impact. Even with improved 

triage, evacuation and early surgery, bleeding-associated problems and the inability to control 

it remain challanging. The principle drivers of the acute coagulopathy of trauma have been 

identified.  More  recently,  it  has  been  recognized  that  another  group  of  trauma  patients 

presents  with  early  evidence  of  coagulupathy  both  physiologically  and  mechanistically 

distinct  from  this  systemic  aquired  coagulopathy  and  with  worse  outcome.  One  of  the 

remaining keys is to expeditiously and reproducibly identify the patients most likely to require 

transfusion  including  massive  transfusion.  The  scoring  models  developed  so  far  usually 

suggest  combinations  of  physiologic,  haemodynamic,  laboratory,  injury  severity  and 

demographic triggers identified on the initial  evaluation.  Weighted and more sophisticated 

systems including higher numbers of variables perform superior over simple non-weighted 

models.  A  major  and  common  limitation  to  all  models  is  their  retrospective  nature  and 

prospective  validations  are  urgently needed.  Point-of-care  viscoelasatic  testing  may be an 

alternative to these systems to early recognize trauma-induced coagulopathy with the risk of 

on-going haemorrhage and transfusion. 
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Figure/Table legends

Figure 1: Potential mechanisms involved in the acute coagulopathy of trauma. Besides 

dilutional coagulopathy, haemorrhage may also induce shock which is followed by acidemia 

and hypothermia further triggering coagulopathy forming the so-called „lethal triad“. Trauma 

with shock thus causing hypoperfusion and hypoxia can also cause coagulopathy associated 

with further consumption and hyperfibrinolysis. The clinical importance of inflammation for 

the development of the acute coagulopathy of trauma is not yet fully understood (adopted and 

modified from (7)).

Figure 2: Example for the decrease in plasma coagulation factor/complex activity if pH 

drops from 7.4 to 7.0 (adopted and modified from (30)).

Figure 3: Correlation between activity/activation of different plasma coagulation factors 

and negative base excess assuming non-respiratory acidosis  (adopted and modified from 

(30) and (83), and Rolf Zander (Mainz/Germany)).
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Figure 4: Mortality in patients with and without coagulopathy upon ER admission with 

respect to the magnitude of injury sustained (adopted and modified from (13)).

Figure 5: The frequency of coagulopathy as a function of shock (reflected by base excess 

(BE)) present upon Emergency Room (ER) admission (adopted and modified from (11)).

Figure  6:  Immediate  activated  protein  C-mediated  coagulopathy  (hypocoagulability) 

during  shock  and  hypoperfusion.  Combined  trauma  and  hypoperfusion  may  lead  to  a 

hypocoagulable state via formation of an anticoagulant complex (thrombin-thrombomodulin-

complex) which activates protein C to protein C active which leads to an inactivation of the 

coagulation  factors  Va  and  VIIIa.  Activated  protein  C  in  surplus  also  consumes  PAI-1 

(plasminogen-activator-inhibitor  1)  which  may lead  to  an  increase  in  tissue  plasmonogen 

activator  (tPA)  together  with  hyperfibrinolysis  and  an  increase  in  d-dimer  concentrations 

(according to (8)).

Figure  7:  Performance  of  six  scoring  systems to  predict  on-going  haemorrhage and 

transfusion requirement upon ER arrival  when subjected to a cohort of trauma patients 

derived  from  the  German  TR-DGU  database  (n  =  5.147;  unpublished  observations; 

manuscript in preparation by Brockamp et al.).

Table  1:  Overview  of  scoring  systems  and  algorithms  for  the  need  of  transfusion 

including massive transfusion derived from civilian datasets.

Table  2:  Overview of  the  most  relevant  studies  conducted on the  use of  viscoelastic 

testing in the context of the ACT. 
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Table 1

Score ABC
(45)

TASH
(61,62)

PWH
(63)

Vandromme
(64)

Wade
(65)

Moore
(66)

Baker
(67)

ETS
(68,69)

Individual 
Transfusion 
Triggers (17)

Design retrospective 
non-weighted, 
dichotomous

retrospective 
weighted

retrospective 
weighted

retrospective 
non-weighted, 
sum predictors

retrospective 
prediction 
formula

retrospective 
prediction 
formula

retrospective 
non-weighted, 

sum risk factors

retrospective/ 
prospective 
weighted

retrospective 
individual 
triggers

Number of Patients 596 6.044 [61]
5.834 [62]

1.891* 514 838 383 654** 1.103 (re) [68]
481 (pro) [69]

170

Setting civilian,
single center

civilian, 
multi center

civilian,
single center

civilian, 
single center

civilian,
multi center 

civilian,
multi center

civilian,
multi center

civilian,
single center

civilian, 
single center

Parameter in Score SBP (mmHg)
HR (bpm)

FAST+
Penetrating 

Trauma

SBP (mmHg)
HR (bpm)
Hb (g/dl)

BE (mmol/l)
FAST+

Pelvic # or/and
Extremity # male

SBP (mmHg)
HR (bpm)
Hb (g/dl)

BD (mmol/l)
FAST+

GCS
Pelvic #

SBP (mmHg)
HR (bpm)
Hb (g/dl)

Lct (mmol/l)
INR

 SBP (mmHg)
HR (bpm)
Hct (%)

pH

SBP (mmHg)
pH
ISS

SBP (mmHg)
HR (bpm)
High risk 
injury***

GCS

SBP (mmHg)
FAST+

Traffic accident
Fall > 3 meters

Pelvic #
Age

Direct admission

SBP (mmHg)
Hb (g/dl)

BD (mmol/l)
Temp (oC)

INR

* 95% of patients Chinese origin; ** large Hispanic and indigent population; ***high risk injury = trauma to the ventral chest between the midclavicular lines, abdominal injury with diffuse  
tenderness, survival of a vehicular crash in which another occupant died, vehicular ejection, or penetrating torso injury
BD = base deficit; BE = base excess; FAST = focused assessment for the sonography of trauma; GCS = Glasgow Coma Scale; Hct = haematocrit; Hb = haemoglobin; HR = heart rate; INR = 
International Normalized Ratio; ISS = Injury Severity Score; Lct = lactate; SBP = systolic blood pressure; Temp = temperature
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Table 2

Author Year n Main Findings
Plotkin (58) 2008 44 TEG more accurately indicates blood product requirement than PT, PTT
Leemann (78) 2010 53 Hb ≤ 10g/dl and an abnormal MCF by ROTEM on admission reliably predicts 

the need for MT
Doran (84) 2010 31 ROTEM detects more abnormalities in the coagulation status than the standard 

laboratory tests PT and PTT
Cotton (77) 2011 583 ACT predicts red blood cell, plasma, and platelet transfusions within first 2 hours 

after ED arrival
Davenport (57) 2011 300 At a threshold of clot amplitude at 5 min of ≤ 35 mm, ROTEM can identify acute 

traumatic coagulopathy at 5 min and predicts the need for MT
Schoechl (79) 2011 323 Low FIBTEM predicts MT
Schoechl (85) 2011 88 FIBTEM MCF < 7 mm results in 9-fold increase in mortality
Petzold (86) 2012 80 TEG clot strength (G) provides consistent, independent prediction for MT and 

MT-death early in the resuscitation of injured patients 
Nystrup (87) 2012 89 Low clot strength on admission is independently associated with increased 30-

day mortality in trauma patients
Tauber (88) 2012 334 EXTEM MCF is independently associated with early mortality, MCF FIBTEM 

with the need for red blood cell transfusion
ACT = activated clotting time; ED = Emergency Department; Hb = haemoglobin; INR = International Normalization Ratio; 
MCF = maximum clot firmness; MT = massive transfusion; PT = prothrombin time; PTT = partial thromboplastin time; 
ROTEM = Rotational Thrombelastometry; TEG = Thrombelastography
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