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Correct-by-construction

● We make formal proofs that high-level 
system requirements are achievable.

●  We synthesize system code from the 
proofs.

● Milestone: We synthesized a fault-
tolerant consensus algorithm and 
deployed it as a component of 
ShadowDB, a replicated database. 



Attack tolerant

● Innate Immunity

● We prove that the system tolerates certain kinds and 
numbers of failures (crash, send-omission, etc.) under some 
assumptions on environment

● Population diversity 

● to thwart attacks not covered by innate immunity, we

● make variant proofs which synthesize variant algorithms

● run the synthesized code in variant runtime evaluators (in 
various languages)

● (planned) pro-actively reconfigure to use variants in a 
unpredictable way



Critical components

Empirical observation:  There are crucial components in the "stack" of 
many real-world systems that only a few "gurus" understand and maintain.
Why?  In a running system these components have many dynamically 
changing, loosely coupled parts that achieve their global requirements for 
subtle reasons.
The Problem:  
Such components are difficult to get right in the first place, and cannot be 
quickly changed if and when a flaw or exploitable feature of their design is 
discovered.
Our Solution: (Semi-) Automate the reasoning the "guru" uses to 
understand how the complex component works and why it is correct. 
Synthesize the code for the component from this reasoning.



Formalizing “guru” reasoning

● Process algebra?   No

● Temporal logic?   Not much

● Refinement maps?  Sometimes

● Reason directly about interacting modules/actors/worker 
threads with input, output, and state.

● Specify the state change and output for each module.

● Define and prove local invariants.

● Prove global invariants.

● I/O Automata?  
● Almost, but we need a better way to reason about properties of dynamically 

created processes



A Thread from Lamport's Paxos consensus 
algorithm

 process Scout(λ, acceptors, b)
var waitfor := acceptors, pvalues := ∅;
    ∀α ∈ acceptors : send(α, p1a, self(), b );
  for ever
    switch receive()
       case p1b, α, b' , r :
         if b' = b then
             pvalues := pvalues ∪ r;
             waitfor := waitfor − {α};
             if |waitfor| < |acceptors|/2 then
               send(λ, adopted, b, pvalues );
               exit();
            end if;
        else
          send(λ, preempted, b );
          exit();
   end switch;

(From an explanation 
of “multi-decree” 
Paxos, in Robbert van 
Renesse's

“Paxos made 
moderately complex”)
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Our Logical Method

● Logic of events = simple formal theory of mathematical structure 
corresponding to message sequence diagrams

Processes described abstractly as “event classes” in EventML using 
“event class combinators”,  X || Y,  F o (X, Y),  Prior(X), Once(X),

X >>= Y   delegation combinator expresses dynamic process 
creation         (classes form a monad)

EventML automatically synthesizes code (a set of process terms that 
execute in a message passing evaluator) 

EventML automatically generates a logical form.

Nuprl then generates and proves a simplified “inductive logical 
form” (ILF)

EventML is both a programming and specification language.
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Progress since last PI meeting

● Many enhancements to EventML
● Abstract data types

● Invariant assertions, ordering properties

● classrec  R p = X p || Y p >>= R

● Generation and simplification of ILF
● Using domain specific reasoners

● Rewriting, quantifier elimination, etc. all proved by Nuprl tactics.  

● Synthesized code deployed
● Several versions of evaluators working

● Consensus code being used in replicated database (ShadowDB).



Synthesized consensus protocols

● 3f+1 “simple” consensus algorithm
● Written in EventML with assertions
● Most local invariants automatically proved
● Using automatically generated ILF we proved 

the global consistency & validity properties in 
about two days  (previous effort took two 
months)

● Synthesized code is running in reconfiguration 
service of ShadowDB

● Paxos nearly finished



EventML (built by Vincent Rahli) cooperates with 
Nuprl at every stage of program development.
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 Part of  EventML  for Paxos



Part of the Inductive Logical Form (ILF) for Paxos

The ILF is readable, and usually more informative than the EventML or 
pseudo-code. It is used automatically by our tactics to prove global 
properties of the algorithm.
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Summary/ Next steps

● Synthesis of complex distributed 
algorithms from proofs works

● Abstractions, automation essential 

● Next steps
● More variants of more protocols
● Reason about capabilities/tags so that we can 

synthesize code that uses more CRASH 
technology
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