
Correct-by-constuction, Attack-
tolerant Critical systems

Robert Constable, Robbert van Renesse,
Vincent Rahli, Nicolas Schiper, Rich Eaton

 – Cornell University
Mark Bickford

– ATC-NY

Automating Protocol Synthesis

Correct-by-construction

● We make formal proofs that high-level
system requirements are achievable.

● We synthesize system code from the
proofs.

● Milestone: We synthesized a fault-
tolerant consensus algorithm and
deployed it as a component of
ShadowDB, a replicated database.

Attack tolerant

● Innate Immunity

● We prove that the system tolerates certain kinds and
numbers of failures (crash, send-omission, etc.) under some
assumptions on environment

● Population diversity

● to thwart attacks not covered by innate immunity, we

● make variant proofs which synthesize variant algorithms

● run the synthesized code in variant runtime evaluators (in
various languages)

● (planned) pro-actively reconfigure to use variants in a
unpredictable way

Critical components

Empirical observation: There are crucial components in the "stack" of
many real-world systems that only a few "gurus" understand and maintain.
Why? In a running system these components have many dynamically
changing, loosely coupled parts that achieve their global requirements for
subtle reasons.
The Problem:
Such components are difficult to get right in the first place, and cannot be
quickly changed if and when a flaw or exploitable feature of their design is
discovered.
Our Solution: (Semi-) Automate the reasoning the "guru" uses to
understand how the complex component works and why it is correct.
Synthesize the code for the component from this reasoning.

Formalizing “guru” reasoning

● Process algebra? No

● Temporal logic? Not much

● Refinement maps? Sometimes

● Reason directly about interacting modules/actors/worker
threads with input, output, and state.

● Specify the state change and output for each module.

● Define and prove local invariants.

● Prove global invariants.

● I/O Automata?
● Almost, but we need a better way to reason about properties of dynamically

created processes

A Thread from Lamport's Paxos consensus
algorithm

 process Scout(λ, acceptors, b)
var waitfor := acceptors, pvalues := ∅;
 ∀α ∈ acceptors : send(α, p1a, self(), b);
 for ever
 switch receive()
 case p1b, α, b' , r :
 if b' = b then
 pvalues := pvalues ∪ r;
 waitfor := waitfor − {α};
 if |waitfor| < |acceptors|/2 then
 send(λ, adopted, b, pvalues);
 exit();
 end if;
 else
 send(λ, preempted, b);
 exit();
 end switch;

(From an explanation
of “multi-decree”
Paxos, in Robbert van
Renesse's

“Paxos made
moderately complex”)

client

λ2 α2 α3

scout

commander

request

p1a

p2a

p1b

p2b

decision

adopted

α1

acceptors

ρ1 ρ2

replicas leaders

κ

response

propose

Interacting processes in Paxos

Our Logical Method

● Logic of events = simple formal theory of mathematical structure
corresponding to message sequence diagrams

Processes described abstractly as “event classes” in EventML using
“event class combinators”, X || Y, F o (X, Y), Prior(X), Once(X),

X >>= Y delegation combinator expresses dynamic process
creation (classes form a monad)

EventML automatically synthesizes code (a set of process terms that
execute in a message passing evaluator)

EventML automatically generates a logical form.

Nuprl then generates and proves a simplified “inductive logical
form” (ILF)

EventML is both a programming and specification language.

Our Logical Method

● Logic of events = simple formal theory of mathematical
structure corresponding to message sequence diagrams

● Processes described abstractly as “event classes” in EventML
using “event class combinators”, X || Y, F o (X, Y), Prior(X),
Once(X),

● X >>= Y delegation combinator expresses dynamic process
creation (classes form a monad)

EventML automatically synthesizes code (a set of process terms
that execute in a message passing evaluator)

EventML automatically generates a logical form.

Nuprl then generates and proves a simplified “inductive logical
form” (ILF)

EventML is both a programming and specification language.

Our Logical Method

● Logic of events = simple formal theory of mathematical
structure corresponding to message sequence diagrams

● Processes described abstractly as “event classes” in EventML
using “event class combinators”, X || Y, F o (X, Y), Prior(X),
Once(X),

● X >>= Y delegation combinator expresses dynamic process
creation (classes form a monad)

● EventML automatically synthesizes code (interpreted by a
message passing evaluator)

EventML automatically generates a logical meaning

Nuprl then generates and proves a simplified “inductive logical
form” (ILF)

EventML is both a programming and specification language.

Our Logical Method

● Logic of events = simple formal theory of mathematical
structure corresponding to message sequence diagrams

● Processes described abstractly as “event classes” in EventML
using “event class combinators”, X || Y, F o (X, Y), Prior(X),
Once(X),

● X >>= Y delegation combinator expresses dynamic process
creation (classes form a monad)

● EventML automatically synthesizes code (interpreted by a
message passing evaluator)

● EventML automatically generates a logical meaning.

● Nuprl then generates and proves a simplified “inductive
logical form” (ILF)

EventML is both a programming and specification language.

Our Logical Method

● Logic of events = simple formal theory of mathematical structure
corresponding to message sequence diagrams

● Processes described abstractly as “event classes” in EventML using
“event class combinators”, X || Y, F o (X, Y), Prior(X), Once(X),

● X >>= Y delegation combinator expresses dynamic process
creation (classes form a monad)

● EventML automatically synthesizes code (a set of process terms that
execute in a message passing evaluator)

● EventML automatically generates a logical form.

● Nuprl then generates and proves a simplified “inductive logical
form” (ILF)

● EventML is both a programming and specification language.

Progress since last PI meeting

● Many enhancements to EventML
● Abstract data types

● Invariant assertions, ordering properties

● classrec R p = X p || Y p >>= R

● Generation and simplification of ILF
● Using domain specific reasoners

● Rewriting, quantifier elimination, etc. all proved by Nuprl tactics.

● Synthesized code deployed
● Several versions of evaluators working

● Consensus code being used in replicated database (ShadowDB).

Synthesized consensus protocols

● 3f+1 “simple” consensus algorithm
● Written in EventML with assertions
● Most local invariants automatically proved
● Using automatically generated ILF we proved

the global consistency & validity properties in
about two days (previous effort took two
months)

● Synthesized code is running in reconfiguration
service of ShadowDB

● Paxos nearly finished

EventML (built by Vincent Rahli) cooperates with
Nuprl at every stage of program development.

A Thread from Lamport's Paxos consensus
algorithm

 process Scout(λ, acceptors, b)
var waitfor := acceptors, pvalues := ∅;
 ∀α ∈ acceptors : send(α, p1a, self(), b);
 for ever
 switch receive()
 case p1b, α, b' , r :
 if b' = b then
 pvalues := pvalues ∪ r;
 waitfor := waitfor − {α};
 if |waitfor| < |acceptors|/2 then
 send(λ, adopted, b, pvalues);
 exit();
 end if;
 else
 send(λ, preempted, b);
 exit();
 end switch;

(From an explanation
of “multi-decree”
Paxos, in Robbert van
Renesse's

“Paxos made
moderately complex”)

 Part of EventML for Paxos

Part of the Inductive Logical Form (ILF) for Paxos

The ILF is readable, and usually more informative than the EventML or
pseudo-code. It is used automatically by our tactics to prove global
properties of the algorithm.

Part of the Inductive Logical Form (ILF) for Paxos

The ILF is readable, and usually more informative than the EventML or
pseudo-code. It is used automatically by our tactics to prove global
properties of the algorithm.

Part of the Inductive Logical Form (ILF) for Paxos

The ILF is readable, and usually more informative than the EventML or
pseudo-code. It is used automatically by our tactics to prove global
properties of the algorithm.

Part of the Inductive Logical Form (ILF) for Paxos

The ILF is readable, and usually more informative than the EventML or
pseudo-code. It is used automatically by our tactics to prove global
properties of the algorithm.

Summary/ Next steps

● Synthesis of complex distributed
algorithms from proofs works

● Abstractions, automation essential

● Next steps
● More variants of more protocols
● Reason about capabilities/tags so that we can

synthesize code that uses more CRASH
technology

	CRASH
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

