MAE 4700/5700: ANSYS Section Fridays 1:25-2:15 pm

Rajesh Bhaskaran Cornell University

Co-ordinates

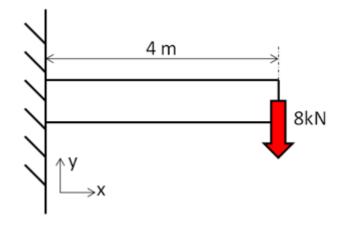
- Dr. Rajesh Bhaskaran
 Swanson Director of Engineering Simulation
 Mechanical & Aerospace Engineering
- E-mail: <u>bhaskaran@cornell.edu</u>
- Office: 102 Rhodes Hall
- Office hours in the Swanson Lab (163 Rhodes)
 - TBA

Computer Labs with ANSYS

- CIT public labs
 - B7 Upson
 - 318 Phillips
 - ACCEL lab in Carpenter Hall
- 471 Rhodes
- Swanson Lab (163 Rhodes)
 - 16 workstations
 - 2 quad-core processors
 - 30 GB of RAM

ANSYS Software

- Leading commercial FEA software
- Founded by Cornell alum Dr. John Swanson in 1970
- Can solve structural, thermal, flow and electro-magnetic problems
- Student version available for \$25/year
 - Instructions to be provided by e-mail
 - Version 13
 - Labs are using Version 14. V14 files cannot be read into V13.



Friday Sections

- Purpose:
 - Learn to apply FEA to engineering problems using ANSYS
 - Prepare for project
- Plan:
 - Initially solve some HW problems using ANSYS
 - Compare MATLAB and ANSYS solutions
 - Move on to more complex problems.

ANSYS Exercise 1 Cantilever Beam

Truss elements are available in ANSYS

 Need to use scripting (advanced feature)
 Not used widely in practice

ANSYS Exercise 1 Cantilever Beam

• Beams will appear in HW3

- One problem will be on ANSYS solution of cantilever beam
 - Save work from this section for submission with HW3

Cantilever Beam: Degrees of Freedom

• Consider 2-element mesh

$$u_{y_1} = 0 \qquad u_{y_2} \qquad u_{y_3} \\ \theta_{z_1} = 0 \qquad \theta_{z_2} \qquad \theta_{z_3}$$

Reaction force at node 1 Reaction moment at node 1

SECTION MEETING #2 9/6/2012


Cantilever Beam

• First ANSYS exercise

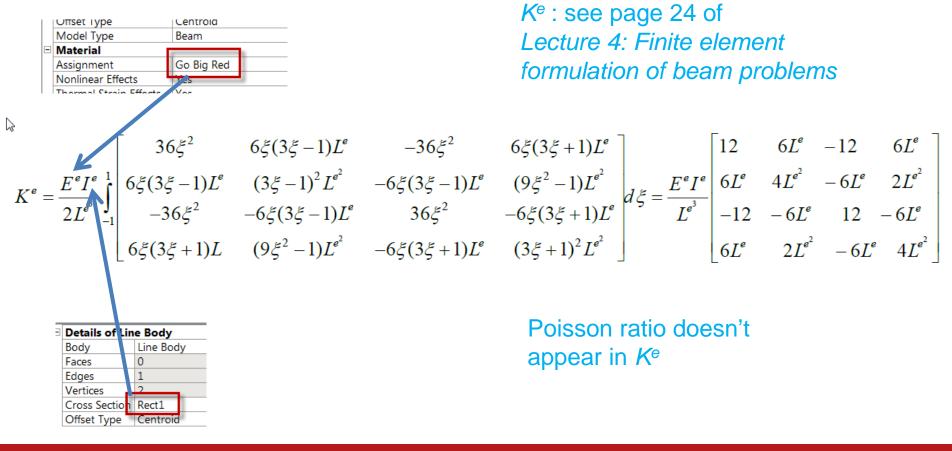
Cornell University

- Can do trusses but need to use scripting (advanced functionality)
- Pin-jointed trusses rarely occur in practice
- ANSYS beam problem will appear in HW3

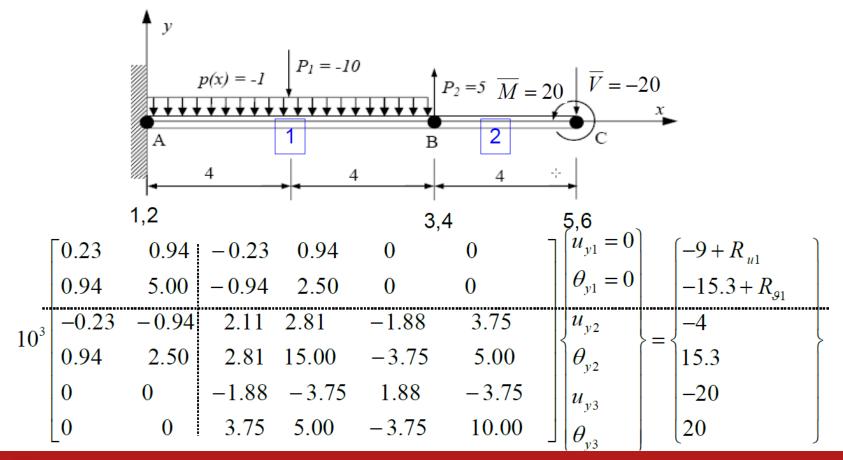
Problem 3 – Analysis of a two-span beam (MatLab and Ansys)

Cantilever Beam: Degrees of Freedom

• Consider 2-element mesh

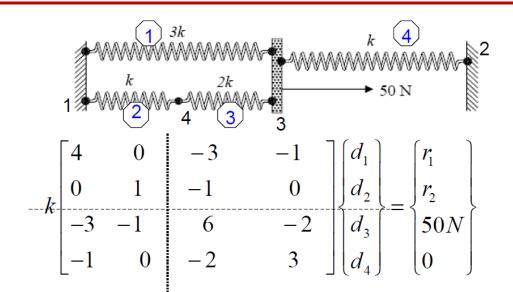

$$u_{y_1} = 0 \qquad u_{y_2} \qquad u_{y_3} \\ \theta_{z_1} = 0 \qquad \theta_{z_2} \qquad \theta_{z_3}$$

Reaction force at node 1 Reaction moment at node 1



Cantilever Beam Beam element stiffness matrix

Solve Step Beam Lecture, Page 43



Bending Moment and Shear Force

- General FEM Procedure (see next slide):
 - 1. Calculate unknown degrees of freedom
 - 2. Calculate reactions at known degrees of freedom (for instance, at fixed nodes)
- ANSYS then uses reactions to calculate bending moment and shear force:
 - More accurate than differentiating $M^1 = EI \frac{d^2 u_y^1}{dx^2}$

Calculation of Reactions

See Lecture 2: Direct approach, page 32

We partition and apply BCs: $d_1 = d_2 = 0$

$$k \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix} \begin{cases} d_3 \\ d_4 \end{cases} = \begin{cases} 50N \\ 0 \end{cases} \Longrightarrow \begin{cases} d_3 \\ d_4 \end{cases} = \frac{1}{k} \begin{cases} 10.7143 \\ 7.1429 \end{cases} N$$

