Rose pp. 143-147

Anatomy/physiology

- Four segments of the distal nephron:
 - Distal tubule
 - Connecting segment
 - o Cortical connecting tubule
 - Medullary collecting tubule
- Functions of the distal nephron:
 - Maximal [urine]
 - o K+ secretion
 - Maximal acidification
 - Na⁺⁺ conservation

Sodium and water balance-Distal tubule

- Resorbs 5% of filtered NaCl
- Mechanisms:
 - o Na+-Cl- cotransporter
 - Na+ moves down [gradient]
 - Driven by Na+-K+-ATPase
 - Na+-H+ exchanger/Cl--HCO₃- exchanger
 - H+/HCO₃- move down [gradient]
- Glomerulotubular balance
 - Distal tubular Na+ reabsorption will increase proportionately to an increase in delivery

Questions

- 1. Conservation of the concentration gradient in the distal nephron is due to:
 - a. Passive paracellular transport of calcium down its concentration gradient
 - b. Tight junctions between the cells
 - c. Na-H+ cotransporters at the luminal membrane
 - d. Concentration gradient does not exist in the distal nephron
- 2. Energy for the Na-H and Cl-HCO3 exchangers is provided by
 - a. Na-K ATPase pump on the basolateral membrane
 - b. Tubuloglomerular feedback
 - c. Carbonic acid movement across the apical membrane
 - i. Intracellular carbon dioxide and water combine to form H+ and HCO3- which secrete into the lumen and exchange for Na+ and Cl-. Then the H and HCO3 combine in the lumen to form carbonic acid which is lipid-soluble and moves into the cell to recycle
 - d. The NaCl cotransporter on the apical membrane