Burton David Rose pp 207-238

Catecholamines

- Increased in states of effective circulating volume depletion
- Actions:
 - Reduction in renal blood flow → preservation of coronary and cerebral perfusion
 - Increased Na+ reabsorption
 - Stimulation of proximal and loop Na+ transport
 - Alteration in peritubular hemodynamics due to increased arteriolar resistance
 - Activation of RAAS by β₁ receptor activation
 - Increased Na+reabsorption counteracts affects of pressure naturiesis

Dopamine

- Synthesized in the proximal tububle
- Actions:
 - Low concentrations: renal vasodilation at afferent/efferent arterioles and interlobular arteries
 - Increased renal blood flow with no change in GFR
 - High concentrations: vasoconstriction
 - Reduced proximal Na+ reabsorption
 - Reduced Na+ entry via the Na+-H+ exchanger by formation of cAMP
 - Reduction in the activity of the Na+-K+-ATPase pump

Kinins

- Formed in distal tubule/connecting segment
- Actions:
 - Minimize renal ischemia by vasodilation
 - Decrease inner medullary Na+ reabsorption
 - Impair ADH mediated local water reabsorption

Erythropoietin

- Produced by fibroblasts in the deep cortex and outer medulla
 +/- superficial cortex
- Stimulated by reduced oxygen delivery:
 - Sensed by a special sort of heme protein
 - Oxyhemoglobin downregulates EPO gene transcription
 - Deoxyhemoglobin allows EPO gene transcription
 - Actions: stimulate red blood cell production

Endothelin

- Found in most kidney cell types
- Formed from Big ET by endothelin converting enzymes
- Bind to two different receptors: ETA and ETB
- Actions:
 - Regulation of vascular resistance
 - ETA is a strong vasoconstrictor
 - ETB appears to mediate vasodilation
 - Stimulated by prolonged decrease in renal blood flow
 - Modulation of fluid and electrolyte transport
 - Inhibition of tubular sodium and water reabsorption
 - Suppress Na-K-ATPase and Na-H antiporter
 - Via stimulation of prostaglandin E₂ production
 - Antagonize ADH/aldosterone in cortical collecting tubule
 - Via reduction in cAMP accumulation
 - Involved in long-term regulation of fluids/e-lytes
 - Regulation of cell proliferation and extracellular matrix accumulation
 - Increases:
 - Release of tissue inhibitor metalloproteinase
 - Release of cytokines stimulating matrix accumulation
 - Production of renal cell fibronectin and collagen

Nitric Oxide

- Basics
 - Nitric oxide synthase adds guanidine nitrogen to molecular oxygen→NO and water
 - Three isoforms of nitric oxide synthase:
 - Neuronal NOS (nNOS)
 - Endothelial NOS (eNOS)
 - Inducible NOS (iNOS)
 - eNOS and nNOS are constitutively active
 - iNOS induced by inflammatory cytokines
- Actions:
 - Paracrine mediation of many signaling cascades
 - Activation of guanylate cycline→synthesis of cGMP
 - Formation of S-nitrosothiols from thiol groups
 - Formation of peroxynitrite from superoxide radical
 - [Physiologic] function as a tonic vasodilator
 - [Supraphysiologic] result in toxicities
 - Regulation of renal hemodynamics
 - Maintains arteriolar dilation at the level of glomerulus and mesangial cell tone
 - Maintenance of systemic blood pressure
 - Modulation of fluid and electrolyte transport
 - Increases urinary sodium excretion
 - Inhibition of Na+ entry in cortical collecting duct, Na-H exchange in proximal tubule and Na-K-ATPase in many segments
 - Impairs response to ADH in collecting tubule→increased water excretion
 - nNOS in macula densa blunts tubuloglomerular feedback response
 - Regulation of damage in response to injury
 - Mediated by cytokines→iNOS activity in tubular epithelial cells and mesangium
 - Damage by:
 - Suppression of eNOS→vasoconstriction enhances injury
 - Formation of peroxynitrite from NO and superoxide radical

Burton David Rose pp 207-238

- 1. Renal artery vasodilation is achieved by:
 - a. Dopamine, low dose
 - b. Nitric oxide
 - c. Endothelin B
 - d. Bradykinin
- 2. Renal artery vasoconstriction is achieved by:
 - a. Catecholamines
 - b. High concentration dopamine
 - c. Endothelin A
- 3. Explain why, physiologically, the kidney is a sensible location for erythropoietin production
 - a. Kidney is able to dissociate changes in blood flow from changes in oxygenation → Kidney oxygen utilization is predominantly for active transport of sodium, which when blood flow is reduced, there is a decrease in GFR and decrease in sodium reabsorption which means that the oxygen utilization is relatively static. This prevents an inappropriate EPO production
- 4. Dopamine was at one point considered as a therapeutic for oliguria/anuria due to
 - a. Selective efferent arteriolar vasoconstriction→increased GFR
 - b. Inhibition of sodium reabsorption at Na-H exchanger leading to a naturiesis
 - i. Also inhibits Na-K-ATPase
 - ii. Also causes arteriolar vasodilation (afferent, efferent and interlobular)
 - c. Peripheral vasoconstriction leading to increased perfusion to the kidneys
 - d. Production of prostaglandin E2 causing selective afferent arteriolar dilation and increasing GFR
- Match each with each other: Hypokalemia/metabolic alkalosis SIADH Hypercalcemia/low phosphate b. DΙ Hyposthenuria/isosthenuria, hypo/euvolemia Hyperaldosteronism Hypocalcemia/hypophosphatemia Hypoaldosteronism Hyponatremia, hypoosmolality, hyper/euvolemia Hypersecretion of PTH Hypercalciruia, hypercalcemia, no effect on phosphorus Calcitriol deficiency Hyperkalemia, metabolic acidosis Vitamin D excess