2D Steady Heat Conduction in a **Block: Problem Overview**

Find temperature and heat flux distribution

- Dimensionless temperature: $\theta \equiv \frac{T - T_{\infty}}{T_o - T_{\infty}}$
- *T_o*: Constant temperature of bottom face
- T_{∞} : Far temperature of fluid bathing the right face
- $\frac{H}{W} = 2$, $Bi = h \frac{W}{k} = 5$

Mathematical Model: Boundary Value Problem

Non-dimensional BVP

Dimensional BVP in ANSYS

Pre-Analysis

- Mathematical model
- Numerical solution strategy
- Hand-calculations of expected results/trends

Numerical Solution Strategy: Finite-Element Method

- Divide domain into elements and nodes
- Reduce the problem to determining temperature values only at nodes (T_i)
 - Use polynomial interpolation to relate temperature within an element to T'_is

How to Reduce the Error in the Finite Element Solution?

- FE solution tends to the exact solution as polynomial approximation gets better
- Two ways to do this
 - Increase no. of elements
 - Increase order of polynomial within each element
 - Use more nodes per element

Refined Mesh

Hand Calculations: Predict Expected Results/Trends

· What is the direction of the

boundaries for Bi =
$$\frac{hw}{k}$$
 = 5?

Hand Calculations: Analytical Solution (courtesy Prof. Michel Louge)

$$\theta = \sum_{j=1}^{\infty} f_j \theta_j(x, y),$$

$$f_j = \frac{2\sin\lambda_j}{\lambda_j[1 + \exp(2\lambda_j H^*)]} / \left[1 + \frac{\text{Bi}}{\text{Bi}^2 + \lambda_j^2}\right],$$

The eigensolutions are

$$\theta_j = \cos(\lambda_j x^*) \exp(\lambda_j y^*) \{1 + \exp[2\lambda_j (H^* - y^*)]\},$$

with eigenvalues satisfying

$$\lambda_j \tan \lambda_j = \text{Bi}.$$

Verification & Validation

- Verification: Did I solve the model right?
 - Check consistency with mathematical model, level of numerical errors, comparison with hand calcs
- · Validation: Did I solve the right model?
 - Check against experimental data

Verification Steps

- 1. Sanity checks
- 2. Does the FEA solution honor the boundary conditions in the mathematical model?
- 3. Does the FEA solution honor the physical principles in the mathematical model?
 - Check energy conservation in the domain
- 4. Is the discretization error acceptable?
 - Perform mesh refinement studies
- 5. Does the FEA solution match the analytical solution?