Effect of Commonly Administered Medical Drugs on the Death Rate of Bifidobacterium Microbiota

Antonio Powell

North Carolina A&T State University, Food Microbiology and Biotechnology Laboratory Greensboro, NC

Abstract

Probiotics are live organisms that are primarily used to improve gastrointestinal disorder such as constipation, lactose intolerance and to inhibit the excessive proliferation of pathogenic intestinal bacteria. Age-related changes in the gut microbiota appear to influence a reduction in the numbers of beneficial bacteria such as lactobacilli and bifidobacteria, which leads to increases in numbers of potentially harmful bacteria species. Most elderly person uses one form of prescription medication such as Hydrochlorothiazide and metropol to name a few. To determine the effects of medication on the population of Bifidobacterium longum, one tablet of metropol was dissolved in 9ml of freshly prepared MR’s, vortex and strain of Bifidobacterium longum was added. Samples were incubated at 37°C with constant shaking for 120 minutes. Bacteria populations were determined on MR agar plate at 37° for 48hours. The aim of this study is to determine the effects of this medication on the growth of Bifidobacterium strains. The result shows a decrease in the growth of Bifidobacterium strains by 3log_{10} when treated with Hydrochlorothiazide and metropol.

Method/Procedure

one tablet of metropol (25mg) was crushed
- Emptied into a sterile test tube
- 100ul of methanol was added. Sample was constantly vortexed
- Nine milliliter of freshly prepared sterilized MRS broth was added to the tube with the medication
- The mixture was vortex till all particles of the tablet dissolved
- Overnight cultures of each strain was serially diluted in 0.1% peptone water
- Add 200ul of serially diluted strain of Bifidobacterium longum into the tube containing the medication. Vortex constantly
- Exposed the strain to the medication for 0 time and 2hr respectively in MRS broth.
- Incubate the MRS broth with the sample for a constant shaking at incubator
- Plate 100ul of the sample at the end of 2hr exposure
- Incubate at 370°C for 48 hours
- Determine the colony forming unit of the Bifidobacterium species

Introduction

According to the U.S Bureau of census, population Division latest report, the growth of the elderly population (65 and over) is expected to accelerate rapidly. In the North Carolina the increasing expectation will be from 12.5 percent in 1995 to 21.5 percent in 2025(U.S Bureau of census, 2011). The increase in the elderly population will subsequently increase the health care costs significantly in the North Carolina and throughout the nation (Baker et al. 2009). Age could have major effects on human intestinal microbiota.(Zhao, Xu, Ibrahim Jang et al 2011), which could impact the whole body system. A lifestyle modification including changing in nutritional habits has been shown to improve health condition of the elderly with Diabetes. (Crandall, Fowler et al 2006). Bacterial species play an important role in host health and help in combating through their involvement in digestion, pathogenesis, and immunity improvement.(Tihonen et al., 2010). Probiotics such as Bifidobacteria and lactic acid bacteria can prevent and treat some infectious diseases, correcting inflammatory condition in elderly and positively modify the gut microbial population in elderly. (Zhang, et al. 2009). There are several concerns regarding the inappropriate use of antibiotics, poor compliance and increasing rates of disease of disease related to antibiotics use. More than 75% of aged 65 or older takes one prescription medication which might have adverse effects on their body (Linda, 2005). The objective of the work is to investigate exposure effect of commonly administered medical drugs of elderly persons over 65 years old on the death rate of Bifidobacterium microbiota.

Results

<p>| Table 1: Effect of commonly administered medications on the population of Bifidobacterium longum ATCC 15708 |
|--|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>Controls (log cfu/ml)</th>
<th>Metropol (log cfu/ml)</th>
<th>Hydrochlorothiazide (log cfu/ml)</th>
<th>A.C (log cfu/ml)</th>
<th>A.C (log cfu/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10.01</td>
<td>6.57</td>
<td>6.69</td>
<td>3.44</td>
<td>3.32</td>
</tr>
<tr>
<td>120</td>
<td>10.02</td>
<td>6.66</td>
<td>6.65</td>
<td>3.36</td>
<td>3.35</td>
</tr>
</tbody>
</table>

Conclusion

• The population of Bifidobacterium longum was reduced by 3log 10 cfu/ml when exposed with both hydrochlorothiazide and metropol.
• The difference between exposure time of 0-120min does not have effect on the population of bifidobacterium.
• Further works need to be done to determine the effect of hydrochlorothiazide and metropol on morphology changes during exposure to Bifidobacterium longum

Acknowledgements

The experience and fun I’ve had at the RAP Program is one that I will always cherish and remember. I would like to express the thanks I have for the Food Scientists at North Carolina A&T State University School of Agriculture and Environmental Sciences, Dr. Salam Ibrahim and his team of skilled professionals, Ms. Ratin Gyawali, Ms. Marcella Chan, Ms. Sanae Hayek, Ms. Chiyukie Fasanya, and Mrs. Bernice Karlton-Senate. Special thanks to the mentor of my Project project, Mr. Temitayo-Obanla. We sincerely thank Dr. Shirley Hymon-Parker for her encouragement and support. This research is supported by the Agricultural Research Program at North Carolina A&T State University.

References

Linda L. Barrett (2005). Prescription Drug Use among Midlife and Older Americans