

FOOD SAFETY LAB / MILK QUALITY IMPROVEMENT PROGRAM
Standard Operating Procedure

Title: #2 Quality control and assembly

SOP #: Revision: 00

Revision Date: If changed

Effective Date: Date Upload

Author: Sophia Harrand, Jingqiu Liao, Jasna Kovac Approved by: Martin Wiedmann

 Page 1 of 23

#2 Quality control and assembly

FILE NAME: Quality_control_and_assembly.doc

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 2 of 23

TABLE OF CONTENTS

1. INTRODUCTION 3

Purpose

Scope

Definitions

Safety

2. MATERIALS 4

3. PROCEDURE 5

4. TROUBLESHOOTING 6

5. REFERENCES 7

6. APPENDIX

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 3 of 23

SECTION 1 INTRODUCTION

This is protocol #2 out of 4 protocols for whole genome sequencing:

 #1 Library preparation for whole genome sequencing

 #2 Quality control and assembly

 #3 Short read submission (SRA)

 #4 Assembly submission to NCBI WGS

1.1 Purpose

The purpose of this document is to set forth standard guidelines for analysis (converting

SRR experiments to fastq.gz files), quality control of short reads, short read trimming,

short read assembly and quality control, and storage of whole genome sequencing data.

This will ultimately lead to easy accession and allow for reproducible downstream

analyses.

1.2 Scope

This SOP applies to the Food Safety Lab and the Milk Quality Improvement Program.

1.3 Definitions

SRA: The Sequence Read Archive (SRA) database is part of the NCBI database and

stores sequence and quality data from NextGen sequencing platforms in aligned or

unaligned formats.

Fastq.gz: These files contain the compressed (gzip) short sequence reads with quality

scores, sequencing platform and index information.

Contigs: Contiguous sequence of DNA.

SNP: Single-nucleotide polymorphism, variable position in the sequence alignment.

Fasta: Text based DNA sequence format, which contains a greater than sign (>) followed

by the sequence descriptor in the first line, and DNA sequence in the following line.

Shell: Command-line interface for access to the operating system’s services. Also known

as “terminal” or “bash”.

1.4 Safety

This protocol is computer-based only.

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 4 of 23

SECTION 2 MATERIALS

 PC or Mac personal computer

 Access to Zeus (Food Safety Lab Linux PC, also known as “Zeus”) Please talk to

David Kent to help you set up your personal computer to remotely access the Linux PC.

 PC: Download PuTTY http://www.putty.org/, WinSCP http://winscp.net/eng/index.php

and Notepad ++ https://notepad-plus-plus.org/

 Mac: Mac users can access Linux computer remotely through ssh.

 If you wish to be added the FSL BioHPC account to use BioHPC storage an

computational services, please discuss with Martin Wiedmann and David Kent prior to

requesting the account through the following website:

https://cbsu.tc.cornell.edu/lab/lab.aspx. Refer to the BioHPC SOP for further details.

 Programs needed for computational analyses described in this SOP (available on Linux

PC):

 SRA Toolkit

 FastQC

 Trimmomatic

 SPAdes

 BBMap

 Samtools

 QUAST

 RaxML

 kSNP

http://www.putty.org/
http://winscp.net/eng/index.php
https://notepad-plus-plus.org/
https://cbsu.tc.cornell.edu/lab/lab.aspx

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 5 of 23

SECTION 3 PROCEDURES

3.1. Linux shell commands

Note: Pay attention to spacing and writing, including capitalize letters etc.

cd To navigate into a folder e.g., cd /data/intermediate/runXY

ls List files; shows you the content of a folder

ls –l List files with detailed information; shows the files in a folder including their

sizes, owners (individual owner and group owner), and reading, writing and

executing permissions

ls | grep Shows only what you request in search criteria (don’t scroll in linux shell) e.g., ls

| grep R9 (to search for files that include R9 e.g. FSL R9-5237)

chown –R Change the right for a directory e.g., chown –R :fsl (this will change the group

permission to fsl group)

cd .. To move one directory (folder) up (e.g., from /data/intermediate to /data)

rm To remove (delete) a file. If you wish to delete several files with the same ending

use *

e.g., *.bam

rm –r To remove a folder

zeusctl list Shows programs that are enabled in your shell environment. Prior to the first time

you are using a program remotely from your shell, you should enable it.

zeusctl enable Adds full path to the program into your shell environment e.g., zeusctl enable

programXY (once enabled on your personal computer you will not have to do this

again). This will allow you to run a program without providing a full path to the

program. Programs you will need to enable to perform the analyses described in

this SOP:

- bbmap

- kraken

- ksnp

- ksnp3

- spade

- samtools

- spades

- spades

- trimmomatic

Important note: Check the exact names and versions of the programs that need to

be enabled on Zeus PC in /programs. Some programs are being regularly updated

(e.g., SPAdes), therefore the names of the programs may change.

vim To read a script in the shell text editor (e.g., vim scriptXY.sh)

When the file (script) is opened in the text editor, use the following commands to

edit, save and exit:

 I – Insert

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 6 of 23

Esc (on the keyboard) – exit the Insert (or other) mode

 :q! – quit (without saving any changes)

 :wq – write and quit (saves what you changed before exiting the script)

:%s/what needs to be replaced/what you want to replace it with/g (g stands

for “global” and will replace all searched strings in a file). It is

recommended to save a copy of a file prior to modifying it, because there

is no “undo” option.

cp To copy a file or folder, provide path where you want to copy it to

e.g., cp scriptXY.sh /data/intermediate/folderXY

scp Secure copy – used for copying files from one device to another (e.g., from Linux

PC to your PC).

mv To move a file, provide the path where you want to move it to (e.g., mv file.txt

/data/intermediate)

mkdir Will create a new folder in the directory you are currently in (e.g., mkdir

newfolderXY)

tmux Terminal multiplexer. It enables a number of terminals (shell windows), each

running a separate program, to be created, accessed, and controlled from a single

screen. tmux may be detached from a screen and continue running in the

background, then later reattached. Run programs/script in tmux mode to prevent

the process from breaking (e.g., due to computer going into sleep mode, broken

internet connection).

tmux attach If a remote connection though a shell was interrupted, you can resume an active

shell by using tmux attach command

exit After a run is finished you should exit a tmux mode by typing in exit.

sh To run a shell (sh) script scriptXY.sh /data/intermediate/folder XY (Run script

from a folder where it is located and provide the path to the files that will be used

by a program that is called in the script). Alternatively, if you are running a

python script, you replace sh with python. This is changed depending on the

computer language a script is written in.

. Current directory. You can use a dot instead of providing the full path to the

current directory (e.g., when copying files), however, be careful with its use when

running programs (e.g., a current directory may change depending on the code in

the script and may change the way the script is interpreted if you do not provide

the full path).

* Using * at beginning or end for names to replace variations e.g., FSL R9* will

include all files that are named FSL R9 such as FSL R9-5252, FSL R9-5372,…

This command is particularly useful for copying files with the same suffix (e.g.,

cp *.fasta /data/intermediate/fasta_files)

pwd Print writing directory, to show you the path to the directory you are currently in.

htop Displays the CPU and memory usage. Type in q to exit the htop.

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 7 of 23

3.2. Download raw sequencing data

Note: Make sure all programs that you call by running a script are enabled on your personal

computer (zeusctl enable).

To be able to remotely connect to Linux PC, you need to contact David Kent to set up an account

for you.

3.2.1. Download raw sequencing data (when sequencing at the BRC)

(1) BRC will provide a shell script to download fastq sequences (download.sh)

Windows user: Open PuTTY and connect to Zeus; Mac user: Open Terminal and

type in ssh yournetID@zeus.foodscience.cornell.edu to remotely log in to Linux PC

(2) Use mkdir Command to create a new folder in /data/intermediate, naming

convention: miseq/hiseq_Ordernumber/date

(3) Open WinSCP (Windows user) to transfer the download.sh script from home

computer to the newly created folder on Linux PC. Mac users can transfer files

through the Terminal by navigating to the folder in which the script is saved and

typing in: scp download.sh

yournetID@zeus.foodscience.cornell.edu:/data/intermediate/miseq/hiseq_Ordernumb

er/date (scp <file_name> <path_to_file_destination>)

(4) Execute sh download.sh to download fastq.gz sequences from BRC

3.2.2. Download from BaseSpace (when sequencing at the VetSchool/AHDC)

(1) Install BaseSpace downloader (https://basespace.illumina.com/dashboard)

(2) Download fastq.gz sequences from a run. This will create a folder for each isolate

with a pair of sequences forward and reverse files.

(3) Transfer sequences to Linux PC. Create a new folder in /data/intermediate, naming

convention: miseq/hiseq_Ordernumber/date

3.2.3. Download SRA files from NCBI

(1) Open PuTTY and connect to Zeus (mac user: Open Terminal and run ssh zeus to

remotely log in Zeus)

(2) Navigate to the folder you want to download SRA into (use cd command)

mailto:yournetID@zeus.foodscience.cornell.edu:/data/intermediate/miseq/hiseq_Ordernumber/date
mailto:yournetID@zeus.foodscience.cornell.edu:/data/intermediate/miseq/hiseq_Ordernumber/date
https://basespace.illumina.com/dashboard

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 8 of 23

(3) wget http://sra-download.ncbi.nlm.nih.gov/srapub/SRR1951985, replace the SRR

number in the link with the SRR number for the file you would like to download. Use

a script when downloading a batch.

3.3. Sequence assembly and quality control

(1) Open PuTTY and navigate to the folder where sequences are saved (cd

/data/intermediate/..) (For mac user: Open Terminal and run ssh to Linux PC)

(2) Run Trimmomatic from folder with trimmomatic.sh script (Appendix A) and fastq

files to trim the adapters. The trimmomatic.sh script uses adapters for Nextera XT

library (NexteraPE-PE.fa). Make sure you change the adapter sequence file in the

script if you used a different library. The program will output the trimmed reads (files

ending with trimmed.fastq.gz) and trimmed adapters (trimmedS.fastq.gz). Only

trimmedP.fastq.gz files are used in further steps.

Run as follows:

sh trimmomatic.sh <path to fastq.gz files>

Note: This step is needed for raw sequences downloaded from BRC; but is not

necessary for sequences from MiSeq platform from VetSchool/AHDC, as the MiSeq

software automatically performs trimming on the machine.

(3) Run FastQC from folder with fastqc script (Appendix B) and fastq files to check for

quality of fastq files. Several output files will be given; among them will be html

files, which need to be inspected in a web browser.

Run as follows:

Mkdir fastqc_out

sh fastqc.sh <path to the files> <path to the fastqc_out> fastq.gz

(4) Open WinSCP and copy html files to home computer (Mac users use scp command in

Terminal). Open files and control for quality:

This document provides detailed instruction on how to interpret the output of

FastQC: https://biof-edu.colorado.edu/videos/dowell-short-read-class/day-4/fastqc-

manual

(5) Assemble short reads de novo using SPAdes (Appendix C). Make sure your fastq.gz

files and spadesloop.sh script are in the same folder before running it.

Run as follows:

sh spadesloop.sh <path to the fastq.gz files>

http://sra-download.ncbi.nlm.nih.gov/srapub/SRR1951985
https://biof-edu.colorado.edu/videos/dowell-short-read-class/day-4/fastqc-manual
https://biof-edu.colorado.edu/videos/dowell-short-read-class/day-4/fastqc-manual

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 9 of 23

(6) Control the quality of assemblies using QUAST by running quast.sh (Appendix D).

Note that larger genomes, as well as more “complicated” (e.g., AT rich) genomes

have more contigs.

Run as follows:

sh quast.sh <path to contigs files>

(7) Run a python script to combine the files for each sequence into one cvs file. Copy

python script into quast_reports folder and run combine_reports.py and provide the

path (Appendix F).

Run as follows:

Python combine_reports.py

Note: This will combine QUAST results for all isolates in a single file, but you will

manually need to add a column with the descriptors (i.e., first column from individual

files).

(8) Access the csv file through WinSCP (FileZilla for mac user) and copy to your home

computer. Open quast_and coverage_TEMPLATE file from network drive

(BoorWiedmannLab > WGS > quast_and coverage_TEMPLATE). In your newly

created csv file insert a first new column and copy paste the content of the first

column of the quast_and_coverage_TEMPLATE file. Save your newly created cvs as

excel format and save on your computer. This file will be part of the report that you

save on the network drive (refer to 3.3. Report). Quality indicators are:

a. N50 value (less than 50 000 is an indicator for poor quality; less than 20,000

is considered to be unacceptable).

b. Number of contigs (A very large number is an indicator for poor quality; 30

contigs per Mbp would be considered good).

c. Total length (e.g., the organism’s expected genome size is 5Mb, but total

length of assembled reads is 9Mb - that indicates contamination, and needs to

be addressed more closely).

(9) Run average coverage script, which will align reads in fastq.gz files to assembled

contig files and output a text file: average_coverage.txt. Make sure you run

average_coverage.sh from a location where the script and both file formats are

located, and provide full path to the directory with these input files (Appendix E).

Text file can be transferred to home computer using WinSCP (FileZilla for mac user)

and opened.

Run as follows:

sh average_coverage.sh <path to input contigs.fasta and fastq.gz files>

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 10 of 23

(10) Open the file WGS_Submission_ordernumber_mmddyyyy_TEMPLATE from

network drive (BoorWiedmannLab > WGS >

WGS_Submission_ordernumber_mmddyyyy_TEMPLATE) and save on your

computer. Add all the requested information using your previously created

quast_and_coverage file, as well as Nanodrop and Qubit results.

(11) Remove contigs that are smaller than 200bp by running a shell script that will

loop through all contigs.fasta files and execute a python script on them. Make sure

both, the shell and remove_short_contigs.py and loop_remove_short_contigs.sh

scripts are in your contigs folder and execute shell script

loop_remove_short_contigs.sh (Appendix G and Appendix H). This will output

logng.fasta files.

Run as follows:

sh loop_remove_short_contigs.sh <path to contigs files and

remove_short_contigs.py>

(12) Create a new directory and move long.fasta files and kraken_mul-files.sh script to

the new directory (e.g., mkdir long_fasta). Make sure the path to kraken database

database is still correct, also double-check endings of long.fasta files.

Run as follows:

sh kraken_mul-files.sh <path to the long.fasta files>

Verify that the top hit organism matched the sequenced organism and add the top hit

to the WGS_Submission_ordernumber_mmddyyyy spreadsheet (you will have to

scroll through the file, longest sequence is not necessarily on the top). If you

encounter mismatches between your expected organism and organism identified by

Kraken please refer to the trouble shooting section.

(13) For Salmonella isolates run seqseroloop.sh to confirm serotypes.

Run as follows:

sh seqseroloop.sh <path to the directory with trimmed.fastq.gz> files

(14) Submit the Whole genome sequence information to the Food Microbe Tracker

(FMT; http://www.foodmicrobetracker.com) by filling in the

FSM_submission_form.xclx, which is available on the BoorWiedmannLab > WGS.

The submission spreadsheet needs to be sent to Qi Sun (qs24@cornell.edu; cc to

jk2739@cornell.edu and martin.wiedmann@cornell.edu), who will batch upload the

metadata to the FMT database. The email needs to provide following information:

 Are listed isolates already deposited in the FMT and if not should the new

FSL records be created;

mailto:qs24@cornell.edu
mailto:jk2739@cornell.edu

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 11 of 23

 Is there any existing WGS information for the submitted isolates in the FMT

and if so, should these data be overwritten;

Whether you want to be notified in case there are any conflicts or any

data could be overwritten.

(15) Submit the sequences to Sequence Read Archive (SRA; NCBI). See #3 Short Read

Submission (SRA) SOP for detailed instructions. Make sure you update the FMT

records with BioProject and BioSample numbers after submitting sequences to SRA.

(15) Submit the assembled genomes to Whole Genome Shotgun database (WGS;

NCBI). See #4 Assembly submission to NCBI SOP for detailed instructions.

3.4. Whole genome sequence quality control report

(1) Create a new folder on the network drive: BoorWiedmannLab > WGS >

Order_#Ordernumber_mmddyyyy.

(2) Save the completed WGS_Submission_ordernumber_mmddyyyy file and the

quast_and_coverage file.

(3) If a sequencing run was carried out at the Vetschool/AHDC, save the MiSeq

Appendix File with library normalization data in the same folder. The

Appendix_file_TEMPLATE.xclx is available on the BoorWiedmannLab > WGS.

(4) Report any unusual observation within the WGS_Submission file and if possible

provide explanation in trouble shooting tab

3.5. Storage of sequence data on BioHPC

The sequence data are normally stored on the Linux PC while being analyzed. Once the data is

submitted to the SRA and/or WGS and the including these sequences is published, all the data

can be deleted. You are strongly encouraged to make tree SNP and tree files publicly available in

supplemental materials of scientific papers. Since the Linux PC has limited storage capacity,

there is a possibility of temporary storage (i.e., during the process of the sequence analysis, prior

to publication) of the data on BioHPC (https://cbsu.tc.cornell.edu/lab/lab.aspx).

If you would like to use the BioHPC computational and/or storage resources, please consult with

Martin Wiedmann, Jasna Kovac or David Kent. David Kent is an administrator of the FLS

BioHPC account and will need to add you into the group to be able to use the resources. Prior to

that you will need to create your own BioHPC account as detailed below.

3.5.1. BioHPC set up account

(1) Create a User account https://cbsu.tc.cornell.edu/NewUserRequest.aspx.

https://cbsu.tc.cornell.edu/lab/lab.aspx
https://cbsu.tc.cornell.edu/NewUserRequest.aspx

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 12 of 23

(2) Lab ID is your Cornell ID.

(3) David Kent has to add your ID to the FSL BioHPC group to have access to the

storage machine (@cbsulogin.tc.cornell.edu) or computational machines (general

memory, medium memory or large memory).

(4) Login to the BioHPC through the PuTTY (Windows users: cbsulogin.tc.cornell.edu)

or through the ssh (Mac user: ssh netID@cbsulogin.tc.cornell.edu).

(5) Access sequence data: cd /home/dk657_0001/WGS

Note: Never perform computational work on the BioHPC login (storage) machine; login machine

is intended only for data storage, Never modify files stored on the BioHPC login machine;

transfer data to Zeus if you would like to run analyses on the files. If you need to use BioHPC

computational resources, you need to reserve a computational machine on the following website:

https://cbsu.tc.cornell.edu//lab/labres.aspx

There is an option to reserve general memory machine (8 cores, 16GB RAM), medium memory

(24 cores, 128GB RAM), large memory machine (64 cores, 512GB RAM). Usually medium

memory machine will suffice for our computational needs.

3.4.2. Transfer data from BioHPC to Linux PC or personal computer

(1) Log in to Linux PC with PuTTY (Windows users) or through Terminal (Mac users).

In case you are transferring files to your personal computer, there is no need to

connect remotely to Linux PC.

(2) Create a new folder or navigate into the folder you would like to transfer the data in

using the shell.

(3) Open another shell window and use your NetID to remotely log into BioHPC login

(storage) machine (ssh netID@cbsulogin.tc.cornell.edu). To transfer the files, you

need to provide the path to the files on the BioHPC, followed by the path to the

destination to which you would like to transfer the files:

scp –r netID@cbsulogin.tc.cornell.edu:/home/dk657_0001/WGS/file_or_directory

<path to the destination directory>

3.4.3. Transfer data from Linux PC or personal computer to BioHPC

To transfer files to BioHPC, follow the procedure (1) – (2) from 3.4.2, and modify the

command from the (3):

https://cbsu.tc.cornell.edu/lab/labres.aspx
mailto:netID@cbsulogin.tc.cornell.edu

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 13 of 23

scp -r <path to the file_or_directory>

netID@cbsulogin.tc.cornell.edu:/home/dk657_0001/WGS/file_or_directory

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 14 of 23

SECTION 4 TROUBLESHOOTING

Script does not run:

If the script does not run properly open the script (vim) and check the following:

a. Make sure the file names in the script are correct and match the files in the

folder. Especially endings such as ., _, _1, R1 (e.g., fastq.gz files will

sometimes have _1.fastq.gz, other times _R1.fastq.gz indicating forward

sequence).

b. Make sure the programs that are called in the script are enabled in your shell

environment.

c. Make sure the path to the programs is correct and the names and versions of

the programs are correct.

d. Make sure you are providing path to the files and not only path to the

directory, when necessary.

Kraken maps contigs to unexpected organisms:

a. Sample could have been mixed up on the 96-well plate when preparing

library. Check whether more than one sample is not matching? Are two

samples switched on the plate?

b. Sample could have been contaminated with an adjacent sample. Check,

whether Kraken maps contigs to unexpected organisms also in sequences

from other samples on the plate?

c. Kraken could not map a sequence to an organism, because of the database

does not contain this organism.

d. The wrong DNA sample could have been submitted.

e. The organism is truly another genus/species than expected.

When Kraken maps a contig to an unexpected organism verify the result by blasting full or

partial contigs on NCBI BLAST website:

(1) Choose a few sequences (NODEs) from results file (you can open it with WinSCP for

Windows user or FileZilla for Mac user) and transfer to your computer.

(2) Open the transferred sequences with SeqBuilder, it will give you a list and you can

choose the number of NODE that you would like to open. Alternatively, open a file with

a regular text editor and search for the target NODE.

(3) Copy the sequence and paste into BLAST at NCBI website and BLAST against their

nucleotide database. Check for identity percentage and query coverage percentage.

(4) Document your results in your WGS_Submission report excel.

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 15 of 23

(5) If you do not get any good hits with the BLAST, try to identify an organism by extracting

and BLAST-ing the 16S rRNA sequence. Run sh rnammer.sh <path to contigs files> to

get 16s fasta sequence (Appendix J).

(6) Repeat procedure from step (2) by using BLAST on NCBI website. Document the results

in WGS_Submission excel spreadsheet.

(7) Check if sample was contaminated with adjacent samples while preparing the library by

checking the locations on 96 well plate – Plate Overview tab in Excel WGS_Submission

sheet).

(8) Go back to the glycerol stock, streak out a plate and run a 16s PCR (see SOP for

amplifying full length and internal region of 16S) and send for sequencing. This will

allow you to check if your glycerol stock is contaminated.

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 16 of 23

SECTION 5 REFERENCES

FastQC. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimmomatic. http://www.usadellab.org/cms/?page=trimmomatic

SPAdes. http://bioinf.spbau.ru/spades

QUAST. http://bioinf.spbau.ru/quast

Kraken. https://ccb.jhu.edu/software/kraken/

SECTION 6 Appendix

Appendix A - trimmomatic.sh

#!/bin/bash

#Matt Stasiewicz 7-1-14

#Use Trimmomatic to trim the raw reads

#sh trimmomatic2.sh <inpath>

#$1=/media/drive2/NYSDOH_ENV_SRA1/MJS

#O: *.trimmed[S/P].fastq.gz files in $gp

#deletes .fastq.gz

#loops through the output from fastq, the _[1/2].fastq.gz and does read trimming

#Raw read trimming with Trimmomatic, ref below. MJS comments each step of the loop with documentation from:

#http://www.usadellab.org/cms/?page=trimmomatic

#It appears Henk used the default parameters settings for all steps, adjusting file paths and names as appropriate

cd $1

echo | pwd

for f in *_R1.fastq.gz

 do

 if [-f "${f%_R1.fastq.gz}_R1.trimmedP.fastq.gz"]

 then

 echo 'skip'${f}

 continue

 fi

 echo 'trim' ${f}

 java -jar /programs/trimmomatic/trimmomatic-0.33.jar PE -threads 7 -phred33 -trimlog log $f

${f%_R1.fastq.gz}_R2.fastq.gz ${f%_R1.fastq.gz}_R1.trimmedP.fastq.gz ${f%_R1.fastq.gz}_R1.trimmedS.fastq.gz

${f%_R1.fastq.gz}_R2.trimmedP.fastq.gz ${f%_R1.fastq.gz}_R2.trimmedS.fastq.gz

ILLUMINACLIP:/programs/trimmomatic/adapters/NexteraPE-PE.fa:2:30:10 LEADING:3 TRAILING:3

SLIDINGWINDOW:4:15 MINLEN:36;

done;

#rm *_1.fastq.gz

#rm *_2.fastq.gz

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
http://bioinf.spbau.ru/spades
http://bioinf.spbau.ru/quast
https://ccb.jhu.edu/software/kraken/
http://www.usadellab.org/cms/?page=trimmomatic

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 17 of 23

Appendix B - fastqc.sh

#!/bin/bash

#Matt Stasiewicz 3-7-14

#Use fastq to perform intial qc and save results

sh <inpath> <outpath> <suff>

#$1=/media/drive2/NYSDOH_ENV_SRA1/MJS

#$2=/media/drive2/NYSDOH_ENV_SRA1/MJS/fastqc_res

#$3=[1-2].fastq.gz

#O: fastqc html in $gp/fastqc_res

cd $1

for file in *$3

 do

 cd $2

 if [-d "${file%.fastq.gz}_fastqc"]

 then

 echo 'skip'${file}

 continue

 fi

 cd $1

 echo 'fastqc 1'${file}

 /usr/bin/fastqc $file -o $2;

done

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 18 of 23

Appendix C - spadesloop.sh

#!/bin/bash

#Matt Stasiewicz 7-1-14 modified by LC Carroll 12-18-14 by S Harrand 10-12-16 by jk2739 10-26-16

#Use SPades to assemble the genome

#nohup sh spades.sh <inpath>

cd $1

#run spades

for f in *_R1_001.fastq.gz

#insert an exit if matches in dir

do

if [-d "${f%_R1_001.fastq.gz}"]

then

echo 'skip '${f}

continue

fi

echo 'assemble' ${f%_R1_001.fastq.gz}

python /programs/spades-3.6.2/bin/spades.py -k 21,33,55,77,99,127 --careful -1 $f -2

${f%_R1_001.fastq.gz}_R2_001.fastq.gz -o ${f%_R1_001.fastq.gz} -t 7 -m 20;

done

#check the created log file for any issues

#collect contigs files and rename them

mkdir contigs

for f in *_R1_001.fastq.gz

do

 cd ${f%_R1_001.fastq.gz}

 cat contigs.fasta > ${f%_R1_001.fastq.gz}_contigs.fasta

 cp ${f%_R1_001.fastq.gz}_contigs.fasta ../contigs

 cd ..;

done

mkdir scaffolds

for f in *_R1_001.fastq.gz

do

 cd ${f%_R1_001.fastq.gz}

 cat scaffolds.fasta > ${f%_R1_001.fastq.gz}_scaffolds.fasta

 cp ${f%_R1_001.fastq.gz}_scaffolds.fasta ../scaffolds

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 19 of 23

Appendix D - quast.sh

#!/bin/bash

#QUAST - assembly quality control

#jk2739

#112415

cd $1

mkdir quast_results

for f in *.fasta

do

python /programs/quast/quast.py -o ./quast_results/quast_${f%_contigs.fasta} --min-contig 1 $f

done

#collect report txt files

mkdir quast_reports

for f in *.fasta

do cd $1/quast_results/quast_${f%_contigs.fasta}

cat report.txt > ${f%_contigs.fasta}_report.txt

cp ${f%_contigs.fasta}_report.txt $1/quast_reports

done

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 20 of 23

Appendix E – average_coverage.sh

#!/bin/bash

average_coverage.sh <path to directory with contigs and reads>

written November 2, 2015 by LC Carroll

Shout out to Matt S. for giving me the bam_coverage.sh script

cd $1

BBMap to determine coverage

for f in *__contigs.fasta

do

echo "Indexing $f with BBMap..."

/programs/bbmap/bbmap.sh ref=$f

echo "Mapping reads to $f with BBMap..."

/programs/bbmap/bbmap.sh in=${f%__contigs.fasta}_R1_001.fastq.gz in2=${f%__contigs.fasta}_R2_001.fastq.gz

out=${f%__contigs.fasta}.sam

echo "SAM file created. BBMap finished."

mv ref/ ${f%__contigs.fasta}_ref/

Now let's use samtools to covert, sort, and index

echo "Converting SAM to BAM with samtools..."

/programs/samtools-1.3.1/bin/samtools view -Sb ${f%__contigs.fasta}.sam > ${f%__contigs.fasta}.bam

echo "BAM file created."

echo "Removing sam file..."

rm -r *.sam

echo "Sorting BAM file with samtools..."

/programs/samtools-1.3.1/bin/samtools sort ${f%__contigs.fasta}.bam -o ${f%__contigs.fasta}_sorted.bam

echo "Finished sorting."

echo "Indexing sorted BAM file..."

/programs/samtools-1.3.1/bin/samtools index ${f%__contigs.fasta}_sorted.bam

echo "Index complete."

echo "Using samtools depth to obtain average genome coverage..."

X=$(/programs/samtools-1.3.1/bin/samtools depth ${f%__contigs.fasta}_sorted.bam | awk '{sum+=$3} END { print

sum/NR}');

echo "${f%__contigs.fasta}_sorted.bam";

echo "$X";

echo "${f%__contigs.fasta}_sorted.bam $X">> average_coverage.txt;

done

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 21 of 23

Appendix F – combine_reports.py

#!/usr/bin/python

import glob

Create list to store information before we write it to a file. Each item will

be a list containing the information from one file

quast_list = list()

Loop over all text files in the current directory

for file_name in glob.glob('*.txt'):

 file_handle = open(file_name)

 file_contents = file_handle.readlines()

 file_handle.close()

 file_data = list()

 # Loop through lines 3 to the end, split on whitespace, and grab the last item

 for line in file_contents[2:]:

 file_data.append(line.split()[-1])

 quast_list.append(file_data)

combined_reports = ''

for line in range(0,len(quast_list[0])):

 combined_reports += ','.join([fsl[line] for fsl in quast_list]) + '\n'

handle = open('combined.csv','w')

handle.write(combined_reports)

handle.close()

Appendix G – loop_remove_short_contigs.sh

#!/bin/bash

#jk2739

#Loop through the contig files and remove contigs shorter than 200 bp

#Usage: Run the script from the directory with the loop_remove_short_contigs.sh, remove_short_contigs.py, contigs fasta

files

#Usage: sh loop_remove_short_contigs.sh .

for f in *_contigs.fasta

do

python remove_short_contigs.py $f ${f%.fasta}_long.fasta

done

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 22 of 23

Appendix H – remove_short_contigs.py

#!/bin/python

#Remove contigs shorter than 200 bp

#jk2739

#092716

#Usage: run from a directory with contigs file and a script

#Usage: python remove_short_contigs.py <infile.fasta> <outfile.fasta>

import sys

from Bio import SeqIO

infile = sys.argv[1]

parsed_infile = SeqIO.parse(open(infile,"rU"), "fasta")

remove_short = (contig for contig in parsed_infile if len(contig.seq) > 200)

outfile= sys.argv[2]

output = open(outfile, "w")

SeqIO.write(remove_short, output, "fasta")

output.close()

Appendix I – kraken_mul-files.sh

#!/bin/sh

kraken for many fasta files.sh

Created by Jingqiu Liao on 7/16/16.

for f in *_contigs.fasta_long.fas

do

kraken --preload --db /data/intermediate/ho85_database/minikraken_20141208 --fasta-input $f --classified-out

${f%_contigs.fasta_long.fas}_c.fas --unclassified-out ${f%_contigs.fasta_long.fas}_u.fas >

${f%_contigs.fasta_long.fas}.kraken

done

mkdir kraken_result

for f in *.kraken

do

kraken-translate --db /data/intermediate/ho85_database/minikraken_20141208 $f > ./kraken_result/${f%.kraken}.labels

done

 #2 Quality control and assembly

 FSL/MQIP @ CORNELL UNIVERSITY
 Effective 00/00/0000 Revision 00 Revised 00/00/0000

 Page 23 of 23

Appendix J – rnammer.sh

#!/bin/bash

#batch RNAmmer search and extraction of 16s rDNA sequences

#jk2739

#102715

mkdir rnammer_results

for f in *.fasta

do

/programs/rnammer/rnammer -S bac -m ssu -gff ./rnammer_results/${f%.fasta}_16s.gff -f ./rnammer_results/${f%.fasta}_16s.fasta < $f

awk '/^>/{if(N)exit;++N;} {print;}' ./rnammer_results/${f%.fasta}_16s.fasta > ./rnammer_results/${f%.fasta}_1st_16s.fasta

cat ./rnammer_results/*_1st_16s.fasta > ./rnammer_results/16s_cat.fasta

done

Appendix K – seqseroloop.sh

#!/bin/bash

sh seqseroloop.sh <inpath to directory with .trimmedP.fastq.gz paired end reads>

Runs SeqSero on trimmedP.fastq.gz reads and organizes output

SeqSero is used to do in silico serotyping on Salmonella

LC Carroll June 19th, 2015

cd $1

mkdir SeqSero

for f in *_R1.trimmedP.fastq.gz

do

 SeqSero -m 2 -i ./$f ./${f%_R1.trimmedP.fastq.gz}_R2.trimmedP.fastq.gz

 echo 'SeqSero is done'

 echo 'Moving files...'

 path=$(find $1 -name 'Seqsero_result.txt')

 mv $path SeqSero/"${f%_R1.trimmedP.fastq.gz}_seqsero_results.txt"

done

