Pre-Analysis

$1 \sigma_{x}$

First, let's begin by finding the average stress, the nominal area stress, and the maximum stress with a concentration factor.

$$
\begin{gathered}
\sigma_{o}=\frac{F}{A}=\frac{100000}{.2 \times 5} \frac{\mathrm{lb}}{\mathrm{in}^{2}}=1 \times 10^{5} \mathrm{psi} \\
\sigma_{\text {nominal }}=\frac{F}{A}=\frac{100000}{.2 \times(5-.5)} \frac{\mathrm{lb}}{\mathrm{in}^{2}}=1.111 \times 10^{5} \mathrm{psi}
\end{gathered}
$$

For a finite plate with a hole, there is no analytical solution. However, an analytical solution does exists for an infinite plate with a hole. The concentration factor for an infinite plate with a hole is $\mathrm{K}=3$. The maximum stress for an infinite plate with a hole is

$$
\begin{gathered}
\sigma_{\max }=K \times \sigma_{o} \\
\sigma_{\max }=(3.0)\left(1.0 \times 10^{5} \mathrm{psi}\right)=3.0 \times 10^{5} \mathrm{psi}
\end{gathered}
$$

Although there is no analytical solution for a finite plate with a hole, there is empirical data available to find a concentration factor. Using a Concentration Factor Chart (3250 Students: See Figure 4.22 on page 158 in Deformable Bodies and Their Material Behavior), we find that $\frac{d}{w}=.1$ and thus $K \approx 2.73$ Now we can find the maximum stress using the nominal stress and the concentration factor

$$
\sigma_{\max }=K \times \sigma_{\text {nominal }}=(2.73)\left(1.111 \times 10^{5} \mathrm{psi}\right)=3.033 \times 10^{5} \mathrm{psi}
$$

$2 \sigma_{r}$
Now, let's look at the radial stress varies in the plate:

$$
\sigma_{r}(r, \theta)=\frac{1}{2} \sigma_{o}\left[\left(1-\frac{a^{2}}{r^{2}}\right)+\left(1+3 \frac{a^{4}}{r^{4}}-4 \frac{a^{2}}{r^{2}}\right) \cos (2 \theta)\right]
$$

at $\mathrm{r}=\mathrm{a}$

$$
\sigma_{r}=0
$$

assuming $\mathrm{r} \gg \mathrm{a}$

$$
\sigma_{r}(r, \theta)=\sigma_{r}(\theta)=\frac{1}{2} \sigma_{o}[1+\cos (2 \theta)]
$$

Now we will examine the stress far from the hole at $\theta=0$ (the x -axis) and $\frac{\pi}{2}$ (the y-axis)

$$
\begin{aligned}
& \sigma_{r}(0)=\frac{1}{2} \sigma_{o}[1+\cos (2(0))]=\sigma_{o} \\
& \sigma_{r}\left(\frac{\pi}{2}\right)=\frac{1}{2} \sigma_{o}\left[1+\cos \left(2\left(\frac{\pi}{2}\right)\right)\right]=0
\end{aligned}
$$

$3 \sigma_{\theta}$

Now we will examine how σ_{θ} varies in the plate. We will approach this very similarly to how we approached the examination of σ_{r} :

$$
\sigma_{\theta}(r, \theta)=\frac{1}{2} \sigma_{o}\left[\left(1+\frac{a^{2}}{r^{2}}\right)-\left(1+3 \frac{a^{4}}{r^{4}}\right) \cos (2 \theta)\right]
$$

at $\mathrm{r}=\mathrm{a}$

$$
\sigma_{\theta}=\frac{1}{2} \sigma_{o}(2-4 \cos (2 \theta))
$$

assuming $\mathrm{r} \gg \mathrm{a}$

$$
\sigma_{\theta}(r, \theta)=\sigma_{\theta}(\theta)=\frac{1}{2} \sigma_{o}[1-\cos (2 \theta)]
$$

Now we will examine the stress far from the hole at $\theta=0$ and $\frac{\pi}{2}$

$$
\begin{aligned}
\sigma_{\theta}(0) & =\frac{1}{2} \sigma_{o}[1-\cos (2(0))]=0 \\
\sigma_{\theta}\left(\frac{\pi}{2}\right) & =\frac{1}{2} \sigma_{o}\left[1-\cos \left(2\left(\frac{\pi}{2}\right)\right)\right]=\sigma_{o}
\end{aligned}
$$

$4 \tau_{r \theta}$

Finally, we will examine how the shear stress in the $r \theta$ direction varies in the plate. The equation for the shear stress in the plate is:

$$
\tau_{r \theta}=-\frac{1}{2} \sigma_{o}\left(1-3 \frac{a^{4}}{r^{4}}+2 \frac{a^{2}}{r^{2}}\right) \sin (2 \theta)
$$

at $\mathrm{r}=\mathrm{a}$

$$
\tau_{r \theta}=0
$$

assuming $\mathrm{r} \gg a$

$$
\tau_{r \theta}(r, \theta)=\tau_{r \theta}(\theta)=-\frac{1}{2} \sigma_{o} \sin (2 \theta)
$$

Now we will examine the values of $\tau_{r \theta}$ when $\mathrm{r} \gg \mathrm{a}$ and at $\theta=0$ and $\theta=\frac{\pi}{2}$

$$
\tau_{r \theta}(0)=-\frac{1}{2} \sigma_{o} \sin (2(0))=0
$$

and

$$
\tau_{r \theta}\left(\frac{\pi}{2}\right)=-\frac{1}{2} \sigma_{o} \sin \left(2\left(\frac{\pi}{2}\right)\right)=0
$$

We will reexamine all of these calculations so we may estimate the validity of the ANSYS simulation later in this tutorial.

