

Sedimentation Tank Hydraulics

Cari Candy Danielle Feng Jill Freeman

Cornell University School of Civil and Environmental Engineering

What is a Floc Blanket?

- A floc blanket is a dense, fluidized bed of particles.
- Occurs when flocs switch from a state of differential settling to hindered settling.

Benefits of a Floc Blanket:

- Reduces effluent turbidity by trapping small flocs.
- Reduces clean water wasting by less frequent draining of the sedimentation tank.

Conditions for Floc Blanket Formation

- Adequate floc re-suspension by inlet jet
- Inclines to direct settling flocs towards inlet jet

Cornell University School of Civil and Environmental Engineering

Objectives

- Determine a relationship between jet reverser size and floc blanket stability.
- Determine the effects of jet placement on floc blanket stability.
- Determine the lowest alum dose at which a floc blanket at a given influent turbidity can be formed and maintained.
- Examine relavent floc hopper parameters, including ratio floc hopper plan-view area to floc blanket plan-view area, and floc hopper volume.

Methods: Our Experimental Setup

Experimental Setup

Cornell University School of Civil and Environmental Engineering

Hydrostatic vs. Hydrodynamic Pressure

- Small jet reverser: Higher hydrodynamic pressure; better floc resuspension
- Large jet reverser: Easier to construct; requires less precise alignment of the jet

496 mL/min

1" Diameter

2" Diameter

3" Diameter

376 mL/min

1" Diameter

2" Diameter

3" Diameter

Downwards Jet Displacement

Upwards Jet Displacement

Upwards Jet Displacement

Horizontal Jet Displacement

- > Jet takes a preferential flow path.
- > Dead zone formed in right side of reverser.

316 mL/min

Horizontal Jet Displacement

376 mL/min

Horizontal Jet Displacement

Asymmetric vs. Symmetric Jet Placement

Asymmetric	Symmetric
Will require more changes to design.	Splits jet reverser path
Sludge on one side is not directly resuspended.	More sensitive to slight jet displacement

Floc Blanket Stability

- Determine the alum dose at which a previously formed floc blanket will fail.
- Determine the minimum alum dose at which a floc blanket can be formed.
- Find these values for 50, 100, and 200 NTU and determine if there is a general relationship
 Cornell University School of Civiliand 1 dosage and

Environmental Engineering

Concentration Analysis

Find relative concentration by comparing experimental images to one background image.

Turning Down the Dose

Alum Dose Increment: 100 NTU

Alum Dose Increment: 100 NTU

Cornell University School of Civil and Environmental Engineering

Optimal Dose for 100 NTU

> 25 mg/L Floc

Cornell University School of Civil and Environmental Engineering

> 30 mg/L Floc

Future Work

- Alum Dose for 50 and 200 NTU
- Symmetric vs. Asymmetric Jet Placement
- Explore jet angle and energy dissipation
- Floc Hopper Geometry and Wasting Rate

