POTENTIALLY USEFUL EQUATIONS

Cardiovascular/Hemodynamic

Blood Pressure	$\mathbf{BP} = \mathbf{CO} \mathbf{x} \mathbf{SVR} \qquad \mathbf{P} = \mathbf{F} \mathbf{x} \mathbf{R}$
Cardiac Output (CO)	HR x SV
	Normal: 125-200 ml/kg/min, 3.5-5.5 L/m ² /min
Stroke Volume (SV)	EDV-ESV
	Normal: 1.5-2.5 ml/beat/kg, 40-60 ml/beat/m ²
Systemic Vascular Resistance (SVR)	MAP-CVP CO
	Normal: 1600-2500 dynes * sec * cm ⁻⁵
Pulmonary Vasc. Resistance (PVR)	MPAP-PAOP CO
	Normal: 125-250 dynes * sec * cm ⁻⁵
Ejection Fraction (EF)	EDV-ESV EDV
	Normal: approx 70%

Fractional Shortening (FS)	<u>EDD-ESD</u> EDD		
	Normal: 2	5-45% (dog)	, 30-55% (cat)
Wall Stress	Pxr 2h	P = pressu h = wall th	re, r = radius ickness
Poiseuille's Law	$Q = \Delta P/R$		
	$Q = \frac{\pi r^4 (P)}{8\eta}$	<u>1 – P2</u>) L	
	$R = \frac{8\eta L}{\pi r^4}$	η = viscosi	ty, L = length
Continuity Equation	$\mathbf{Q} = \mathbf{V} \mathbf{x} \mathbf{A}$	V = velocit	y, A = x-sectional area
Bernoulli Equation	$\Delta \mathbf{P} = 4\mathbf{V}^2$		
Reynolds Number	<u>2rv</u> ρ μ	ρ = density μ = viscosi	y, v = velocity, r = radius ty
		alues greate with turbule	er than 2000-2300 are ent flow
Starling Forces	K _f (P _c -P _i) –	- σ (π _c -π _i)	K = filtration coefficient, σ = reflection coefficient (permeability)
Compliance	$\mathbf{C} = \Delta \mathbf{V} / \Delta \mathbf{P}$	•	

ĸ

ECG Normals		Dog		Cat
	Heart rate P wave width P wave height P-R interval QRS width QRS height Q-T interval ST segment T wave MEA	within	c 13 sec c 25 sec 0.2 mV g, biphas	140-180 0.04 sec 0.2 mV 0.05-0.09 sec 0.04 sec 0.9 mV 0.07-0.20 sec none pos, neg, bi. 0-160
Instantaneous Heart Rate	3000/x @ 50 mm 1500/x @ 25 mm	i	a = numbe n R-R inte	r of small boxes erval
Oxygen Tension Based Indicies				
Art. Blood Oxygen Content (CaO2)	(1.36 x Hb x SaC) 2) + (0.0	003 x PaO2	2)

Normal: 20 ml O2/100 ml blood

Mixed Venous Oxygen Cont. (CvO2) (1.36 x Hb x SvO2) + (0.003 x PvO2)

Normal: 15 ml O2/100 ml blood

Oxygen Delivery (DO2)

CO x CaO2

Normal: 20-35 ml/kg/min, 600-900 ml/m²/min Critical (D_{cO2}) 9-10 ml/kg/min

Oxygen Consumption (VO2)	CO x (CaO2-CvO2) CO x 13.6 x Hb x (SaO2-SvO2) Normal: 4-11 ml/kg/min, 150-250 ml/m ² /min	
Oxygen Extraction Ratio (OER)	CaO2-CvO2 or CaO2 Normal: 20-30%	<u>SaO2-SvO2</u> SaO2
<u>Pulmonary</u>		
Tidal Volume (Vt)	10-15 ml/kg	
Minute Ventilation (VE)	150-200 ml/kg/min	
Alveolar Ventilation (VA)	VA = VT - VD	VD = dead space
Alveolar Ventilation	$PACO2 = K \times \frac{VCO2}{VA}$	K = 0.863
Bohr Equation (VD/VT)	VD/VT = <u>PACO2-PEC</u> PACO2	PaCO2=PACO2, so can use in calcs
Alveolar Gas Equation (PAO2)	PIO2 – PaCO2/R PIO2 = Bar. Press – H2	20 vap. Press x FiO2

•

,

Fick's Law (V = diffusion)	$\mathbf{V} = \underline{\mathbf{A} \mathbf{x} \mathbf{D} \mathbf{x} (\mathbf{P1} - \mathbf{P2})}{\mathbf{T}}$	A = area, D = diffusion constant (solubility/MW), T = thickness
Pulmonary Shunt (Qs/Qt)	<u>CcO2-CaO2</u> or CcO2-CvO2	<u>1-SaO2</u> 1-SvO2
	Normal: Less than 10%	/o
Pulmonary Capillary O2 Content	(1.36 x Hb x SAO2) + (0.003 x PAO2)
Fluids/Electrolytes		
Blood Transfusion		<u>Y-Recipient PCV</u> x 90 or 60 or PCV
	Also, 2 ml/kg whole blo increase PCV 1%	ood or 1 ml/kg PRBC will
Blood in Abdomen	<u>PCV of lavage x volum</u> PCV (before fluids) –	
	Also, 40 ml/kg to see di	stension
Free Water Deficit	Wt (kg) present x (<u>Na</u> Na	present – 1) a prev.
Bicarbonate Deficit	Wt (kg) x (24-HCO3) x	a 0.3
Corrected Chloride	Cl measured x <u>Na norr</u> Na me	

ł

Corrected Calcium	Calcium – albumin + 3	.5
Calculated Osmolality	2(Na+K) + BUN + BG / 18	
	Normal: 290-310 (dogs), 290-330 (cats)
Anion Gap	(Na+K) – (Cl+HCO3)	
	Normal: 12-20	
Corrected Sodium (BG)	Measured Sodium + 1.	6 x (<u>BG-100</u>) 100
Single Nephron GFR	Kf x (P _{GC} – P _T – π _{GC})	Kf dependent on surface area, and permeability of glomerulus
GFR (clearance)	$\mathbf{GFR} = \mathbf{U}_{\mathbf{x}}\mathbf{V}/\mathbf{P}_{\mathbf{x}}$	U _x = urine conc. in mg/ml, V = urine flow rate in ml/min, P _x = plasma conc. in mg/ml
Random Named Things		
Haldane Effect	Hemoglobin has a greater buffering capacity in the deoxygenated state	
Bohr Effect		ased affinity for CO2 when nent of CO2 dissociation and

.

elimination in the lungs, also converse is true, and increased H⁺ and CO2 decrease affinity for O2 (shifts curve to the right)

i,