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Background: Objective risk stratification models are used routinely in human critical care medicine. Applications include

quantitative and objective delineation of illness severity for patients enrolled in clinical research, performance benchmarking,

and protocol development for triage and therapeutic management.

Objective: To develop an accurate, validated, and user-friendly model to stratify illness severity by mortality risk in hos-

pitalized dogs.

Animals: Eight hundred and ten consecutive intensive care unit (ICU) admissions of dogs at a veterinary teaching hospital.

Methods: Prospective census cohort study. Data on 55 management, physiological, and biochemical variables were col-

lected within 24 hours of admission. Data were randomly divided, with 598 patient records used for logistic regression model

construction and 212 for model validation.

Results: Patient mortality was 18.4%. Ten-variable and 5-variable models were developed to provide both a high-perfor-

mance model and model maximizing accessibility, while maintaining good performance. The 10-variable model contained

creatinine, WBC count, albumin, SpO2, total bilirubin, mentation score, respiratory rate, age, lactate, and presence of free fluid

in a body cavity. Area under the receiver operator characteristic (AUROC) on the construction data set was 0.93, and on the

validation data set was 0.91. The 5-variable model contained glucose, albumin, mentation score, platelet count, and lactate.

AUROC on the construction data set was 0.87, and on the validation data set was 0.85.

Conclusions and Clinical Importance: Two models are presented that enable allocation of an accurate and user-friendly

illness severity index for dogs admitted to an ICU. These models operate independent of primary diagnosis, and have been

independently validated.
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O
bjective risk stratification models are used routinely
in human critical care medicine for estimates of ill-

ness severity.1,2 Scoring systems for illness severity
typically are based on a number of clinical variables that
predict mortality risk, and provide an objective basis for
patient triage and risk stratification for scientific pur-
poses. In the context of clinical research, the ability to
quantify disease severity across treatment groups allows
the benefit of therapy to be determined with greater cer-
tainty. Scoring systems should be based on objective
criteria, and be accurate and easy to use.1 The predictive
accuracy of the system or model should be demonstrated
in a sample of patients independent of that used to de-
velop the model.2

Several diagnosis-specific scoring systems have been
developed recently.3–5 A diagnosis-independent severity
score has several advantages. These include application
to disease groups for which a diagnosis-specific scoring
system is not available, application to patients early in
the hospital stay when a diagnosis has not yet been made,

and application to patients with several disease pro-
cesses. King et al6,7 developed a diagnosis-independent
survival prediction index (SPI) for dogs in an intensive
care unit (ICU) setting. Despite appropriate study meth-
odology, model performance on an independent
validation sample was suboptimal (area under the re-
ceiver operator characteristic [AUROC] reduced model
survival prediction index 2 [SPI2] 5 0.68 on validation
dataset), and the manipulations required for manual
score calculation were relatively complex.

The aim of the study reported here was to develop and
independently validate an easy-to-use model that accu-
rately predicted the probability of death, thus providing
an objective measure of illness severity. The model was
intended to operate independent of primary diagnosis,
and was designed to be based on readily available and
objective clinical and laboratory variables.

Materials and Methods

This was a single center prospective cohort study conducted at a

teaching hospital serving a predominantly referral patient popula-

tion. Over the year 2008, 79% of emergency appointments were

referral and 21% were first opinion assessments. Of the patients

seen, 99.8% were from within the province, and 82% of ICU

admissions were dogs. ICU admission occurred for hospitalized
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patients requiring IV access for continual fluid or medication

administration, or close monitoring for any reason.

The study population was 825 consecutive client-owned dogs ad-

mitted to the ICU over the study period. Fifteen dogs were excluded

because of missing outcome information or ageo4 months, leaving

a study population of 810 dogs.

Data were collected over a 6-month period by 4 trained investi-

gators, according to a predetermined written protocol of precise

rules and definitions. The protocol detailed the process of data point

selection and subsequent spreadsheet entry coding for each variable.

Interobserver agreement on data points collected was assessed by

k analysis. k analysis consisted of having all 4 data collectors collect

all variables on the same 4 patients, totalling 224 data points. The

degree to which the same data values were identified by all collectors

then was assessed.

Approval from the hospital ethics committee was obtained, and

given the noninterventional study design, informed owner consent

was waived.

Variables for the model were selected a priori based on an antic-

ipated relationship with mortality from existing canine and human

models, primary literature, and expert clinical opinion.3,6,7 These

variables are detailed in Table 1.

All variables were assessed over the first 24 hours following ICU

admission with the exception of mentation score. Mentation score

was assessed at admission to gain the best possible assessment of

true patient baseline status. This was carried out to gain the best

possible assessment of true patient baseline status before the admin-

istration of analgesics or sedation. For the remaining variables,

when several measurements for the same variable were available

within the initial 24-hour period, the measurement deviating most

from the mid-point of the normal range was selected for model en-

try. No testing or data collection beyond that obtained for clinical

management was performed for the purposes of the study.

Variables were collected as continuous, binary, or ordinal. All

physiologic and laboratory variables were recorded as continuous

wherever possible. All present/absent variables were recorded as bi-

nary. Ordinal variables included nutritional status, EKG findings,

and obesity score. Nutritional status was assessed using the catego-

ries normal appetite, anorexic, and tube fed. EKG findings were

assessed using the categories sinus rhythm only, abnormalities pres-

ent, and abnormalities present with antiarhythmics instituted.

Obesity score was subjectively graded between 1 and 5, where 5

was severely obese, 3 was normal body condition, and 1 was mark-

edly underweight. Urine output was recorded in mL/kg/h. Blood

pressures were assessed by indirecta or directb methods. Collection

methodology for the variables retained in the final models is detailed

in Tables 2 and 3.

The variables neoplastic diagnosis and activated clotting time

(ACT) were excluded from the model build. The model goal of in-

dependence of patient primary diagnosis was contravened by the

variable neoplastic diagnosis, which might also have decreased

model transferability because of limitations in accessing cytology

results within 24 hours of admission in many centers. The ACT

variable was also withdrawn because of limited external test avail-

ability and differing test methodologies likely to compromise the

validity of future score calculation.

Outcome was recorded as survival status at hospital discharge. For

animals that were euthanized, the primary reason for euthanasia was

determined after discussion with the primary clinician. Likely because

of the complex decision making involved in the euthanasia process,

difficulty determining the primary reason was sometimes experienced.

Consequently, euthanasia for any reason and natural death were

allotted equivalent nonsurvival status in the primary analysis.

Before model construction, a formal survey of faculty and

residents at the teaching hospital was performed, evaluating percep-

tions of illness severity scores and preferred score presentation

format. Results from this survey were used to determine model

presentation format, and are detailed in Appendix 1.

Statistical Methods

Descriptive statistics were assessed as means � standard devia-

tion for data that was normally distributed, and as medians and

interquartile range for data that was not normally distributed. Nor-

mality was tested with the Shapiro-Wilk test. Associations among

categorical data were tested with Fisher’s exact test. Associations

among continuous data were tested with Student’s t-test for data

that were normally distributed and the Mann-Whitney test for data

that were not normally distributed.

Score Development

The cases making up the dataset were randomly split into a

model construction or training cohort of 598 dogs (approximately

75% of the group) and a validation cohort of 212 dogs. The random

division was performed by computer software assignment of a ran-

dom number to each dog. The dogs then were ranked by the

assigned random number, with the 598 highest dogs retained as the

training data set. A 75 : 25 split was selected to maximize the infor-

mation available from the training group, while providing a

validation cohort of reasonable size.

A priori goals of the model build were to produce a highly pre-

dictive model with a format and variable number tailored to

maximize end-user uptake.

Predictor variables for which values were missing for over 30%

of patients were dropped. Missing physiologic or laboratory values

Table 1. Predictor variables collected from canine pa-
tients for development of the Canine Acute Patient
Physiologic and Laboratory Evaluation (APPLE) scores.

Subcategory Variables

Management Emergency versus scheduled admission, admission

service (medical versus surgical)

Therapeutic Oxygen support, indwelling urinary catheter,

mechanical ventilation, vasoactive drug

treatment, mode of nutritional support

Historical Admission for management of acute/chronic

problem, current or prior diagnosis of neoplastic

disease process

Physiological Sex, age, heart rate, respiratory rate, mean arterial

blood pressure, systolic blood pressure, tempera-

ture, EKG findings, mentation score, body

weight, obesity score, urine output, presence of

free fluid in a body cavity, primary diagnostic

category, SpO2

Laboratory PvCO2, PvO2, HCO3, BE, pH, PaO2, albumin, Na,

K, PCV/TS, glucose, lactate, iCa, creatinine,

ACT, PT, PTT, platelet count, WBC count, %

bands, CK, urea, cholesterol, total bilirubin,

fibrinogen

Table 2. Variable measurement methodology.

Variable Measurement Methodology

Glucose, albumin, creatinine,

total bilirubin

Hitachi 911 automated chemistry

analyzer

Lactate ABL 800 Flex, Radiometer Med-

ical Aps, Bronshoj, Denmark

SpO2 Hand-held pulse oximeter, Nonin

8500 digital

Platelet count, WBC count Advia 120 hematology analyzer
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for the remaining variables were replaced with normal values or

mean values where the term normal did not apply (eg, age, body

weight).

The relationship between continuous variables and the binary

mortality outcome was assessed using locally weighted scatter plot

smoothes (LOWESS).8,9 This method overcomes the problem of

determining the functional relationship of a continuous variable

with an outcome when the outcome is binary. To obtain the

smoothed value of Y at X 5 x, all data having x values within a

suitable interval about x, known as the bandwidth, are taken. A lin-

ear regression is fitted to all of these points, with the points closer to

the value of x being weighted in their contribution to the smoothed

y value. The predicted value from this regression atX 5 x is taken as

the estimate of EðY jX ¼ xÞ. Smoothed values for E(Y) are obtained

for each observed value of X.10,11 We selected a conservative band-

width of 0.8 to minimize wriggle in the resulting functions.

LOWESS lines can be fitted both on the original scale of Y and as-

sist ease of interpretation from a clinical interest perspective (eg, the

smoothed plot of observed%mortality against PCV) or on the logit

scale. A selection of the mortality functions derived for continuous

variables by this method is shown in Figure 1.

Nonlinearity suggested by graphical analysis on the logit scale

was confirmed by identifying power terms significantly associated

with mortality when entered in a univariable model. Nonlinear vari-

ables were categorized. The continuous variable was subdivided

into categories (eg, category 1 for temperature439.5, category 2 for

temperature�38.5,o39.5), and each patient assigned to the appro-

priate category for that variable, as previously described.12

Category cut-points were selected after graphical analysis to reflect

the low, medium, and high-risk groups for the variable. When sub-

sequently entered into a logistic regression model, this allowed each

category of the variable concerned to receive the appropriate risk

coefficient independent of the adjoining categories, thus relaxing the

regression linearity assumption. After categorization or not, as in-

dicated by the logit scale assessments, putative variables were

entered into univariable logistic regression models to obtain a mea-

sure of statistical association between the variable and mortality

outcome by the likelihood ratio test. The category associated with

the lowest mortality risk was used as the referent group. Variables

were put forward for consideration in the multivariable model if

they achieved significance at Po .2 in the univariable analysis.

A stepwise backward elimination multivariable logistic regres-

sion procedure was performed to further eliminate variables with

poor explanatory power in a multivariable context, with a cut-off

for retention of Po .05 by the likelihood ratio test. Collinearity was

assessed by monitoring standard errors. After the backwards elim-

ination procedure, the variables dropped were re-entered one by one

back into the model and again assessed for significance. The vari-

ables selected at the end of this process then were then alternately

dropped from the multivariable logistic regression model in a man-

ual build process. Each model was calculated in the construction or

training data set, and then assessed for AUROC performance and

Hosmer-Lemeshow C statistic calibration in both the construction

and validation data sets. Bayesian Information Criteria also were

assessed in the construction data set to allow comparison of non-

nested models.

Two models were selected to optimize the balance between vari-

able parsimony and model performance in both construction and

validation data sets. The models were checked by graphical exam-

ination of deviance residuals, leverage, and the Pregibon Delta beta

measure.

Further cross validation was performed to assess both the poten-

tial impact of euthanasia bias, and stability of the models on

different patient groups. The discrimination and calibration of the

SPI2 score also was assessed in an external validation procedure in

both the construction and validation cohorts.

The best models were converted to integer scores as follows. The

desired maximal score values for each model were selected arbitrar-

ily as 80 for the 10-variable model and 50 for the 5-variable model.

The lowest risk categories for each variable were set as the referent

categories. For each model, the coefficient assigned to the highest

risk category for each variable in the model was summed. The de-

sired maximal score for the model was divided by this value to

obtain a constant multiplier. All of the coefficients for each category

of each variable in the model then were multiplied by this value, and

the resulting numbers rounded to the nearest integer to obtain the

integer scores for each category of each variable in the model. The

referent categories received a score of 0. Conversion to an integer

score was done to facilitate the presentation of convenient, trans-

parent, and user-friendly models that could be manually calculated.

Models were presented in both Imperial and systeme international

(SI) units. Logistic regression was used to relate the score to a pre-

dicted probability of mortality.

Finally, the extent to which the rounding-off procedure influenced

the discriminative power of the model was evaluated by testing the

discrimination and calibration of each integer score. This was done

by calculating each score for each patient, and entering each score

(APPLEfast and APPLEfull) into univariable logistic regression anal-

ysis against the mortality outcome. Hosmer-Lemeshow C statistics

andAUROC values were calculated and compared between both the

10-variable and 5-variable multivariable models and the univariable

integer score models. All analyses were performed in a commercially

available statistical software program.c

Results

k Analysis

Interobserver agreement over collected data points
was assessed as excellent with a k statistic of 0.82. When
present, discrepancies typically arose in selecting between
primary and ancilliary diagnoses, and in the selection of a
single value when multiple values of a continuous vari-
able were available.

Patient Population Characteristics and
Univariable Analysis

Case type and mortality characteristics of the patient
population are shown in Table 4. For 810 ICU admis-
sions, mortality risk was 18.4% (n 5 149), with 96% (n 5

143) of deaths occurring by euthanasia. Of euthanasia
deaths, 66% (n598) occurred in association with poor
current health status, and 14% (n521) in association
with diagnosis of a terminal disease. Time to death was

Table 3. Body cavity fluid score and mentation score
calculation.

Mentation Score: Assessed at

Admission before Sedation/

Analgesic Administration

Fluid Score (Ultrasonographic

Evaluation, as Assessed by

FAST or TFAST Technique)18

0. Normal 0. No abdominal, thoracic, or

pericardial free fluid identified

1. Able to stand unassisted,

responsive but dull

1. Abdominal OR thoracic OR

pericardial free fluid identified

2. Can stand only when

assisted, responsive but dull

2. Two or more of abdominal,

thoracic, and pericardial free

fluid identified

3. Unable to stand, responsive

4. Unable to stand, unresponsive
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biphasic in distribution, with peaks at 1 and 3 days.
Median ICU stay was 2 days (range 1–20). ICU stay was
significantly shorter in the nonsurvivors (median, 1 day;
P o .001) compared with the survivors. There was no
significant difference in mortality risk between the con-
struction and validation patient groups.
Mortality risk was significantly lower in patients hos-

pitalized because of trauma compared with the general
patient population (P 5 .001). Patients that failed to eat
spontaneously over the first 24 hours of admission had a
higher mortality risk than those that ate (OR, 3.02; 95%
CI, 1.98–4.59; P o .001). Manifestation of EKG abnor-
malities in the first 24 hours of admission also was
associated with a significantly higher mortality risk (OR,
3.78; 95% CI, 2.33–6.11; P o .001). In a subgroup of
patients (n 5 78) for which ACT, PT, and PTT data were
available, ACT was found to have a linear association in
the logit with mortality risk which reached statistical sig-
nificance. Each 10-second prolongation of ACT was
associated with an estimated 20% increase in mortality
odds (OR 1.20; 95% CI, 1.02–1.42; P 5 .005). The asso-
ciations between PT and PTT and mortality risk failed to
reach statistical significance in the same group.
Oncologic patients constituted 16.9% of the total pa-

tient population. The highest mortality risk occurred for
patients on the medical oncology service.

Model Build

Figure 1 shows the LOWESS plots of the risk of hos-
pital mortality against each of 12 continuous variables
measured within the first 24 hours of admission. Vertical
lines show the limits of the categories subsequently en-
tered into the logistic models.

The variables dropped and retained at each stage of
the model build are shown in Figure 2. The variables for
coagulation time data, ionized calcium, CK, cholesterol,
PaO2, and urine output were dropped because of lack of
availability for470% of patients.

Thirty-one variables were entered into a multivariable
backward stepwise elimination model build after univari-
able analysis. No variables were dropped after assessment
for collinearity. After multivariable backward stepwise
elimination and re-entry, 20 variables remained (P o .05)
and entered the manual build.

Two models ultimately were selected to satisfy the
goals of providing both a high-performance model and
a model maximizing parsimony while maintaining good
performance. The 10-variable model (APPLEfull) con-
tained creatinine, WBC count, albumin, SpO2 as
detected by pulse oximetry, total bilirubin, mentation
score (see Table 3), respiratory rate (bpm), age (years),
lactate, and presence of free fluid in a body cavity as

Fig 1. Locally weighted scatterplot smooth (LOWESS) plots of risk of hospital mortality against each continuous variable. Running mean

smooth with bandwidth 5 0.8. Vertical lines show the limits of the categories applied to the continuous variables before entry into the logistic

regression models. All variables showed a statistically significant association with mortality risk (P o .05, likelihood ratio test) in both uni-

variable and multivariable analysis.
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detected by ultrasonographic screening. The AUROC on
the construction cohort was 0.93 (95% CI, 0.90–0.95)
and on the validation cohort was 0.91 (95% CI, 0.89–
0.96). There was no significant lack of calibration in ei-
ther cohort (Hosmer-Lemeshow w8

2 5 5.14 and w10
2 5

7.12, P 5 .74 and .71 on construction and validation co-
horts, respectively). The 5-variable model (APPLEfast)
contained glucose, albumin, mentation score, platelet
count, and lactate. The AUROC on the construction
cohort was 0.86 (95% CI, 0.82–0.90) and on the valida-
tion cohort was 0.85 (95% CI, 0.80–0.92), again with
no significant lack of calibration in either cohort
(Hosmer-Lemeshow w8

2 5 8.51 and w10
2 5 8.25, P 5 .38

and .60).
When the models were cross validated on the valida-

tion cohort after censoring of patients with neoplastic

diagnoses, the models showed good stability with AUR-
OCs increasing slightly to 0.95 for the APPLEfull model
and 0.87 for the APPLEfast model, with retention of
calibration.

Model discrimination also was retained for both mod-
els as the patients included in each category of euthanasia
were successively censored from the validation cohort.
The best model discrimination for both models ulti-
mately was shown for the validation cohort when
patient deaths were restricted to those occurring by
natural death only (ie, all euthanasia cases censored).
The discrimination and calibration of the SPI2 score also
were assessed in an independent external validation
procedure. The SPI2 performed well, with an AUROC
of 0.82 on the combined construction and validation
cohorts and good calibration (Hosmer-Lemeshow

Table 4. Population characteristics and outcome for canine intensive care unit admissions.

No. Median (IQR) or % Hospital Mortality, %

Age (years) 810 6.5 (3–10)

Sex

Male 462 57 18.6

Female 348 43 16.7

Surgical status

Surgical 292 36 8.6a

Nonsurgical 518 64 23.4a

Source of admission

Referral 575 71 17.9

Primary care 235 29 18.6

Admission type

Emergency 89 19.2

Planned admission 11 12.2

Length of hospital stay (days) 3 (1–4)

Primary reason for admission

GI/pancreatitis 107 13.2 14.0

Trauma 87 10.7 5.7a

Spinal/peripheral neuropathy 87 10.7 8.0a

Medical oncology 83 10.2 47.0a

Immune mediated disease 66 8.1 22.7

Surgical oncology 54 6.7 20.4

Respiratory 53 6.5 24.5

Intracranial disease 49 6.0 20.4

Renal/urinary tract 47 5.8 25.5

Cardiac 40 4.9 20.0

Hepatic 34 4.2 11.7

Sepsis 32 4.0 15.6

Ophthalmological 24 3.0 0.0a

Toxicity 17 2.1 5.9

Endocrine disorder 16 2.0 6.2

Miscellaneous 8 1.0 37.5

Reproductive 6 0.7 0.0

Vasoactive drug treatment during first 24 hours 19 2.3 57.9a

Mechanical ventilation during first 24 hours 11 1.4 81.8a

Mortality-total deaths all cause 149 18.4

Type of death

Natural death 6 4.0

Euthanasia due to

Financial constraints 24 16.1

Terminal disease diagnosis 21 14.1

Current severity of illness 98 65.8

Exclusions due to age/unavailable records 15

aMortality difference statistically significant at P o .05 using a two-tailed w2 test of difference in proportion tested against opposing

category or population as a whole.
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P 5 .49). Performance characteristics of the models are
summarized in Table 5 and cross-validation results are
shown in Table 6.
The 2 models were used to develop 2 objectively

weighted multivariate prognostic scores, the canine Acute

Patient Physiologic and Laboratory Evaluation (AP-
PLEfull and APPLEfast) scores ranging from 0 to 80 and
0 to 50, respectively. The algorithms for score calculation
are shown in Figures 3 and 4. The central cell on each
table represents the range of values for which 0 points

Variables dropped as <70% data availability: 
urine output, iCa, ACT, PT, PTT, CK, cholesterol, fibrinogen
PaO2

Variables dropped in stepwise backwards  
elimination with forward re-entry if P=>0.05: 
Admission service, mechanical ventilation,  
acute/chronic, heart rate, systolic bp, temperature,  
PvO2, BE, pH, PCV, TS 

Manual build:

Variables dropped as contravening model goals:  
Neoplastic diagnosis, primary diagnostic category 
Variables dropped as P>0.2 in univariable analysis: 
emergency admission, body condition score, sex, body 
weight, indwelling urinary catheter, %bands, urea  
vasoactive drug treatment 

Variables collected: 
Emergency vs scheduled admission, admission service (medical vs surgical), oxygen support, indwelling urinary catheter, mechanical 
ventilation, vasoactive drug treatment, mode of nutrition, admission for management of acute/ chronic problem, current or prior diagnosis 
of neoplastic disease process, sex, age, heart rate, respiratory rate, mean arterial blood pressure, systolic blood pressure, temperature,
EKG score, mentation score, body weight, obesity score, urine output, presence of free fluid in a body cavity, primary diagnostic
category, SpO2, PvCO2, PvO2, HCO3, BE, pH, PaO2, albumin, Na, K, PCV/TS, glucose, lactate, iCa, creatinine, ACT, PT, PTT, platelet 
count, WBC count, %bands, CK, urea, cholesterol, total bilirubin, fibrinogen

Variables remaining in final models:
age, respiratory rate, mentation score,
presence of free fluid, SpO2, albumin,
glucose, lactate, creatinine, platelet count,
WBC count, total bilirubin

Variables remaining after multivariable stepwise elimination 
model:
Oxygen support, mode of nutritional support, age, respiratory
rate, mean arterial blood pressure, EKG findings, mentation
score, presence of free fluid in a body cavity, SpO2, PvCO2,
HCO3, albumin, Na, K, glucose, lactate,  , creatinine, platelet
count, WBC count, total bilirubin,

Variables remaining after variables with <70% data availability dropped: 
Emergency vs scheduled admission, admission service (medical vs surgical), oxygen support, indwelling urinary catheter,
mechanical ventilation, vasoactive drug treatment, mode of nutrition, admission for management of acute / chronic problem, current
or prior diagnosis of neoplastic disease process, sex, age, heart rate, respiratory rate, mean arterial blood pressure, systolic blood
pressure, temperature, EKG score, mentation score, body weight, obesity score, presence of free fluid in a body cavity, primary
diagnostic category, SpO2, PvCO2, PvO2, HCO3, BE, pH, albumin, Na, K, PCV/TS, glucose, lactate, creatinine, platelet count,
WBC count, %bands,  urea, total bilirubin,

Variables remaining after variables with P>0.2 dropped:
Admission service (medical vs surgical), oxygen support, mechanical ventilation,  mode of nutrition, admission for
management of acute/ chronic problem, age, heart rate, respiratory rate, mean arterial blood pressure, systolic blood
pressure, temperature, EKG score, mentation score, presence of free fluid in a body cavity, SpO2, PvCO2, PvO2, 
HCO3, BE, pH, albumin, Na, K, PCV/TS, glucose, lactate, creatinine, platelet count, WBC count, total bilirubin,  

Fig 2. Variables dropped and retained at each stage of the model build.
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would be assigned for the variable. The cells to either side
of the central cell show the appropriate score for the rel-
evant variable range. The final score for the patient is
achieved by summing the scores for each variable.
Patient score then can be correlated with mortality risk,
if required either by the graphs in Figure 5 or the equa-
tions listed below. Figure 5 depicts the relationship
between the APPLE scores and predicted probability of
mortality. The equations below describe the relationship
between each score and the predicted mortality risk P,
where R is logit P. There was minimal change in
AUROC values and no loss of calibration after conver-
sion of the models to integer score. Results of score
discrimination and calibration are shown in Table 5.
The score sensitivity (proportion of patients that died
that were predicted to die) and specificity (proportion of
patients that did not die that were predicted not to die) at
various cut-points also are shown in Table 5. The sensi-
tivity and specificity results corresponding to the mid-
point of each score and the score values optimizing the
sum of sensitivity and specificity were selected for dis-
play. It should be emphasized that these are population-
averaged results. The confidence intervals for mortality
prediction surrounding each cut-point are wide, as
shown in Figure 4. The APPLE scores in SI units are de-
tailed in Appendix 2, Figures A1 and A2.

Equations to calculate mortality probability (P):

(1) APPLEfast score: where P1 5 exp (R1)/(11exp[R1])

R1 ¼ ð0:249�APPLEfastÞ � 7:020

(2) APPLEfull score: where P2 5 exp(R2)/(11exp[R2])

R2 ¼ ð0:237�APPLEfullÞ � 8:294

Discussion

Patients admitted to veterinary hospitals that require
continuous IV access or close monitoring constitute a
population with substantial emotional and financial in-
vestment on the part of their owners. Early prediction of
high mortality risk allows triage to an environment
where optimization of volume resuscitation, gas ex-
change, nutrition, and treatment of both the primary
problem and all associated complications can be per-
formed effectively. Thus, early stratification of illness
severity has important implications for management and
timely intervention. These patients are the focus of sub-
stantial clinical research by many specialties in veterinary
medicine today. The ability to objectively categorize

Table 5. Performance characteristics of APPLE models and SPI2 score on study construction (n 5 598) and valida-
tion (n 5 212) populations.

APPLEfull Model APPLEfastModel SPI2 Score

AUROC

Construction cohort 0.93 0.87 0.83

Validation cohort 0.91 0.84 0.79

Postconversion to integer score 0.92 0.86

On combined construction and validation cohort 0.82

Hosmer-Lemeshow C statistic

Construction cohort w8
2 5.14, P 5 .74 8.51, P 5 .38 9.90, P 5 .27

Validation cohort w10
2 7.12, P 5 .71 8.25, P 5 .60 9.06, P 5 .34

Post conversion to integer score 8.72, P 5 .37 10.65, P 5 .22

On combined construction and validation cohort 7.43, P 5 .49

Score sensitivity for predicting mortality when scores440/80 (APPLEfull) and

4 25/50 (APPLEfast) are taken to predict death

40.9% 67.1%

Score specificity (at440/80 and4 25/50 cut-offs) 98.3% 85.3%

Score sensitivity for predicting mortality when scores4 30/80 (APPLEfull) and

4 22/50 (APPLEfast) are taken to predict death

81.2% 73.8%

Score specificity (at4 30/80 and4 22/50 cut-offs) 89.4% 80.0%

Table 6. Cross validation results of canine APPLEfull and APPLEfast scores trained on the construction population
(n 5 598).

Patient Population

AUROC for

APPLEfull

Hosmer-Lemeshow C

Statistic for APPLEfull

AUROC for

APPLEfast

Hosmer-Lemeshow C

Statistic for APPLEfast

Validation group with ‘‘neoplasia’’ patients excluded

(n 5 174)

0.95 11.65, P 5 .31 0.87 16.80, P 5 .09

Validation group with financial euthanasias excluded

(n 5 206)

0.91 6.07, P 5 .81 0.84 14.01, P 5 .17

Validation group with financial and terminal disease

euthanasias excluded (n 5 199)

0.93 6.41, P 5 .78 0.86 12.58, P 5 .25

Validation group with all euthanasias excluded

(n 5 174)

0.94 26.08, P 5 .003 0.89 31.89, P o .001
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patients by illness severity assists effective clinical re-
search. Treatment groups with substantial differences in
illness severity call into question findings regarding treat-
ment efficacy. Reporting illness severity in objective and
transferable terms lends context to case reports and case
series. Some treatments may only be effective or appro-
priate in the context of severe patient compromise, which
can be formally identified and recorded using a severity
score. For observational studies utilizing regression mod-
eling to identify predictors of specific outcomes, entering
illness severity into a multivariable model can allow a
risk-adjusted analysis to be performed.
Model discrimination refers to the ability of the

model to accurately differentiate those animals that will
live from those that will die. Model calibration refers to
the ability of a model to accurately predict the appro-
priate number of deaths at each level of risk across a

population. Model discrimination can be assessed by
the AUROC characteristic. An AUROC of 1.0 implies
perfect performance, whereas an AUROC of 0.5 im-
plies a model with no better discrimination than a coin
flip. Model calibration is assessed by the Hosmer-
Lemeshow statistic, with a P value 4 .05 implying
acceptable calibration.

Two objective illness severity scores were developed
based on a study cohort of all ICU admissions over a 6-
month period. In the study, hospital ICU admission was
required for any patient requiring continuous IV access
or close monitoring. The study population constituted a
broad case mix with primary clinicians from many ser-
vices including internal medicine, critical care, surgery,
cardiology, oncology, and others. The APPLE scores
reflect the severity of derangement of normal physiology
identified by abnormalities in clinical and laboratory

APPLEfull Score US units

creatinine (mg/dL)
0-0.62

1
0.63-1.35 

8
1.36-2.26 

9
>2.26

9
<5.1

wbc (x109/ l)
5.1-8.5

2
8.6-18 

3
>18

6
<2.6

7
2.6-3.0 

9
3.1-3.2 

albumin (g/dL)
3.3-3.5

2
>3.5

10 
<90

4
90-94 

1
95-97 

SpO2 (%)
98-100
total bilirubin (mg/dL)
0-0.23

6
0.24-0.46 

4
0.47-0.93 

3
>0.93

mentation score
0

5
1

7
2

8
3

13 
4

respiratory rate (bpm)
<25

3
25-36 

5
37-48 

6
49-60 

5
>60

age (years)
0-2

6
3-5 

8
6-8 

7
>8

3
2

4
1

fluid score
0
lactate (mg/dL)
<18.0

2
18.0-71.2 

3
71.3-90.1 

6
>90.1 

Footnote: See Table 3 for calculation of ‘fluid score’ and ‘mentation score’. A value of zero is ascribed for each parameter in the central zone. ‘Mentation score’
is collected at admission, for all others utilise the most abnormal value identified over the 24 hour period following admission. If history and physical exam fail
to prompt assessment of Sp0  or fluid score, assign zero. 

Fig 3. Canine Acute Patient Physiologic and Laboratory Evaluation (APPLEfull) score: Calculated by summing the value in the upper left

corner of the appropriate cell for each of the 10 parameters listed, with a maximum potential score of 80.

APPLEfast Score US units

Footnote: See Table 3 for calculation of  ‘mentation score’. A value of zero is ascribed for each parameter in the central zone.
‘Mentation score’ is collected at admission, for all others utilise the most abnormal value identified over the 24 hour period following
admission. 

7
<84

8
84-102 

9
103-164 

10 
165-273 

glucose (mg/dL) 
>273 

8
<2.6

7
2.6-3.0 

6
3.1-3.2 

albumin (g/dL)
3.3-3.5 

2
>3.5

lactate (mg/dL) 
<18.0 

4
18.0-72.1 

8
72.2-90.1 

12 
>90.1 

5
<151 

6
151-200 

3
201-260 

platelet count (x109/L)
261-420,000 

1
>420

mentation score
0

4
1

6
2

7
3

14 
4

Fig 4. Canine Acute Patient Physiologic and Laboratory Evaluation (APPLEfast) score: Calculated by summing the value in the upper left

corner of the appropriate cell for each of the 5 parameters listed, with a maximum potential score of 50.
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variables, and correlate with likelihood of survival to
hospital discharge.
Two scores were developed to maximize end-user up-

take. The 10-variable score (APPLEfull) optimizes
predictive accuracy, however, where clinical information
or available time is more limited, the 5-variable model
(APPLEfast) can be used. However, the user must accept
some loss of model discrimination when using the re-
duced model. An important strength of the models is the
simplicity of their interpretation. The scores have been
tailored to allow rapid cage-side calculation with the use
of simple and objective clinical criteria. A further
strength of this study was the validation process. A ma-
jor concern of model development is how well model
performance will be maintained if the model is trans-
ferred to a new set of patients either temporally or
geographically. Although some loss of model perfor-
mance is inevitable, a model shown to perform well in a
validation cohort is desirable. A model for which no val-
idation procedure has been performed is of serious
concern to the end-user. Discrimination characteristics
of both the APPLEfast and APPLEfull models were excel-
lent in both the construction and validation cohorts.
Both models calibrated well.

Patients with neoplastic diagnoses made up a relatively
large proportion of our patient group, and had the high-
est patient group mortality risk. Because of concerns
regarding the ability of the model to transfer well to a
patient population with a lower proportion of patients
with neoplastic disease, model discrimination, and cali-
bration also was assessed in the validation cohort with
these patients censored. Model performance remained
excellent.

The performance of the SPI2 score was also assessed in
an independent external validation procedure and found
to be very good, with an AUROC of 0.82 on the com-
bined construction and validation cohorts and good
calibration.

A particular challenge in the development of veteri-
nary risk prediction models is the prevalence of
euthanasia as the major mortality outcome in veterinary
patient populations. This can result in a form of infor-
mation bias known as euthanasia bias. In the referral
hospital setting the request for euthanasia of the animal
by the client typically is made on the basis of information
and opinion received from the clinician. If the clinician
perceives a particular clinical sign to be very negative
and this perception is relayed to the client triggering the

Fig 5. Graphs to show the relationship between Acute Patient Physiologic and Laboratory Evaluation (APPLE) scores and predicted mor-

tality (P) with confidence intervals for population predictions, with underlying scatterplots depicting the study population by mortality group

for each score.
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euthanasia decision, amortality association will be created
whether this association truly exists or not. Mortality as-
sociations may be biased in this way toward a false-
positive identification of association where none exists.
This quandary is not unique to veterinary medicine. In
human neonatal and adult ICUs, between 50 and 90% of
deaths occur in association with withdrawal and with-
holding of care.13,14 The approach taken to date in human
mortality risk prediction studies is to assume that patients
dying after withdrawal of care (eg, discontinuation of me-
chanical ventilation) ultimately would have died had care
been maintained. Risk prediction models then have been
calculated with no differentiation between patients that
died in the face of maximal care and those that died after
withdrawal of care. Despite this issue, these models have
offered a reliable tool to risk stratify patients enrolled in
clinical research for many years.
We elected to take a slightly different approach. We

acknowledged that the purest form of score development
would take place in a patient population in which the
only patients dying would be those experiencing natural
death in the face of maximal intervention. However, this
population does not exist in veterinary medicine. The
performance of humane euthanasia to relieve unneces-
sary suffering in moribund animals considered to be
awaiting death is common within the culture of veteri-
nary medicine. Exclusion of euthanized patients
obviously was not a practical approach for a study of
this type. Instead, we elected to categorize the primary
reason for euthanasia in each case, and perform a cross-
validation of the models while censoring successive
euthanasia categories, recording model discrimination
at each step.
The final group contained only dogs that experienced

natural death. We found that the discrimination of our
models increased as euthanasia categories were censored,
with AUROCs increasing from 0.91 to 0.94 and 0.84 to
0.89. This suggested that the variables and coefficients
assigned in the training data set truly reflected mortality
probability rather euthanasia risk based on false premise.
Calibration was lost in the final natural death only
group, likely reflecting the higher all-cause mortality in
the construction data set relative to mortality restricted
to natural deaths only in the validation data set.
Our cross-validation results suggest that the models

proposed should provide a reliable assessment of indi-
vidual illness severity, and truly reflect underlying
mortality probabilities. In common with all models,
however, they may under- or over predict mortality rates
for the group as a whole if applied prospectively to pop-
ulations with substantially lower or higher mortality
rates than those reported for our populations. Because
the primary intended use for these models is to offer an
objective measure of baseline illness severity for compar-
ison of groups enrolled in clinical research, we do not
regard this as a serious issue for prospective use. Pro-
vided the study groups are from the same underlying
primary population, loss of calibration is unlikely to bias
group comparisons.2

Non-nested models, defined as models with differing
variables, were constructed as dictated by a variable se-

lection process based on optimization of performance in
construction and validation cohorts while imposing a
parsimonious approach on the number of variables to be
included. The final models were selected on the basis of
achieving maximal information for minimal number of
variables with minimal shrinkage between the construc-
tion and validation data sets and retention of calibration.
The smaller model contains variables not present in the
larger model, which may at first seem counterintuitive.
However, in the multivariable context, the predictive
variables retained are not those that are the best predic-
tors in the univariable context, but those that best
explain the mortality variance not already explained by
the other variables in the model. Equally, the risk coeffi-
cients assigned to each category reflect the risk not
already explained by the other variables within the
model, and may also appear counter-intuitive. Thus, the
predictive power of an individual variable within a mul-
tivariable model is codependent in direction and
magnitude on the other variables present. As an exam-
ple, when pH is introduced into a model containing
lactate, the risk coefficients assigned to pH will explain
only the mortality risk not already captured by lactate,
and may appear counter intuitive. Equally, if lactate is
removed, the predictive power of pH will increase, and
the risk coefficients will change. In this way, selection of
variables targeted at explanatory power may well result
in nonnested models in biological systems.

The strength of a multivariable model lies in the ability
of the model to assess the associations between a variable
and mortality while allowing for the concurrent effect of
all of the other variables in the model. For this reason,
the association between a variable and mortality may
differ markedly when the variable is considered in isola-
tion compared with in a multivariable context, and is
dependent on the other variables included in the model.
This is exemplified by the albumin variable. Evaluation
of albumin in univariable form, as in Figure 1, shows the
clinically anticipated steadily increasing mortality risk as
albumin decreases from 40 to 15 g/L. When the concur-
rent effects on mortality risk of glucose, lactate, platelet
count, and mentation score are considered, as in the
APPLEfast score, this association changes slightly with an
increased mortality risk now associated with an albumin
435 g/L compared with an albumin of 33–35 g/L. In this
context, the albumin categories now are modeling the
mortality risk not already captured through glucose, lac-
tate, mentation score, and platelet count. The risk
associations for the albumin o33 g/L categories change
slightly again between the APPLEfast and APPLEfull

models, when the concurrent effects of several additional
variables on mortality are taken into account. Although
the scores assigned in a multivariable model may not be
clinically intuitive, they reflect the mortality risk findings
of the dataset. Clinically intuitive scoring should not be
anticipated in a multivariable context. In addition,
the lowest risk categories for each variable do not neces-
sarily correspond to the normal range in a multivariable
context.

In line with previous studies in veterinary and human
medicine (SPI1, SPI2, acute physiology and chronic
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health evaluation [APACHE], mortality probability
model, ICNARC, severe acute physiology score),2,6,7,15

we elected to select the most abnormal values of variables
observed over the 24-hour period for model entry. There
were several reasons for this approach. First, the use of
the most abnormal rather than the point-of-admission
values made allowance for the difference between pa-
tients that continue to deteriorate despite treatment
compared with those that stabilize, and were felt to be
likely more explanatory. Secondly, as discussed previ-
ously, the confidence intervals associated with any
individual score prediction were wide, and we hoped to
discourage in any way possible the practice of recom-
mending euthanasia at admission based on a patient
score. The scores have been developed and validated on
24-hour admission period values only, and should not be
applied prospectively to values restricted to the admis-
sion period or values at any other time period in the
hospital stay.
The APPLE scores were developed from the coeffi-

cients assigned to the various categories of the variables
by the multivariable logistic models. These coefficients
were in turn driven by the associations between variables
and outcome in a multivariable context averaged across
the patient population. This resulted in score values that
may differ from those that would be anticipated in the
more clinically familiar univariable context. For exam-
ple, in the APPLEfast model, the platelet count assigned
the highest score was the 150–200,000mL category,
whereas in the APPLEfull model an albumin of 31–32 g/L
was associated with a greater mortality risk than an
albumin of o26 g/L when all other variables in the
model were taken into account. The strength of a multi-
variable model lies in the ability of the model to assess the
associations between a variable and mortality while
allowing for the concurrent effect of all of the other
variables in the model. For this reason, the association
between a variable and mortality may differ markedly
when the variable is considered in isolation compared
with in a multivariable context, and is dependent on the
other variables included in the model. This is exemplified
by the albumin variable. Evaluation of albumin in
univariable form, as in Figure 1, shows the clinically
anticipated steadily increasing mortality risk as albumin
decreases from 40 g/L to 15 g/L. When the concurrent
effects on mortality risk of glucose, lactate, platelet count
and mentation score are considered, as in the APPLEfast

score, this association changes slightly with an increased
mortality risk now associated with an albumin 435 g/L
compared with an albumin of 33–35 g/L. In this context,
the albumin categories now are modelling the mortality
risk not already captured through glucose, lactate,
mentation score, and platelet count. The risk associa-
tions for the albumin o33 g/L categories change slightly
again between the CAPfast and CAPfull models, when the
concurrent effects of several additional variables on
mortality are taken into account. Although the scores
assigned in a multivariable model may not be clinically
intuitive, they reflect the mortality risk findings of the
dataset. Clinically intuitive scoring should not be antici-
pated in a multivariable context. The lowest risk

categories for each variable do not necessarily corre-
spond to the normal range in a multivariable context.

A surprising finding of this study was the prevalence of
stress hyperglycemia among dogs admitted to ICU, and
the associations between blood glucose concentration
and mortality risk in both a univariable and multivari-
able context. The upper limit of normal blood glucose in
the dog is variously reported as 6.1–7.9mmol/L depend-
ing on the methodology and laboratory. When diabetics
were excluded from the population, 19% of the remain-
ing admissions demonstrated a blood glucose concen-
tration above 7.9mmol/L, and 7% of nondiabetic
admissions demonstrated a blood glucose concentration
above 10.0mmol/L within 24 hours of admission. When
the entire patient population including diabetics was di-
vided into those exhibiting hyperglycemia (defined as
blood glucose 47.9mmol/L) and normoglycemic ani-
mals, hyperglycemia was associated with an overall
increased mortality risk (OR, 1.67; P 5 .01). This rela-
tionship was further accentuated when diabetics were
excluded from the population (OR, 1.90; P 5 .004), sug-
gesting a protective effect of diabetic status. The
protective effect of diabetes in this context may reflect
the success of insulin therapy in managing the physio-
logic derangements associated with a diabetic crisis,
whereas the increased mortality risk association in non-
diabetics may be because of upregulation of the
adrenocortical axis and secondary insulin resistance pro-
portional to the severity of the primary disease process.
However, when the association between glucose and
mortality was evaluated while controlling for overall se-
verity of illness by the APPLEfull score as a severity
indicator, the association between stress hyperglycemia
and increased mortality was lost (OR51.02, P 5 .95)
This suggests a role for stress hyperglycemia as an epi-
phenomenon rather than playing a truly causal role in
mortality risk.

An association between prolongation of ACT and in-
creased mortality risk was identified in this study. In a
patient subgroup for which full coagulation data were
available, each 10-second lengthening of ACT was asso-
ciated with an estimated 20% increase in mortality odds
(OR, 1.20; 95% CI 1.02–1.42; P 5 .005). PT and PTT
failed to attain a statistically significant association with
mortality risk within the same subgroup. ACT is a
readily available and inexpensive bench-top test that has
been shown to have strong correlation with both in-
creased C-reactive protein concentrations and decreased
antithrombin concentrations in dogs admitted to an
ICU.16 The association between increased mortality risk
and lengthening ACT likely reflects the morbidity of sys-
temic inflammatory response-associated coagulopathies.

There are several limitations to this study. First, the
hospital infrastructure may be atypical, in that all pa-
tients requiring IV access were admitted to the ICU.
Thus, the study population was not limited to critically ill
dogs, but to all dogs requiring IV access or 24-hour ob-
servation. Hence, caution must be exercised if the model
is applied to an ICU population with different admission
criteria. Secondly, score development and validation
were based exclusively on data from a single center. This
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raises uncertainty regarding the external validity of the
model. Validation on an international scale is recom-
mended. Thirdly, the models were developed on
relatively small population samples. Model stability im-
proves as a function of sample size, with perfect stability
achieved when the entire population is sampled. The
scores assigned to some variable categories may change
if the models were constructed on a larger population. To
provide context, the last version of a widely used human
illness severity model, the APACHE IV, was constructed
on a sample of 131,618 patients from 104 ICUs.14

Fourthly, because of concerns with sample size and
model stability when used prospectively, diagnosis spe-
cific variables were not used. However, primary
diagnosis can be a highly determinative variable for mor-
tality risk. The inclusion of diagnosis specific coefficients
could be a useful and highly predictive feature to con-
sider for future model modification.
Finally, a major concern of the model developers was

that the models might be inappropriately used to direct
euthanasia decisions. Veterinarians are frequently in the
position of being called upon by owners to predict pa-
tient survival as a factor in the owner’s decision of
whether or not to pursue treatment. A study in human
medicine comparing clinical judgment with a score sys-
tem (APACHE II) concluded that although clinical
judgment outperformed the model for predicting mortal-
ity for individual patients, ultimately no method was
reliable for survival prediction.17 Euthanasia decisions
are complex and highly contextual, and should remain
the collective responsibility of the individual clinician
and owner. At most, a severity score can provide an ob-
jective adjunct to the informed but subjective opinion of
the clinician. Using these tools as part of a decision-mak-
ing process is reasonable and prudent. Using these tools
to dictate individual patient decisions is not appropriate.
This is further highlighted by reviewing the performance
characteristics of the model. The APPLEfast score has a
specificity of 85% when a score above 25 is taken to pre-
dict death, implying that when applied to a similar
population, 85% of animals that live would in fact be
predicted to live by the score. Thus, the false positive
fraction (1-Sp) is 15%, implying that 15% of patients
predicted to die by the model would in fact live, and
score-driven euthanasia would terminate 15% of patients
unnecessarily. The strength of illness severity models is in
providing a formal and objective patient risk stratifica-
tion system. This can then be used to strengthen clinical
trial design and analyses in veterinary medicine.

Conclusions

Our analysis of a database of dogs admitted to an ICU
enabled development of 2 new scoring systems based on
readily available physiologic and biochemical variables
collected within 24 hours of ICU admission. After a sur-
vey of clinicians, the scores were presented in a highly
accessible format facilitating rapid manual calculation.
Performance of both models is higher than that previ-
ously reported, and both have been validated on a
patient sample independent to that used for model con-

struction. External validation of the models is
recommended. Use of a score with good prognostic abil-
ity provides the possibility of identifying high-risk
patients likely to benefit from aggressive management or
new treatment modalities. Of primary importance, how-
ever, is the capacity of an accurate and objective
stratification system to improve the quality of observa-
tional clinical research.
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Appendix 1: Survey Conducted to Evaluate Perceptions,

Clinical Use, and Preferred Format of Outcome or

Illness Scores

Method

A qualitative questionnaire consisting of 11 open ques-
tions was administered through face-to-face interviews.
Study population was a convenience sample of 23 faculty
and residents at a veterinary teaching hospital. The sur-
vey was conducted by a single interviewer over a 2-day
period. Response rate was 100%. Data analysis was per-
formed in Stata version 10.1 (StataCorp LP, College
Station, TX).

Results

The commonest reason given for lack of illness score
uptake in veterinary clinical research was low user conve-
nience (48%); scores were perceived as cumbersome to
calculate and use. On a similar note, the most desirable
score characteristic was ease of use (29%), with score ac-
curacy for predicting outcome and score objectivity the
next most requested characteristics (17% for each). The
most desirable score format was perceived as one which
could be rapidly hand calculated from a table (78%),
while the least desirable was one involving calculation
from an exponentiated equation (4%). Scores in some
form were used by the majority of responders in their day
to day clinical practice (74%). Responders were familiar
with between 0 and 17 illness scores, with a median of 4.
When subjects were polled regarding appropriate illness
or outcome score use for individual patients, 65% of sub-
jects felt that scores could be used in conjunction with
clinical judgment to appropriately direct therapy/eutha-
nasia, 26% felt they should not be used to direct therapy/
euthanasia for the individual but should be applied only to
populations, and 9% felt they could be used appropriately
as a sole means of directing therapy/euthanasia.

Conclusion

End user convenience is a key factor determining score
uptake. Outcome scores are achieving use in clinical
practice; however, perceptions of appropriate use vary
widely.

APPLEfull Score SI units

creatinine (umol/ l)
0-55

1
56-120 

8
121-200 

9
>200 

9
<5.1

wbc (x109/ l)
5.1-8.5

2
8.6-18 

3
>18

6
<26

7
26-30 

9
31-32 

albumin (g/ l)
33-35

2
>35

10 
<90

4
90-94 

1
95-97 

SpO2 (%)
98-100
total bilirubin (umol/ l)
0-4

6
5-8 

4
9-16 

3
>16

mentation score
0

5
1

7
2

8
3

13 
4

respiratory rate (bpm)
<25

3
25-36 

5
37-48 

6
49-60 

5
>60

age (years)
0-2

6
3-5 

8
6-8 

7
>8

3
2

4
1

fluid score
0
lactate (mmol/ l)
0-1.9

2
2.0-7.9 

3
8.0-11.0 

6
>11

Footnote: See Table 3 for calculation of ‘fluid score’ and ‘mentation score’. A value of zero is ascribed for each parameter in the central zone. ‘Mentation score’ 
is collected at admission, for all others utilise the most abnormal value identified over the 24 hour period following admission. If history and physical exam fail 
to prompt assessment of Sp0  or fluid score, assign zero. 

Figure A1. Canine Acute Patient Physiologic and Laboratory Evaluation (APPLEfull) score: Calculated by summing the value in the upper

left corner of the appropriate cell for each of the 10 parameters listed, with a maximum potential score of 80.

Appendix 2: SI unit APPLE models
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7
<4.6

8
4.6-5.6 

9
5.7-9.0 

10
9.1-15.0 

glucose (mmol/ l) 
>15.0

8
<26

7
26-30

6
31-32

albumin (g/ l) 
33-35

2
>35

lactate (mmol/ l)
<2

4
2-8

8
8-10

12
>10

5
<151

6
151-200

3
201-260

platelet count   
261-420,000

1
>420

mentation score
0

4
1

6
2

7
3

14
4

APPLEfast Score SI units 

Footnote: See Table 3 for calculation of ‘mentation score’. A value of zero is ascribed for each parameter in the central zone.
‘Mentation score’ is collected at admission, for all others utilise the most abnormal value identified over the 24 hour period following
admission.

Figure A2. Canine Acute Patient Physiologic and Laboratory Evaluation (APPLEfast) score: Calculated by summing the value in the upper

left corner of the appropriate cell for each of the 5 parameters listed, with a maximum potential score of 50.
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