
SECRETS OF SUCCESSFUL OUTSOURCING | SIX SIGMA PART II | POST-BUILD PROFILING

VOLUME 6 • ISSUE 11 • NOV/DEC 2009 • $8.95 • www.stpcollaborative.com

GET
FLEXIBLE!
Apply Agile
Development
Techniques to
Performance Tests

Mitigate Risk
With Data-Driven
Scenario Modeling

How Do the Metrics
Measure Up? page 14

1144 COVER STORY

Automated Testing:
How Do Your Metrics
Measure Up?
Without the proper metrics, all the automation in the
world won’t guarantee useful software test results.
Here’s how to ensure measurements that matter.
By Thom Garrett

2200 Agile Performance Testing
Flexibility and iterative processes are key to keeping
performance tests on track. Follow these guidelines.
By Alexander Podelko

2277 Data-Driven Software
Modeling Scenarios
To get a clear picture of how a system will perform,
create a realistic framework built on real-world data.
By Fiona Charles

3344 Six Sigma Part II
How to apply Six Sigma measurement methods to
software testing and performance.
By Jon Quigley and Kim Pries

VOLUME 6 • ISSUE 11 • NOV/DEC 2009
contents

DEPARTMENTS

6 Editorial
At the member-based
STP Collaborative,
we can hear you now.

8 Conference
News
NASA Colonel Mike
Mullane shared a
lesson in leadership
at the October STP
Conference. Check
out coverage of this
event and more.

9 ST&Pedia
When it comes to
code coverage, what
exactly are we meas-
uring when we refer
to “percentage of the
application”?
By Matt Heusser &
Chris McMahon

11 CEO Views
Relinquishing control
is critical to maximize
the benefits of out-
sourced testing, says
Qualitest US CEO
Yaron Kottler, who
shares global insights
into the state of soft-
ware testing and QA.

38 Case Study
Want reliable runtime
intelligence from the
field about end user
feature usage?
Post-build injection
modeling, which is
being integrated into
.Net, Java and more,
allows just that.
By Joel Shore

4 • Software Test & Performance

www.stpcollaborative.com • 5

A PublicationREDWOOD
Collaborative Media

GET MORE ONLINE AT

Software Test & Performance Magazine (ISSN- #1548-3460) is published monthly except combined issues in July/August and November/December by Redwood Collaborative Media,
105 Maxess Avenue, Suite 207, Melville, NY, 11747. Periodicals postage paid at Huntington, NY and additional mailing offices. The price of a one year subscription is US $69 for postal
addresses within North America; $119 elsewhere. Software Test & Performance Magazine is a registered trademark of Redwood Collaborative Media. All contents copyrighted 2009
Redwood Collaborative Media. All rights reserved. POSTMASTER: Send changes of address to Software Test & Performance Magazine, 105 Maxess Road, Suite 207, Melville, NY 11747.
To contact Software Test & Performance Magazine subscriber services, please send an e-mail to membership-services@stpcollaborative.com or call 631-393-6051 ext. 200.

Have you ever tried to auto-
mate a test and had it backfire?
Tell us your story. Visit our com-
munity forum to take part in the
discussion.
bit.ly/3Hlapt

The Test & QA Report offers
commentary on the latest
topics in testing. In our current
issue, Karen Johnson shares
insights into how to motivate
test teams, at
stpcollaborative.com/knowledge
/519-motivating-test-teams

Research, source, comment
and rate the latest testing tools,
technologies and services, at
stpcollaborative.com/resources

Visit STP Contributing Editor
Matt Heusser's blog, Testing at
the Edge of Chaos, at
blogs/stpcollaborative.com/matt

“Transforming the Load Test
Process” discusses the short-
comings of traditional load test-
ing and problem diagnostic
approaches with today’s com-
plex applications. Download at
stpcollaborative.com/system/Dyna
TraceWhitepaper.pdf
(Sponsored by Dynatrace)

CONTRIBUTORS

THOM GARRETT
has 20 years’
experence in plan-
ning, development,
testing and deploy-
ment of complex
processing sys-
tems for U.S. Navy

and commercial applications. He
currently works for IDT.

ALEXANDER
PODELKO is
a Consulting
Member of Tech-
nical Staff at
Oracle, responsible
for performance
testing and tuning

of the Hyperion product family.

FIONA
CHARLES has
30 years’ experi-
ence in software
development and
integration. She
has managed and
consulted on test-

ing in retail, banking, financial
services, health care and more.

JON QUIGLEY
is a test group
manager at
Volvo Truck and a
private product
test and develop-
ment consultant.

At Stoneridge,
KIM PRIES is
responsible for
hardware-in-the-
loop software test-
ing and automated
test equipment.

THERE’S SOMETHING REFLECTIVE THAT
occurs after a big event, whether it’s the
launch of a new piece of software or, in my
case, a conference for the people who test
software. Happily, STPCon 2009 was a great
success (see page 8), and while we received
some constructive criticism, we heard over-
whelmingly positive feedback.

Two “deep” thoughts occurred to me in
this pensive state. The first is that STP Col-
laborative is gathering some real momentum.
The second is that life takes us down some
unexpected paths. One tester at STPCon told
me he feels he's rare in that
he sought out a career in test-
ing, whereas many tend to fall
into the job by circumstance.
As someone who planned a
career in corporate finance
and now finds himself happily
serving as CEO of a communi-
ty-focused media company, I
can relate to his peers.

In my case, I credit genet-
ics. My father, Ron Muns, was
a social media pioneer before
social media technology exist-
ed. He founded the Help Desk Institute (now
HDI) in 1989—not only before Twitter, but
before AOL launched a DOS-based interface.
His business succeeded by focusing on its
members and working diligently to raise the
state of the technical support profession. He
would cringe to hear his business called a
media company, because to him a member-
ship organization was something different.
HDI was an institute—an association in the
business of serving its members. And being a
member was far better than being a mere sub-
scriber because every member had a voice,
and HDI magnified that voice.

The company had a conference and pub-
lications just like a media business, but it put
members first and let advertisers follow. It
communicated with members through snail
mail (not much choice then!) and enabled net-
working among members through local chap-
ter meetings in addition to conferences.
Before online community building became the
rage, HDI built a social media company offline.

The critical parts of this legacy are those
we at STP Collaborative strive to imitate: to

be a member-centric, listening organization
that helps individual testers do their jobs bet-
ter, and to advance the craft and business of
software testing.

That may sound like PR-speak, but
we’re putting our money where our mouths
are and bringing in several new team mem-
bers, including three seasoned HDI alumni.
We’re excited to welcome Peggy Libbey,
who will serve as our new president and
COO. Peggy is a business professional with
nearly 30 years' experience in finance and
executive management, including nine years

with HDI. Peggy's background
managing a large professional
community is marked by her
ability to build a corporate
infrastructure highly focused
on customer service.

We’re also pleased to wel-
come Abbie Caracostas,
handling professional training
and development; Janette
Rovansek, focusing on IT, Web
and data management servic-
es; Joe Altieri, in sales; and last
but not least, veteran business-

tech journalist Amy Lipton as our new editor.
They all join our existing marketing team,
including Jen McClure, CMO and director of
community development, and Teresa
Cantwell, marketing coordinator. The new
team spent their first days on the job together
at STPCon, where they talked face to face
with testers and STP Collaborative advisory
board members, including Matt Heusser,
James Bach, Scott Barber, BJ Rollison, Ross
Collard and Rex Black. I only wish I'd have had
the same opportunity my first week on the job!

So what does all this mean to you? As
our operational team grows, our ability to
deliver on our vision for STP Collaborative
increases. We’re both excited and humbled by
the opportunity ahead, and we’re confident
with the participation of a diverse member
base we can build a community resource that
delivers best-in-class content, training, profes-
sional networking and knowledge sharing. We
hope you’ll join us in pursuing this mission,
and making ours a community in which every
voice is valued.

Thanks for listening! ý

6 • Software Test & Performance

publisher’s note

A Legacy Worth Imitating

c

Andrew Muns

VOLUME 6 • ISSUE 11 • NOV/DEC 2009

Founder & CEO
Andrew Muns

Chairman & President
Peggy Libbey

105 Maxess Road, Suite 207
Melville, NY 11747
+1-631-393-6051
+1-631-393-6057 fax
www.stpcollaborative.com

Cover Art by The Design Diva

REDWOOD
Collaborative Media

Editor
Amy Lipton
alipton@stpcollaborative.com

Contributing Editors
Joel Shore
Matt Heusser
Chris McMahon

Copy Editor
Michele Pepe
mpepe@stpcollaborative.com

Art Director
LuAnn T. Palazzo
lpalazzo@stpcollaborative.com

Publisher
Andrew Muns
amuns@redwoodcollaborative.com

Media Sales
Joe Altieri
jaltieri@redwoodcollaborative.com

Chief Operating Officer
Peggy Libbey
plibbey@redwoodcollaborative.com

Chief Marketing Officer
Jennifer McClure
jmcclure@redwodcollaborative.com

Marketing Coordinator
Teresa Cantwell
tcantwell@redwodcollaborative.com

Training & Professional Development
Abbie Caracostas
acaracostas@redwoodcollaborative.com

IT Director
Janette Rovansek
jrovansek@redwoodcollaborative.com

Reprints
Lisa Abelson
abelson@stpcollaborative.com
516-379-7097

Membership/Customer Service
membership-services
@stpcollaborative.com

Circulation & List Services
Lisa Fiske
lfiske@stpcollaborative.com

http://www.ranorex.com/?utm_source=STP&utm_medium=magazine&utm_campaign=STPMAG2009

“THE CHALLENGER WAS NO
accident—it was an example of a pre-
dictable surprise," said Colonel Mike
Mullane, a retired NASA astronaut, in the
opening keynote at the Software Test &
Performance Conference (STPCon
2009), which kicked off Oct. 19 at the
Hyatt Regency in Cambridge, Mass.
Mullane, who flew in three space shuttle
missions, shared insights into the dan-
gers of the “normalization of deviance”
as it relates to the 1986 Challenger dis-
aster, as well as to testing in general.

What is “normalization of deviance?”
“When there is no negative repercussion
for taking a shortcut or deviating from a
standard, you come to think it’s OK to do
it again,” he explained, “and that almost
always leads to a ‘predictable surprise.’ “

How to avoid this type of outcome?
Mullane recommended the following:

• Realize you are vulnerable to accept-
ing a normalization of deviance. “We
all are. We’re human.”

• Plan the work and work the plan,
and be aware of the context.
"When you’re testing software, use
it as the customers will use it, not
as the developers designed it.”

• Be a team member, not a “passen-
ger.” If you spot a problem, point it
out—don’t assume others know
more than you do.

• Lead others by empowering them
to contribute to the team.

Making the Leap
“NASA is just like us,” and deals with
many of the same challenges, including
multiple and conflicting vendors, changing
vendors midstream, and changing rules
and priorities," said DevelopSense's
Michael Bolton, who presented the after-
noon keynote, "Testing Lessons Learned
From the Astronauts.”

Bolton discussed two dominant
myths: Scientists are absolutely special
people, and scientists are simply sophisti-
cated chefs. NASA is an example of these

myths in progress, he said.
Bolton introduced the idea of heuris-

tics, which he defined as a fallible method
for solving problems or making decisions.
“It’s part of the world of being a tester to
find inconsistencies," he explained.
"Heuristics are valuable in testing because
they help accomplish this.”

“Testing is about exploration, discov-
ery, investigation and learning," he added.
"Testing can be assisted by machines, but
it can’t be done by machines alone.
Humans are crucial.”

Speed Geeking, Anyone?
In addition to more than 30 breakout ses-
sions held during the conference, cover-
ing topics from agile testing to test
automation, performance testing, test
management and the latest test tools,
technologies and trends, STPCon hosted
its first (and very lively) “speed geeking”
session, led by ST&P Magazine contribut-
ing editor Matt Heusser. Participants
included Scott Barber, executive director
of the Association for Software Testing;
exploratory testing experts James Bach
and Jonathan Bach; David Gilbert, presi-
dent and CEO of Sirius SQA; Justin
Hunter, president, Hexawise; and Michael
Bolton. Each discussion leader had five
minutes to cover one aspect of software
testing, followed by two minutes of Q&A.

More than 50 test and QA profes-
sionals also took part in two new STP
training courses at the weeklong confer-
ence: Agile Testing with Bob Galen, direc-
tor of R&D and Scrum Coach at iContact
and principal consultant for RGalen
Consulting Group, and Test Automation
with Rob Walsh, president, EnvisionWare.
Galen covered just-in-time test ideas,
exploratory testing, all-pairs testing, and
ways to drive collaborative agile testing.
Walsh addressed how to make the busi-
ness case for automated testing and intro-
duced participants to a variety of test
automation tools. Open source expert
Eric Pugh delivered a half-day session on
the automated continuous integration
process using the open-source Hudson
system as an example.

New one-day STP workshops includ-
ed one on test management, led by con-
sultant Rex Black with CA’s Bob
Carpenter, and another on performance
testing, led by Scott Barber, joined by a
panel of performance testing experts
including James Bach, Dan Bartow, Ross
Collard, and Dan Downing.

The Value of Exploratory Testing
Brothers James and Jonathan Bach pre-
sented the closing keynote, sharing a
newly revised model of the structure of
exploratory testing. “It's wrong to call
exploratory testing unstructured testing,"
James Bach said. “The structure of the
test becomes evident through stories.”

Exploratory testing involves learning,
test design and execution as activities that
run in a parallel process, he explained. It
emphasizes "the personal freedom and
responsibility of testers to optimize the
value of their work.”

More Online
Check out blog posts and tweets from the
conference at www.stpcollaborative.com
/community and photos by ST&P Mag-
azine contributor Joel Shore at http://
www.stpcon.com.ý

STPCon 2009 Takeaways
c

Jen McClure is CMO and director of community
development for Redwood Collaborative Media.

conference news

Be a team member, not a “passenger,”
advised NASA’s Colonel Mike Mullane.

8 • Software Test & Performance NOVEMBER/DECEMBER 2009

By Jen McClure

AUTOMATED TESTS ALLOW US
to run a test suite and compare it with
an entire application to see what per-
centage of the application is covered
by the tests. The question then
becomes: “What exactly are we meas-
uring when we say “percentage of the
application”?

Here are some definitions of vari-
ous forms of software test coverage,
courtesy of Wikipedia:

Function coverage: Number of func-
tions tested/number of functions in the
application

Statement coverage: Number of lines
of code in the application/total source
lines of code

Condition coverage (or predi-
cate coverage): In addition to lines of
code, measure statements that might
not execute

Decision (or branch) coverage:
Every conditional (such as the “if” state-
ment) has been exercised/total possible
number of branches

Entry/exit coverage: Has every pos-
sible call and return of the function been
executed?

Path coverage: Every combination of
conditionals/total number of combinations

...And the list goes on.
To further explain the concept, let’s

look at code coverage for a simple func-
tion—a subroutine that validates a stu-
dent ID at a local college.

According to the requirements,
“student IDs are seven-digit numbers
between one million and six million,
inclusive.”

Pseudocode for this function is:

function validate_studentid(string sid) return
TRUEFALSE
BEGIN

STATIC TRUEFALSE isOk;
isOk:= true;

if (length(sid) is not 7) then
isOk = False;

if (number(sid)<=1000000
or number(sid)>6000000) then

isOK = False;

return isOk;
END

Now let’s see what
it would take to get to
100 percent coverage of
this subroutine.

Function coverage: Call the function
once with the value “999,” return with
“That is not a valid student ID,” and we
have 100 percent function coverage.

Statement coverage: Likewise, an
invalid value is likely to hit all the lines of
the application. (If we did this, would you
feel “covered?”)

Decision coverage: This requires us
to execute the “if” statements in both
true and not true conditions. We can do
this with two tests: The text string
”999” along with the text string
“1500000,” or “one point five million.”
The first value will execute both condi-
tions; the second hits neither.

Entry/exit coverage: If the function

were called from four or five different
places, we’d need to test it four or five
different times. But since the logic does-
n’t change, those tests wouldn’t tell us

anything new.

Path coverage: Of the
coverage metrics com-
monly used, path testing
is among the most rigor-
ous. A method containing
two binary conditions has
a total of four possible
execution paths, and all
must be tested for full
path coverage. Table 1
illustrates a way to ac-
complish this.

But which are not covered?
• The software has a bug at the

bounds. When this comparison is made:

number(sid)<=1000000

It will consider all numbers at or
below one million invalid and set isOk to
false. Yet one million is a valid student ID
according to the requirements.

• There’s a bug in the requirements,
which read “one million through six mil-
lion, inclusive,” but should have read
“…through 6,999,999, inclusive.” (Ap-
parently, the analyst writing the require-
ments had a different definition of “inclu-
sive” from the rest of the world.)

• What if the student enters an ID
of the form 123 456 789 or includes
commas? These entries might be limited

Considering Code Coverage
c

st& pedia

Matt Heusser and Chris McMahon are career
software developers, testers and bloggers. Matt
also works at Socialtext, where he performs
testing and quality assurance for the compa-
ny’s Web-based collaboration software.

The encyclopedia for software testing professionals

Matt Heusser and
Chris McMahon

TABLE 1: TESTING FOR FULL PATH COVERAGE

Input

“foo”

7000000

01000001

5000000

number(sid)<=1000000
or
number(sid)>6000000

True

True

True

False

length(sid) is not
seven

True

False

False

False

Expected Result

invalid id

invalid id

invalid id

valid id

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 9

by the GUI form itself, which is usually
not counted in code coverage metrics.

• Likewise, what if the input window
or screen is resized? Will it be repaint-
ed? How? Behavior in these situations is
often hidden or inherited code that cov-
erage analyzers might not find.

• The subroutine calls number() and
length(), which are external libraries.
What if those libraries have hidden bugs
in areas we don’t know about? (Say, a
boundary at 5.8 million causes a “sign
bit” rollover, or “if” number() throws an
exception when words or a decimal
point is passed into it?)

• What if the user enters a very
long number in an attempt to cause a
stack overflow? If we don’t test for it, we
won’t know.

• isOk is a static variable. This means
only one variable will exist, even if multiple
people use the application at the same
time. If we’re testing a Web app, maybe
simultaneous use can cause users to step
on each other’s results. What happens if

we have simultaneous users in the sys-
tem? We don’t know. We didn’t test for it!

Suddenly, path testing doesn’t
look like a magic potion after all. What
might work better is input combina-
torics coverage. Unfortunately, though,
the number of possible test combina-
tions is usually infinite.

The Place for Coverage Metrics
The total behavior of an application is
more than the “new” code written by
developers; it can include the compiler,
operating system, browser, third-party
libraries, and any special user opera-
tions and boundary conditions—and
yes, it is those special user operations
and boundary conditions that get us
into trouble.

What coverage metrics tell us is
generally how well the developers have
tested their code, to make sure it’s pos-
sible the code can work under certain
conditions. A “heat map” that shows
untested code can be very helpful, for

both the developers and the testers.
Now, when the technical staff

crows that test coverage is a high num-
ber, consider that the developers have
done a good job ensuring the code did
as they asked it to do. Often, however,
that’s a different question from, “Is the
software fit for use by a customer?”

When programmer test coverage is
high, we've reached the difference between
“as programmed” and “fit for use.” That’s not
when we’re done. Instead, it’s time for testers
to step in and do their thing.

Recommended Reading
For more information on this subject, we
suggest a paper published in 2004 by
Walter Bonds and Cem Kaner called
“Software Engineering Metrics: What
Do They Measure and How Do We
Know?” (http://www.kaner.com/pdfs
/metrics2004.pdf) and Brian Marick’s
“How To Misuse Code Coverage,” from
1997 (http://www.exampler.com/test-
ing com/writings/coverage.pdf).” ý

st& pedia

10 • Software Test & Performance NOVEMBER/DECEMBER 2009

YARON KOTTLER IS IN GOOD
company. As someone who started at an
entry-level position and worked his way
to CEO, he shares an experience with
top executives from Best Buy,
GE, McDonald’s, Morgan
Stanley, Nortel and Seagate.

Today, Kottler runs Quali
Test US, the North American
branch of the QualiTest Group.
QualiTest is a global software
testing and quality assurance
consultancy and service provider
focused exclusively on onshore
QA and testing. The company
employs more than 800 testing
and QA professionals in 10 loca-
tions throughout the United
States, Europe and the Middle East.

ANDREW MUNS: What was the
first job you ever had?

YARON KOTTLER: The very first
job was working at a bike shop in Tel
Aviv, but my first real job—believe it or
not—was at QualiTest, where I was
hired as a junior testing engineer.

How did you get started in the
field of software testing and what
was the career path that led you to
be CEO of QualiTest US?

Originally, I wanted to be a software
developer, and when I joined QualiTest
[10 years ago], I thought of software
testing as a path toward a career as a
developer. Nonetheless, I ended up
staying in software testing and moved
up through the ranks from senior test
engineer to test lead, test manager,
business manager, load testing manag-
er, and was eventually sent to Turkey to
build out the effort there. I ended up
traveling back and forth between there
and Israel to build that business.

I became CEO after the company
acquired IBase Consulting [in 2006].
This was primarily a strategic acquisition
that QualiTest used to launch its busi-
ness in the US market.

What are the key differentiators
of QualiTest’s testing services that
allow you to compete effectively in
the US market?

There are a few
things that make us
stand out. First,
we’re completely
focused on QA and
testing. We don’t do
test and develop-
ment, we don’t sell
software—we just
concentrate on what
we do best.

Second is our
strength in the
onshore market.
We believe high-
quality onshore
teams in many
cases outper-
form their off-
shore counter-
parts.

Having a large international practice
gives us advantages as well. We have the
ability to take the new technologies and
practices from Europe or North America
and apply them in other markets.

Lastly, we’re very good at hiring
good people and developing them into
world-class testers. We focus more on
smarts and potential than resumes, and
have a mentorship program and internal
training resources that allow people to
grow within the organization. Consider
my career path!

You interviewed attendees of our
conference last year about onshore
vs. offshore testing services and
found that—contrary to popular
belief—onshore testing is often more
cost-effective. Have trends since
then shown increased interest in

onshore vs. offshore testing?
Absolutely. For many reasons, a test

team located onshore outperforms and
is more efficient than an offshore team.
Testers sharing a similar culture, lan-
guage and time zone end up having a
huge cost advantage that may not be
apparent from a glance at the hourly rate.

There has been growth in onshore
outsourcing, but I believe this is also due
to the overall growth in outsourcing and
not necessarily only to taking share from
the offshore side.

In your opinion, what is the key
to successful outsourcing of test
services?

I would say the most
important things are
transparency and having
the appropriate test man-
agement tools. Also,
being able to trust your
service provider and feel
comfortable that they can
deliver. This is key: If you
are going to outsource, you
have to learn to let go of
some control.

Lastly, I’d say internal organization
buy-in. If the operations team or the
developers disagree with the outsourc-
ing decision, it will be hard for them to
work with the external test team.

What challenges arise for distrib-
uted teams using agile methodolo-
gies? Does this make outsourcing
more or less appropriate for agile
practitioners?

I might be old-fashioned, but in my
opinion agile and distributed teams don’t
work together. I see a lot of teams who
describe their methodology as agile or
Scrum, but who in reality have created a
hybrid workflow that’s adapted to the
realities of a distributed team.

As for the main challenges of agile,
these aren’t usually related to applying
the methodology. Barriers to successful

Outsourced Testing Demands
Trust and Transparency
c

CEO VIEWS

RESUMÉ

JOB: CEO, QualiTest USEDU: MBA, Hebrew University;BA, Interdisciplinary Center
PRIORS: QA specialist, internationalbusiness development, business manager, testingengineer, testing teamleader, all with QualiTest

Yaron Kottler

By Andrew Muns

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 11

implementation usually come from the
organizational culture. After all, agile the-
ory is simple to understand. Getting
teams to embrace the necessary culture
for the method to work is the hard part.

How is software testing conduct-
ed differently in the US vs. overseas?
Are there cultural or regional differ-
ences in the definition of “quality”?

Differences in the definition of qual-
ity and the importance of quality seem to
vary more by organization and industry
than by country. Corporate culture varies
widely even within a given country, and
that’s a bigger driver of how much weight
is put on shipping a quality product.

There are regional differences in
how testing is done, however. US-based
organizations are generally much further
along in adopting agile and are usually
more willing to try new things. The UK is
more or less like the US.

In the Netherlands and Germany,
testing is much more scripted and there
is much more emphasis placed on met-
rics and measurement.

The use of the words “testing” and
“QA” also varies, with many in the US
using the term QA to describe what I
think is really testing.

Companies overseas tend to have
a better understanding of the value of
testing and how testing is an activity that
saves money when done correctly.

You’ve spoken a lot about “vir-
tuology.” What does this mean and
why are testers interested?

The idea is to use virtualization
techniques to record a testing session in
its entirety. This is analogous to a DVR
for a computer where you can rewind,
fast forward, pause and go live at any
moment. That is basically a time
machine, if you think about it. You can
now record everything occurring at the
time a test is conducted, including net-
work conditions, RAM, ROM, OS condi-
tions as well as any server conditions—
not just a series of clicks and keystrokes
as is done by GUI automation tools.

This is an amazing tool for debug-
ging and resolving defects that are diffi-
cult or impossible to reproduce. A
recent study of the defect life cycle in 28
testing projects, conducted by Quali-
Test, showed that about 9 percent of the
defects receive the “can't reproduce”

status at some point of the defect life
cycle. This can be attributed to either
inadequate reporting or nondeterministic
application behavior.

So virtuology can simplify test
result documentation. It can also con-
tribute greatly to the efficiency of the
testing process, as testers can now
spend more of their time actually testing
and less on activities such as prepara-
tion, environment setup, running pre-
steps and gathering test results. I like to
summarize the benefits as the three
“E’s” of virtuology—exploration, effi-
ciency and evidence.

What are some of
the most useful vir-
tuology tools current-
ly available?

In my opinion
VMware’s products
offer the most value for
the money. We’ve
rolled it out to clients
with good success.

In addition to vir-
tuology, how will the
next generation of
testers make use
of cloud computing
technologies?

The benefits provid-
ed in environment setup
are becoming invaluable
to functional and com-
patibility testing and I am
sure load testing will
continue to be an area to
benefit, as well as appli-
cation environments
central to this process.

Virtuology tools
aren’t currently hosted in
the cloud, but I hope we’ll
see them start to take
advantage of cloud computing environ-
ments. VMware is great, but is still in the
early stages of what these tools can
become as they mature.

Call me crazy, but my expectation
for the future is that the world is going
back to the days of the mainframe in
which the cloud is replacing your two-
tone computer.

How is the role of the tester with-
in the organization changing and what
will test teams look like in 10 years?

I hope testing teams will become
more of an extension of operations and
will work more closely with, and as advo-
cates for, the users rather than report to
development or IT as they usually do.

I also think we’ll see agile being
used more widely and that we’ll see
agile and Scrum teams mature.

What is the most important skill
an individual tester can possess?

Good analytical skills, understand-
ing the big picture and most importantly
understanding what the end user needs
and wants.

Testers must under-
stand the business
they’re working in, and
for that to happen you
need a dialog with oper-
ations or with end-user
proxies.

Of course, testing
requires a highly special-
ized skill set that opera-
tional people usually
don’t possess, so we are
talking about a multidisci-
plinary approach to both
testing and operations.

Are there any com-
panies that are doing
this well?

I’m not sure, but
this is essentially about
training—not training on
testing methodologies,
but training that helps
testers understand the
business context.

What advice would
you give to someone
beginning a career in
testing?

Try to get a job at a
place that will let you

experiment with lots of different tech-
nologies, tools and methodologies.
Most importantly, look for a company
that will give you some freedom to grow
in the direction that suits you best.

I know this is talking my own book,
but working with a consulting firm is a
great way to start out. You get a lot of
experience on a diverse range of proj-
ects. This allows you to find out what
you like, and limits the time you spend
on projects that aren’t a good fit. ý

“My expectation

is that the world

is going back

to the days of

the mainframe

in which the

cloud is replacing

your two-tone

computer. ”

CEO VIEWS

12 • Software Test & Performance NOVEMBER/DECEMBER 2009

Metrics are an essential gauge of the health, quali-
ty, and progress of any automated software testing pro-
gram. They can be used to evaluate past performance,
current status and future trends. Good metrics are
objective, measurable, sharply focused, meaningful to
the project and simple to understand, providing easily
obtainable data. And while many metrics used in con-
ventional software quality engineering tests can be
adapted to automated software tests, some metrics—
such as percent automatable, automation progress and
percent of automated test coverage—are specific to
automated testing.

Before we discuss those and other metrics in depth,
however, note that not every test should be automated
just because it could be automated. Perhaps the most

critical decision in the test case requirements-gathering
phase of your automation effort is whether it makes
sense to automate or not. And that decision itself is typ-
ically based on a metric: return on investment. Indeed,
the test cases for which you can show that automation
will deliver a swift and favorable ROI compared with that
of general testing are the cases for which automated
testing is justified.

START WITH THE END IN MIND
An integral part of any successful automated testing
program is the definition and implementation of specific
goals and strategies. During implementation, progress
against these goals and strategies must be continuous-
ly tracked and measured using various types of auto-

By Thom Garrett

“W hen you can measure what you are speaking about, and can express it in numbers,
you know something about it; but when you cannot measure it, when you cannot
express it in numbers, your knowledge is of a meager and unsatisfactory kind.”

—Lord Kelvin, Physicist

Without the Proper Metrics, All the Automation
In the World Won’t Yield Useful Results

Automated Software Testing:
Do Your Metrics
Measure Up?

Thom Garrett has 20 years’ experience in planning, develop-
ment, testing and deployment of complex processing systems for
U.S. Navy and commercial applications. Specific experience in-
cludes rapid introduction and implementation of new tech-
nologies for highly sophisticated architectures that support
users worldwide. In addition, he has managed and tested all

aspects of large-scale complex networks used in 24/7 environ-
ments. He currently works for Innovative Defense Technol-
ogies (IDT), and previously worked for America Online,
Digital System Resources and other companies, supporting
system engineering solutions from requirements gathering to
production rollout.

14 • Software Test & Performance NOVEMBER/DECEMBER 2009

mated and manual testing metrics.
Based on the outcome of these metrics, we can

assess the software defects that need to be fixed dur-
ing a test cycle, and adjust schedules or goals accord-
ingly. For example, if we find that a feature still has too
many high-priority defects, the ship date may be
delayed or the system may go live without that feature.

Success is measured based on the goals we set
out to accomplish relative to the expectations of our
stakeholders and customers. That’s where metrics
come in.

As Lord Nelson implied in his famous quote, if you
can measure something, you can quantify
it; if you can quantify it, you can explain it;
if you can explain it, you have a better
chance to improve on it.

We know firsthand that metrics and
methods can improve an organization’s
automated testing process and tracking
of its status—our software test teams
have used them successfully. But soft-
ware projects are becoming increasingly
complex, thanks to added code for new
features, bug fixes and so on. Also, mar-
ket pressures and corporate belt-tighten-
ing mean testers must complete more
tasks in less time. This will lead to
decreased test coverage and product
quality, as well as higher product cost and
longer time to deliver.

When implemented properly, howev-
er, with the right metrics providing insight
into test status, automated software test-
ing can reverse this negative trend.
Automation often provides a larger test
coverage area and increases overall
product quality; it can also reduce test time and deliv-
ery cost. This benefit is typically realized over multiple
test and project cycles. Automated testing metrics can
help assess whether progress, productivity and quality
goals are being met.

It serves no purpose to measure for the sake of
measuring, of course, so before you determine which
automated testing metrics to use, you must set clearly
defined goals related directly to the performance of the
effort. Here are some metrics-setting fundamentals
you may want to consider:

• How much time does it take to run the test plan?
• How is test coverage defined (KLOC, FP, etc.)?
• How much time does it take to do data analysis?
• How long does it take to build a scenario/driver?
• How often do we run the test(s) selected?
• How many permutations of the test(s) selected do

we run?

• How many people do we require to run the test(s)
selected?

• How much system time/lab time is required to run
the test(s) selected?

It is important that the metric you decide on calcu-
late the value of automation, especially if this is the
first time automated testing has been used on a partic-
ular project. The test team will need to measure the
time spent on developing and executing test scripts
against the results the scripts produced. For example,
the testers could compare the number of hours to
develop and execute test procedures with the number

of defects documented that probably
would not have been revealed during
manual testing.

Sometimes it is hard to quantify or
measure the automation benefits. For
instance, automated testing tools often
discover defects that manual tests could
not have discovered. During stress test-
ing, for example, 1,000 virtual users exe-
cute a specific functionality and the sys-
tem crashes. It would be very difficult to
discover this problem manually—for
starters, you’d need 1,000 test engi-
neers!

Automated test tools for data entry
or record setup are another way to mini-
mize test time and effort; here, you’d
measure the time required to set up the
records by hand vs. using an automated
tool. Imagine having to manually enter
10,000 accounts to test a system
requirement that reads: “The system
shall allow the addition of 10,000 new
accounts”! An automated test script

could easily save many hours of manual data entry by
reading account information from a data file through
the use of a looping construct, with the data file pro-
vided by a data generator.

You can also use automated software testing met-
rics to determine additional test data combinations.
Where manual testing might have allowed you to test
“x” number of test data combinations, for example,
automated testing might let you test “x+y” combina-
tions. Defects uncovered in the “y” combinations
might never have been uncovered in manual tests.

Let’s move on to some metrics specific to auto-
mated testing.

PERCENT AUTOMATABLE
At the beginning of every automated testing project,
you’re automating existing manual test procedures,
starting a new automation effort from scratch, or some

[Not every

test should be

automated

just because

it could be

automated.]

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 15

combination of the two. Whichever the
case, a percent automatable metric can
be determined.

Percent automatable can be
defined as this: Of a set of given test
cases, how many are automatable?
This can be represented by the follow-
ing equation:

ATC # of test cases automatable
PA (%) = ———— = (——————————–)

TC # of total test cases

PA = Percent automatable
ATC = # of test cases automatable
TC = # of total test cases

In evaluating test cases to be
developed, what should—and should-
n’t—be considered automatable? One
could argue that, given enough ingenu-
ity and resources, almost any software
test could be automated. So where do
you draw the line? An application area
still under design and not yet stable
might be considered “not automat-
able,” for example.

In such cases we must evaluate
whether it makes sense to automate,
based on which of the set of automat-
able test cases would provide the
biggest return on investment.: Again,
when going through the test case
development process, determine
which tests can and should be auto-
mated. Prioritize your automation
effort based on the outcome. You can
use the metric shown in Figure 1 to
summarize, for example, the percent
automatable of various projects or of a
project’s components, and set the
automation goal.

Automation progress: Of the per-
cent automatable test cases, how
many have been automated at a given
time? In other words, how far have you
gotten toward reaching your goal of
automated testing? The goal is to auto-
mate 100% of the “automatable” test
cases. It’s useful to track this metric
during the various stages of automated
testing development.

AA # of actual test cases automated
AP (%) = ———— = (——————————)

ATC # of test cases automatable

AP = Automation progress
AA = # of actual test cases automated
ATC = # of test cases automatable

The automation progress metric is
typically tracked over time. In this case
(see Figure 2), time is measured in
weeks.

A common metric closely associat-
ed with progress of automation, yet not

FIG. 1: PERCENT AUTOMATABLE

16 • Software Test & Performance NOVEMBER/DECEMBER 2009

FIG. 2: AUTOMATION PROGRESS

FIG. 3: PROGRESS OVER TIME

exclusive to automation, is test
progress. Test progress can be
defined simply as the number of test
cases attempted (or completed) over
time.

TC # of test cases (attempted or completed)
TP = ———— = (—–––––––––——————)

T time (days, weeks,months, etc.)

TP = Test progress
TC = # of test cases (either attempted or com-
pleted)
T = some unit of time (days/weeks/months, etc)

The purpose of this metric is to
track test progress and compare it
with the project plan. Test progress
over the period of time of a project
usually follows an “S” shape, which
typically mirrors the testing activity
during the project life cycle: little initial
testing, followed by increased testing
through the various development phas-
es, into quality assurance, prior to
release or delivery.

The metric you see in Figure 3
shows progress over time. A more
detailed analysis is needed to deter-
mine pass/fail, which can be repre-
sented in other metrics.

PERCENT OF AUTOMATED
TESTING COVERAGE
Another automated software metric is
percent of automated testing cover-
age: What test coverage is the auto-
mated testing actually achieving? This
metric indicates the completeness of
the testing. It doesn’t so much meas-
ure how much automation is being exe-
cuted, but how much of the product’s
functionality is being covered. For
example, 2,000 test cases executing
the same or similar data paths may
take a lot of time and effort to execute,
but this does not equate to a large per-
centage of test coverage. Percent of
automatable test coverage does not
specify anything about the effective-
ness of the testing; it measures only
the testing’s dimension.

AC automation coverage
PTC(%) = ——— = (——————————)

C total coverage

PTC = Percent of automatable testing coverage
AC = Automation coverage
C = Total coverage (KLOC, FP, etc.)

Size of system is usually counted
as lines of code (KLOC) or function
points (FP). KLOC is a common
method of sizing a system, but FP has
also gained acceptance. Some argue
that FPs can be used to size software

applications more accurately. Function
point analysis was developed in an
attempt to overcome difficulties asso-
ciated with KLOC (or just LOC) sizing.
Function points measure software size
by quantifying the functionality provid-
ed to the user based on logical design
and functional specifications. (There is
a wealth of material available regarding
the sizing or coverage of systems. A
useful resourse is Stephen H. Kan,
Metrics and Models in Software
Quality Engineering, 2nd ed. (Addison-
Wesley, 2003).

The percent automated test cov-
erage metric can be used in conjunc-
tion with the standard software testing
metric called test coverage.

TTP total # of TP
TC(%) = ——— = (——————————)

TTR total # of test requirements

TC = Percent of testing coverage
TTP = Total # of test procedures developed
TTR = Total # of defined test requirements

This metric of test coverage (see
Figure 4) divides the total number of test
procedures developed by the total num-
ber of defined test requirements. It pro-
vides the test team with a barometer to
gauge the depth of test coverage, which
is usually based on the defined accept-
ance criteria.

When testing a mission-critical
system, such as operational medical
systems, the test coverage indicator
must be high relative to the depth of
test coverage for non-mission-critical
systems. The depth of test coverage
for a commercial software product that
will be used by millions of end users
may also be high relative to a govern-

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 17

FIG. 4: TEST COVERAGE

FIG. 5: COMMON DEFECT DENSITY CURVE

ment information system with a couple
of hundred end users.

DEFECT DENSITY
Defect density is another well-known
metric not specific to automation. It is
a measure of the total known defects
divided by the size of the software
entity being measured. For example, if
there is a high defect density in a spe-
cific functionality, it is important to con-
duct a causal analysis. Is this function-
ality very complex, so the defect den-
sity is expected to be high? Is there a
problem with the
design/implementation of the function-
ality? Were insufficient or wrong
resources assigned to the functionality
because an inaccurate risk had been
assigned to it? Could it be inferred that
the developer, responsible for this spe-
cific functionality needs more training?

D # of known defects
DD = —— = (———————————)

SS total size of system

DD = Defect density
D = # of known defects
SS = Total size of system

One use of defect density is to
map it against software component
size. Figure 5 illustrates a typical
defect density curve we’ve experi-
enced, where small and larger compo-
nents have a higher defect density
ratio.

Additionally, when evaluating
defect density, the priority of the
defect should be considered. For
example, one application requirement
may have as many as 50 low-priority
defects and still pass because the
acceptance criteria have been satis-

fied. Still, another requirement might
only have one open defect that pre-
vents the acceptance criteria from
being satisfied because it is a high pri-
ority. Higher-priority requirements are
generally weighted more heavily.

Figure 6 shows one approach to
using the defect density metric.
Projects can be tracked over time (for
example, stages of the development
cycle).

Defect trend analysis is another
closely related metric to defect density.

Defect trend analysis is calculated as:

D # of known defects
DTA = ———- = (———————————)

TPE # of test procedures executed

DTA = Defect trend analysis
D = # of known defects
TPE = # of test procedures executed over time

Defect trend analysis can help
determine the trend of defects found.
Is the trend improving as the testing
phase is winding down, or is the trend
worsening? Showing defects the test
automation uncovered that manual
testing didn’t or couldn’t have is an
additional way to demonstrate ROI.
During the testing process, we have
found defect trend analysis one of the
more useful metrics to show the
health of a project. One approach to
showing a trend is to plot total number
of defects along with number of
open software problem reports (see
Figure 7).

Effective defect tracking analysis
can present a clear view of testing sta-
tus throughout the project. A few more
common metrics related to defects are:

Cost to locate defect = Cost
of testing/number of defects located

Defects detected in testing
= Defects detected in testing/total

18 • Software Test & Performance NOVEMBER/DECEMBER 2009

SOFTWARE TEST METRCS: THE ACRONYMS

AA # of actual test cases automated

AC Automation coverage

AP Automation progress

ATC # of test cases automatable

D # of known defects

DA # of acceptance defects found after delivery

DD Defect density

DRE Defect removal efficiency

DT # of defects found during testing

DTA Defect trend analysis

FP Function point

KLOC Lines of code (thousands)

LOC Lines of code

PR Percent automatable

PTC Percent of automatable testing coverage

ROI Return on investment

SPR Software problem report

SS Total size of system to be automated

T Time (some unit of time—days, weeks, months, etc.)

TC # of total test cases

TP Test progress

TPE # of test procedures executed over time

FIG. 6: USING DD TO TRACK OVER TIME

system defects
Defects detected in produc-

tion = Defects detected in produc-
tion/system size

Some of these metrics can be
combined and used to enhance quality
measurements, as shown in the next
section.

IMPACT ON QUALITY
One of the more popular metrics for
tracking quality (if defect count is used
as a measure of quality) through test-
ing is defect removal efficiency. DRE,
while not specific to automation, is
very useful in conjunction with automa-
tion efforts. It is used to determine the
effectiveness of defect removal efforts
and is also an indirect measurement of
the quality of the product. The value of
DRE is calculated as a percentage—
the higher the percentage, the higher
the positive impact on product quality
because it represents the timely identi-
fication and removal of defects at any
particular phase.

of defects found
DT during testing

DRE(%) = —–— = (———————————)
DT+DA # of defects found during testing +

of defects found after delivery

DRE = Defect removal efficiency
DT = # of defects found during testing
DA = # of acceptance defects found after delivery

The highest attainable value of DRE
is “1,” which equates to “100%.” But
we have found that, in practice, an effi-
ciency rating of 100% is not likely.

DRE should be measured during
the different development phases. If
DRE is low during the analysis and
design stages, for instance, it may
indicate that more time should be

spent improving the way formal techni-
cal reviews are conducted, and so on.

This calculation can be extended for
released products as a measure of the
number of defects in the product that
were not caught during product develop-
ment or testing. �

FIG. 7: DEFECT TREND ANALYSIS

SEE MORE ON SOFTWARE
TESTING METRICS at
wwwwww..ssttppccoollllaabboorraattiivvee..ccoomm

Courtesy of http://www.teknologika.com/blog/SoftwareDevelopmentMetricsDefectTracking.aspx

Agile
Performance

Testing

Flexibility and

Iterative Processes

Are Key to Keeping

Tests on Track

20 • Software Test & Performance NOVEMBER/DECEMBER 2009

You run a test and get a lot of information
about the system. To be efficient you need to
analyze the feedback you get, make modifica-
tions and adjust your plans if necessary. Let’s
say, for example, you plan to run 20 different
tests, but after executing the first test you dis-
cover a bottleneck (for instance, the number of
Web server threads). Unless you eliminate the
bottleneck, there’s no point running the other
19 tests if they all use the Web server. To iden-
tify the bottleneck, you may need to change the
test scenario.

Even if the project scope is limited to pre-
production performance testing, an agile, itera-
tive approach helps you meet your goals faster
and more efficiently, and learn more about the
system along the way. After we prepare a test
script (or generate workload some other way),
we can run single- or multi-user tests, analyze
results and sort out errors. The source of errors
can vary–you can experience script errors, func-
tional errors and errors caused directly by per-
formance bottlenecks—and it doesn’t make
sense to add load until you determine the
specifics. Even a single script allows you to
locate many problems and tune the system at
least partially. Running scripts separately also
lets you see the amount of resources used by
each type of load so you can build a system
“model” accordingly (more on that later).

The word “agile” in this article doesn’t
refer to any specific development process or
methodology; performance testing for agile
development projects is a separate topic not
covered in this paper. Rather, it’s used as an
application of the agile principles to perform-
ance engineering.

WHY THE ‘WATERFALL’ APPROACH
DOESN’T WORK
The “waterfall” approach to software develop-
ment is a sequential process in which develop-
ment flows steadily downward (hence the
name) through the stages of requirements
analysis, design, implementation, testing, inte-
gration and maintenance. Performance testing
typically includes these steps:

• Prepare the system.
• Develop requested scripts.
• Run scripts in the requested com bin -

ations.
• Compare results with the requirements

provided.
• Allow some percentage of errors according

to the requirements.
• Involve the development team if require-

ments are missed.
At first glance, the waterfall approach to per-

formance testing appears to be a well-estab-
lished, mature process. But there are many
potential—and serious—problems. For example:

• The waterfall approach assumes that the
entire system—or at least all the functional
components involved—is ready for the per-
formance test. This means the testing can’t be
done until very late in the development cycle, at
which point even small fixes would be expen-
sive. It’s not feasible to perform such full-scope
testing early in the development life cycle.
Earlier performance testing requires a more
agile, explorative process.

• The scripts used to create the system
load for performance tests are themselves soft-
ware. Record/playback load testing tools may
give the tester the false impression that creat-
ing scripts is quick and easy, but correlation,
parameterization, debugging and verification
can be extremely challenging. Running a script
for a single user that doesn’t yield any errors
doesn’t prove much. I’ve seen large-scale cor-
porate performance testing where none of the
script executions made it through logon (single
sign-on token wasn’t correlated), yet perform-
ance testing was declared successful and the
results were reported to management.

• Running all scripts simultaneously makes
it difficult to tune and troubleshoot. It usually
becomes a good illustration of the shot-in-the-
dark antipattern—“the best efforts of a team
attempting to correct a poorly performing appli-
cation without the benefit of truly understanding
why things are as they are” (http://www.kirk
.blogcity.com/proposed_antipattern_shot_in_
the_dark.htm). Or you need to go back and
deconstruct tests to find exactly which part is
causing the problems. Moreover, tuning and per-
formance troubleshooting are iterative process-
es, which are difficult to place inside the “water-
fall.” And in most cases, you can’t do them
offline—you need to tune the system and fix the
major problems before the results make sense.

• Running a single large test, or even sev-

By Alexander Podelko

A
gile software development involves iterations, open collaboration and process adaptability throughout a pro-
ject’s life cycle. The same approaches are fully applicable to performance testing projects. So you need a plan,
but it has to be malleable. It becomes an iterative process involving tuning and troubleshooting in close coop-
eration with developers, system administrators, database administrators and other experts.

Alexander Podelko has specialized in performance
engineering for 12 years. Currently he is a
Consulting Member of Technical Staff at Oracle,
responsible for performance testing and tuning of
the Hyperion product family.

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 21

Flexibility and

Iterative Processes

Are Key to Keeping

Tests on Track

eral large tests, provides minimal infor-
mation about system behavior. It doesn’t
allow you to build any kind of model, for-
mal or informal, or to identify any rela-
tionship between workload and system
behavior. In most cases, the workload
used in performance tests is only an
educated guess, so you need to know
how stable the system would be and
how consistent the results would be if
real workload varied.

Using the waterfall approach does-
n’t change the nature of performance
testing; it just means you’ll probably do
a lot of extra work and end up back at
the same point, performance tuning and
troubleshooting, much later in the cycle.
Not to mention that large tests involving
multiple-use cases are usually a bad
point to start performance tuning and
troubleshooting, because symptoms
you see may be a cumulative effect of
multiple issues.

Using an agile, iterative approach
doesn’t mean redefining the software
development process; rather, it means
finding new opportunities inside existing
processes to increase efficiency overall. In
fact, most good perform-
ance engineers are already
doing performance testing
in an agile way but just pre-
senting it as “waterfall” to
management. In most
cases, once you present
and get management
approval on a waterfall-like
plan, you’re free to do what-
ever’s necessary to test the
system properly inside the
scheduled time frame and
scope. If opportunities
exist, performance engi-
neering may be extended
further, for example, to early
performance checkpoints
or even full software per-
formance engineering.

TEST EARLY
Although I’ve never read
or heard of anybody argu-
ing against testing early, it rarely hap-
pens in practice. Usually there are some
project-specific reasons—tight sched-
ules or budgets, for instance—prevent-
ing such activities (if somebody thought
about them at all).

Dr. Neil Gunther, in his book
Guerrilla Capacity Planning (Springer,
2007), describes the reasons manage-
ment (consciously or unconsciously)

resists testing early. While Gunther’s
book presents a broader perspective
on capacity planning, the methodology
discussed, including the guerrilla
approach, is highly applicable to per-
formance engineering.

Gunther says there’s a set of
unspoken assumptions behind the
resistance to performance-related activ-
ities. Some that are particularly relevant
to performance engineering:

• The schedule is the main measure
of success.

• Product production is more impor-
tant than product performance.

• We build product first and then
tune performance.

• Hardware is not expensive; we can
just add more of it if necessary.

• There are plenty of commercial
tools that can do it.

It may be best to accept that many
project schedules don’t allow sufficient
time and resources for performance
engineering activities and proceed in
“guerrilla” fashion: Conduct perform-
ance tests that are less resource-inten-
sive, even starting by asking just a few

key questions and expand-
ing as time and money
permit.

The software perform-
ance engineering approach
to development of software
systems to meet perform-
ance requirements has long
been advocated by Dr.
Connie Smith and Dr. Lloyd
Williams (see, for example,
their book Perform ance
Solutions, Addison-Wesley,
2001). While their method-
ology doesn’t focus on
testing initiatives, it can’t be
successfully implemented
without some preliminary
testing and data collection
to determine both model
inputs and parameters, and
to validate model results.
Whether you’re consider-
ing a full-blown perform-

ance engineering or guerrilla-style
approach, you still need to obtain baseline
measurements on which to build your cal-
culations. Early performance testing at
any level of detail can be very valuable at
this point.

A rarely discussed aspect of early
performance testing is unit performance
testing. The unit here may be any part of
the system—a component, service or

device. This is not a standard practice,
but it should be. The later in the devel-
opment cycle, the more costly and diffi-
cult it becomes to make changes, so
why wait until the entire system is
assembled to start performance testing?
We don’t wait in functional testing. The
predeployment performance test is an
analog of system or integration tests,
but it’s usually conducted without any
“unit testing” of performance.

The main obstacle is that many sys-
tems are somewhat monolithic; the
parts, or components, don’t make much
sense by themselves. But there may be
significant advantages to test-driven
development. If you can decompose the
system into components in such a way
that you may test them separately for
performance, you’ll only need to fix inte-
gration problems when you put the sys-
tem together. Another problem is that
many large corporations use a lot of
third-party products in which the system
appears as a “black box” that’s not eas-
ily understood, making it tougher to test
effectively.

During unit testing, variables such
as load, security configuration and
amount of data can be reviewed to
determine their impact on performance.
Most test cases are simpler and tests
are shorter in unit performance testing.
There are typically fewer tests with limit-
ed scope—for example, fewer variable
combinations than in a full stress or per-
formance test.

We shouldn’t underestimate the
power of the single-user performance
test: If the system doesn’t perform well
for a single user, it certainly won’t per-
form well for multiple users. Single-user
testing is conducted throughout the
application development life cycle, dur-
ing functional testing and user accept-
ance testing, and gathering performance
data can be extremely helpful during
these stages. In fact, single-user per-
formance tests may facilitate earlier
detection of performance problems and
indicate which business functions and
application code need to be investigated
further.

So while early performance engi-
neering is definitely the best approach (at
least for product development) and has
long been advocated, it’s still far from
commonplace. The main problem here is
that the mindset should change from a
simplistic “record/playback” perform-
ance testing occurring late in the product
life cycle to a more robust, true perform-

[Why wait

until the entire

system is

assembled

to start

performance

testing?]

22 • Software Test & Performance NOVEMBER/DECEMBER 2009

ance engineering approach starting early
in the product life cycle. You need to
translate “business functions” per-
formed by the end user into compo-
nent/unit-level usage, end-user require-
ments into component/unit-level require-
ments and so on. You need to go from
the record/playback approach to using
programming skills to generate the work-
load and create stubs to isolate the com-
ponent from other parts of the system.
You need to go from “black box” per-
formance testing to “gray box.”

If you’re involved from the begin-
ning of the project, a few guerrilla-style
actions early on can save you (and the
project) a lot of time and resources later.
But if you’re called in later, as is so often
the case, you’ll still need to do the best
performance testing possible before the
product goes live. The following sec-
tions discuss how to make the most of
limited test time.

THE IMPORTANCE OF
WORKLOAD GENERATION
The title of Andy Grove’s book Only the
Paranoid Survive may relate even better
to performance engineers than to exec-
utives! It’s hard to imagine a good per-
formance engineer without this trait.
When it comes to performance testing,
it pays to be concerned about every part
of the process, from test design to
results reporting.

Be a performance test architect.
The sets of issues discussed below
require architect-level expertise.

1) Gathering and validating all
requirements (workload definition, first
and foremost), and projecting them onto
the system architecture:

Too many testers consider all infor-
mation they obtain from the business
side (workload descriptions, scenarios,
use cases, etc.) as the “holy scripture.”
But while businesspeople know the
business, they rarely know much about
performance engineering. So obtaining
requirements is an iterative process,
and every requirement submitted should
be evaluated and, if possible, validated.
Sometimes performance requirements
are based on solid data; sometimes
they’re just a guess. It’s important to
know how reliable they are.

Scrutinize system load carefully as
well. Workload is an input to testing,
while response times are output. You
may decide if response times are
acceptable even after the test, but you
must define workload beforehand.

The gathered requirements should
be projected onto the system architec-
ture because it’s important to know if
included test cases add value by testing
different sets of functionality or different
components of the system. It’s also
important to make sure we have test
cases for every component (or, if we
don’t, to know why).

2) Making sure the system under
test is configured properly and the
results obtained may be used (or at
least projected) for the production
system:

Environment and setup considera-
tions can have a dramatic effect. For
instance:

• What data is used? Is it real pro-
duction data, artificially generated
data or just a few random
records? Does the volume of
data match the volume forecast-
ed for production? If not, what’s
the difference?

• How are users defined? Do you
have an account set with the
proper security rights for each vir-
tual user or do you plan to re-use
a single administrator ID?

• What are the differences
between the production and test
environments? If your test system
is just a subset of your production

system, can you simulate the
entire load or just a portion of that
load? Is the hardware the same?

It’s essential to get the test envi-
ronment as close as possible to the pro-
duction environment, but performance
testing workload will never match pro-
duction workload exactly. In “real life,”
the workload changes constantly, includ-
ing user actions nobody could ever
anticipate.

Indeed, performance testing isn’t an
exact science. It’s a way to decrease risk,
not to eliminate it. Results are only as
meaningful as the test and environment
you created. Performance testing typical-
ly involves limited functional coverage,
and no emulation of unexpected events.
Both the environment and the data are
often scaled down. All of these factors
confound the straightforward approach to
performance testing, which states that
we simply test X users simulating test
cases A and B. This way, we leave aside
a lot of questions: How many users can
the system handle? What happens if we
add other test cases? Do ratios of use
cases matter? What if some administra-
tive activities happen in parallel? All of
these questions and more require some
investigation.

Perhaps you even need to investi-
gate the system before you start creat-
ing performance test plans. Perfor mance
engineers sometimes have system
insights nobody else has; for example:

• Internal communication between
client and server if recording used

• Timing of every transaction (which
may be detailed to the point of
specific requests and sets of
parameters if needed)

• Resource consumption used by a
specific transaction or a set of
transactions

This information is additional input—
often the original test design is based on
incorrect assumptions and must be cor-
rected based on the first results.

Be a script writer. Very few sys-
tems today are stateless systems with
static content using plain HTML—the
kind of systems that lend themselves to
a simple “record/playback” approach.
In most cases there are many obstacles
to creating a proper workload. If it’s the
first time you see the system, there’s
absolutely no guarantee you can quickly
record and play back scripts to create
the workload, if at all.

Creating performance testing
scripts and other objects is, in essence,

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 23

a software development project. Some -
times automatic script generation from
recording is mistakenly interpreted as
the entire process of
script creation, but it’s
only the beginning.
Automatic generation pro-
vides ready scripts in very
simple cases, but in most
nontrivial cases it’s just a
first step. You need to cor-
relate and parametize
scripts (i.e., get dynamic
variables from the server
and use different data for
different users).

After the script is cre-
ated, it should be evaluat-
ed for a single user, multi-
ple users and with different
data. Don’t assume the
system works correctly
just because the script
was executed without
errors. Workload validation
is critical: We have to be
sure the applied workload
is doing what it’s supposed to do and
that all errors are caught and logged.
This can be done directly, by analyzing
server responses or, in cases where
that’s impossible, indirectly—for exam-
ple, by analyzing the application log or
database for the existence of particular
entries.

Many tools provide some way to
verify workload and check errors, but a
complete understanding of what exactly
is happening is necessary. For example,
HP LoadRunner reports only HTTP
errors for Web scripts by default (500
“Internal Server Error,” for example). If
we rely on the default diagnostics, we
might still believe that everything is
going well when we get “out of memo-
ry” errors instead of the requested
reports. To catch such errors, we should
add special commands to our script to
check the content of HTML pages
returned by the server.

When a script is parameterized, it’s
good to test it with all possible data. For
example, if we use different users, a few
of them might not be set up properly. If we
use different departments, some could be
mistyped or contain special symbols that
must be properly encoded. These prob-
lems are easy to spot early on, when
you’re just debugging a particular script.
But if you wait until the final, all-script
tests, they muddy the entire picture and
make it difficult to see the real problems.

My group specializes in perform-
ance testing of the Hyperion line of
Oracle products, and we’ve found that a

few scripting challenges
exist for almost every
product. Nothing excep-
tional—they’re usually
easily identified and
resolved—but time after
time we’re called on to
save problematic perform-
ance testing projects only
to discover serious prob-
lems with scripts and sce-
narios that make test
results meaningless. Even
experienced testers stum-
ble, but many problems
could be avoided if more
time were spent analyzing
the situation.

Consider the follow-
ing examples, which are
typical challenges you can
face with modern Web-
based applications:

1) Some operations,
like financial consolidation, can take a
long time. The client starts the operation
on the server, then waits for it to finish,
as a progress bar shows on screen.
When recorded, the script looks like (in
LoadRunner pseudocode):

web_custom_request(“XMLDataGrid.asp_7”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
EXECUTE&TaskID=1024&RowStart=1&ColStart=
2&RowEnd=1&ColEnd=2&SelType=0&Format=
JavaScript”, LAST);

web_custom_request(“XMLDataGrid.asp_8”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”,
LAST);

web_custom_request(“XMLDataGrid.asp_9”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”,
LAST);

web_custom_request(“XMLDataGrid.asp_9”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”,
LAST);

Each request’s activity is defined by
the ?Action= part. The number of GET-
CONSOLSTATUS requests recorded
depends on the processing time.

In the example above, the request
was recorded three times, which means
the consolidation was done by the
moment the third GETCONSOLSTATUS
request was sent to the server. If you play
back this script, it will work this way: The
script submits the consolidation in the
EXECUTE request and then calls GET-

CONSOLSTATUS three times. If we
have a timer around these requests, the
response time will be almost instanta-
neous, while in reality the consolidation
may take many minutes or even hours. If
we have several iterations in the script,
we’ll submit several consolidations, which
continue to work in the background, com-
peting for the same data, while we report
subsecond response times.

Consolidation scripts require cre-
ation of an explicit loop around GET-
CONSOLSTATUS to catch the end of
the consolidation:

web_custom_request(“XMLDataGrid.asp_7”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
EXECUTE&TaskID=1024&RowStart=1&ColStart=
2&RowEnd=1&ColEnd=2&SelType=0&Format=
JavaScript”, LAST);

do {

sleep(3000);

web_reg_find(“Text=1”,”SaveCount=abc_count”,
LAST);

web_custom_request(“XMLDataGrid.asp_8”,
“URL={URL}/Data/XMLDataGrid.asp?Action=
GETCONSOLSTATUS”, LAST);

} while (str-
cmp(lr_eval_string(“{abc_count}”),”1”)==0);

Here, the loop simulates the inter-
nal logic of the system, sending GET-
CONSOLSTATUS requests every three
seconds until the consolidation is com-
plete. Without such a loop, the script
just checks the status and finishes the
iteration while the consolidation contin-
ues long after that.

2) Web forms are used to enter and
save data. For example, one form can
be used to submit all income-related
data for a department for a month. Such
a form would probably be a Web page
with two drop-down lists (one for depart-
ments and one for months) on the top
and a table to enter data underneath
them. You choose a department and a
month on the top of the form, then enter
data for the specified department and
month. If you leave the department and
month in the script hardcoded as record-
ed, the script would be formally correct,
but the test won’t make sense at all—
each virtual user will try to overwrite
exactly the same data for the same
department and the same month. To
make it meaningful, the script should be
parameterized to save data in different
data intersections. For example, differ-
ent departments may be used by each

24 • Software Test & Performance NOVEMBER/DECEMBER 2009

[Don’t

assume the

system works

correctly just

because the

script was

executed

without errors.]

user. To parameterize the script, we
need not only department names but
also department IDs (which are internal
representations not visible to users that
should be extracted from the metadata
repository). Below is a sample of correct
LoadRunner pseudocode (where values
between { and } are parameters that may
be generated from a file):

web_submit_data(“WebFormGenerated.asp”,
“Action=http://hfmtest.us.schp.com/HFM/data/We
bFormGenerated.asp?FormName=Tax+QFP&call
er=GlobalNav&iscontained=Yes”,

ITEMDATA,
“Name=SubmitType”, “Value=1”,

ENDITEM,
“Name=FormPOV”, “Value=TaxQFP”,

ENDITEM,
“Name=FormPOV”, “Value=2007”,

ENDITEM,
“Name=FormPOV”, “Value=[Year]”,

ENDITEM,
“Name=FormPOV”, “Value=Periodic”,

ENDITEM,
“Name=FormPOV”, “Value=

{department_name}”, ENDITEM,
“Name=FormPOV”, “Value=<Entity

Currency>“, ENDITEM,
“Name=FormPOV”,

“Value=NET_INCOME_LEGAL”, ENDITEM,
“Name=FormPOV”, “Value=[ICP Top]”,

ENDITEM,

“Name=MODVAL_19.2007.50331648.1.
{department_id}.14.407.2130706432.4.1.90.0.345
”, “Value=<1.7e+3>;;”, ENDITEM,

“Name=MODVAL_19.2007.50331648.1.
{department_id}.14.409.2130706432.4.1.90.0.345
”, “Value=<1.7e+2>;;”, ENDITEM, LAST);

If department name is parameterized
but department ID isn’t, the script won’t
work properly. You won’t get an error, but
the information won’t be saved. This is an
example of a situation that never can hap-
pen in real life—users working through
GUIs would choose department name
from a drop-down box (so it always would
be correct) and matching ID would be
found automatically. Incorrect parameteri-
zation leads to sending impossible combi-
nations of data to the server with unpre-
dictable results. To validate this informa-
tion, we would check what’s saved after
the test—if you see your data there, you
know the script works.

TUNE AND TROUBLESHOOT
Usually, when people talk about per-
formance testing, they don’t separate it
from tuning, diagnostics or capacity
planning. “Pure” performance testing is
possible only in rare cases when the
system and all optimal settings are well-
known. Some tuning activities are typi-
cally necessary at the beginning of test-
ing to be sure the system is tuned prop-

erly and the results will be meaningful. In
most cases, if a performance problem is
found, it should be diagnosed further, up
to the point when it’s clear how to han-
dle it. Generally speaking, performance
testing, tuning, diagnostics and capacity
planning are quite different processes,
and excluding any one of them from the
test plan (if they’re assumed) will make
the test unrealistic from the beginning.

Both performance tuning and trou-
bleshooting are iterative processes
where you make the change, run the
test, analyze the results and repeat the
process based on the findings. The
advantage of performance testing is that
you apply the same synthetic load, so
you can accurately quantify the impact
of the change that was made. That
makes it much simpler to find problems
during performance testing than to wait
until they happen in production, when
workload is changing all the time. Still,
even in the test environment, tuning and
performance troubleshooting are quite

sophisticated diagnostic processes usu-
ally requiring close collaboration
between a performance engineer run-
ning tests and developers and/or sys-
tem administrators making changes. In
most cases, it’s impossible to predict
how many test iterations will be neces-
sary. Sometimes it makes sense to cre-
ate a shorter, simpler test still exposing
the problem under investigation.
Running a complex, “real-life” test on
each tuning or troubleshooting iteration
can make the whole process very long
and the problem less evident because of
different effects the problem may have
on different workloads.

An asynchronous process to fixing
defects, often used in functional test-

ing—testers look for bugs and log them
into a defect tracking system, then the
defects are prioritized and fixed inde-
pendently by the developers—doesn’t
work well for performance testing. First,
a reliability or performance problem
often blocks further performance testing
until the problem is fixed or a
workaround is found. Second, usually
the full setup, which tends to be very
sophisticated, should be used to repro-
duce the problem. Keeping the full setup
for a long time can be expensive or even
impossible. Third, debugging perform-
ance problems is a sophisticated diag-
nostic process usually requiring close
collaboration between a performance
engineer running tests and analyzing the
results and a developer profiling and
altering code. Special tools may be nec-
essary; many tools, such as debuggers,
work fine in a single-user environment
but do not work in the multi-user envi-
ronment, due to huge performance over-
heads. What’s usually required is the

synchronized work of performance engi-
neering and development to fix the prob-
lems and complete performance testing.

BUILD A MODEL
Creating a model of the system under
test significantly increases the value of
performance testing. First, it’s one more
way to validate test correctness and help
to identify system problems—deviations
from expected behavior might signal
issues with the system or with the way
you create workload. Second, it allows
you to answer questions about the sizing
and capacity planning of the system.

Most performance testing doesn’t
require a formal model created by a
sophisticated modeling tool—it may

FIG. 1: THROUGHPUT

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 25

involve just simple observations of the
amount of resources used by each sys-
tem component for the specific work-
load. For example, workload A creates
significant CPU usage on server X while
server Y is hardly touched. This means
that if you increase workload A, the lack
of CPU resources on server X will cre-
ate a bottleneck. As you run increasing-
ly complex tests, you verify results you
get against your “model”—your under-
standing of how the system behaves. If
they don’t match, you need to figure out
what’s wrong.

Modeling often is associated with
queuing theory and other sophisticated
mathematical constructs. While queuing
theory is a great mechanism to build
sophisticated computer system models,
it’s not required in simple cases. Most
good performance engineers and ana-
lysts build their models subconsciously,
without even using such words or any
formal efforts. While they don’t describe
or document their models in any way,
they take note of unusual system behav-
ior—i.e., when system behavior doesn’t
match the model—and can make some
simple predictions (“It looks like we’ll
need X additional resources to handle X
users,” for example).

The best way to understand the
system is to run independent tests for
each business function to generate a
workload resource usage profile. The
load should not be too light (so resource
usage will be steady and won’t be dis-
torted by noise) or too heavy (so it won’t
be distorted by nonlinear effects).

Considering the working range of
processor usage, linear models often
can be used instead of queuing models
for the modern multiprocessor machines

(less so for single-processor machines).
If there are no bottlenecks, throughput
(the number of requests per unit of time),
as well as processor usage, should
increase proportionally to the workload
(for example, the number of users) while

response time should grow insignificant-
ly. If we don’t see this, it means there’s a
bottleneck somewhere in the system and
we need to discover where it is.

For example, let’s look at a simple
queuing model I built using TeamQuest’s
modeling tool for a specific workload
executing on a four-way server. It was
simulated at eight different load levels
(step 1 through step 8, where step 1
represents a 100-user workload and 200
users are added for each step there-
after, so that step 8 represents 1,500
users). Figures 1 through 3 show
through put, response time and CPU
usage from the modeling effort.

An analysis of the queuing model
results shows that the linear model

accurately matches the queuing model
through step 6, where the system CPU
usage is 87 percent. Most IT shops
don’t want systems loaded more than
70 percent to 80 percent.

That doesn’t mean we need to dis-
card queuing theory and sophisticated
modeling tools; we need them when
systems are more complex or where
more detailed analysis is required. But in
the middle of a short-term performance
engineering project, it may be better to
build a simple, back-of-the-envelope
type of model to see if the system
behaves as expected.

Running all scripts simultaneously
makes it difficult to build a model. While
you still can make some predictions for
scaling the overall workload proportional-
ly, it won’t be easy to find out where the
problem is if something doesn’t behave
as expected. The value of modeling
increases drastically when your test envi-
ronment differs from the production envi-
ronment. In that case, it’s important to

document how the model projects test-
ing results onto the production system.

THE PAYOFF
The ultimate goal of applying agile princi-
ples to software performance engineer-
ing is to improve efficiency, ensuring
better results under tight deadlines
and budgets. And indeed, one of the
tenets of the “Manifesto for Agile
Software Develop ment” (http://agile
manifesto.org/) is that responsiveness
to change should take priority over fol-
lowing a plan. With this in mind, we can
take performance testing of today’s
increasingly complex software to new lev-
els that will pay off not just for testers and
engineers but for all stakeholders. �

FIG. 3: CPU USAGE

26 • Software Test & Performance NOVEMBER/DECEMBER 2009

FIG. 2: RESPONSE TIME

that matter to stakeholders in business
applications and integrated solutions,
giving us tests of functionality from end
to end. Often, scenarios are essential
for business acceptance, because they
encapsulate test ideas in a format that is
meaningful for business users and easy
for them to understand and review.

User stories, use cases and other
business requirements can be good
sources of scenario test ideas. But
testers know that these are rarely com-
prehensive or detailed enough to
encompass a thorough test without
additional analysis. And if we base our
test model entirely on the same
sources used by the programmers, our
test will reflect the assumptions they
made when building the system. There
is a risk that we will miss bugs that
arise from misinterpreted or incomplete

Fiona Charles (www.quality-intelligence.com)
teaches organizations to match their software test-
ing to their business risks and opportunities. With
30 years’ experience in software development and
integration projects, she has managed and consult-
ed on testing for clients in retail, banking, finan-
cial services, health care and telecommunications.

P
ho
to
gr
ap
h
by
 T
om

 O
’G
ra
f

By Fiona Charles

M
any software test efforts depend on
scenarios that represent real sequen ces
of transactions and events. Scen ar ios
are important tools for finding problems

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 27

28 • Software Test & Performance NOVEMBER/DECEMBER 2009

requirements or user stories.
One way to mitigate this risk is to

build a scenario model whose foundation
is a conceptual framework based on the
data flows. We can then build scenarios
by doing structured analysis of the data.
This method helps to ensure adequate
coverage and testing rigor, and provides
a cross-check for our other test ideas.
Because it employs a structure, it also
facilitates building scenarios from
reusable components.

Below, I’ll share an example of a data-
driven scenario test my team and I
designed and ran for a client’s point-
of-sale project. But before we go
any further, let’s define our terms:

Scenario: The American
Heritage Dictionary defines “sce-
nario” as “an outline or model of
an expected or supposed
sequence of events.” In “An
Introduction to Scenario Testing,”
Cem Kaner extends that definition
to testing: “A scenario is a hypo-
thetical story, used to help a per-
son think through a complex prob-
lem or system.…A scenario test
is a test based on a scenario.”
(http://www.kaner.com/pdfs
/ScenarioIntroVer4.pdf)

Test model: Every software
test is based on a model of
some kind, primarily because we can
never test everything. We always
make choices about what to include in
a test and what to leave out. Like a
model of anything—an airplane, a
housing development—a test model is
a simplified reduction of the system or
solution we are testing. As software
pioneer Jerry Weinberg explains in An
Introduction to General Systems
Thinking, “Every model is ultimately
the expression of one thing…we hope
to understand in terms of another that
we do understand.”

The test model we employ embod-

ies our strategic choices, and then
serves as a conceptual construct with-
in which we make tactical choices. This
is true whether or not we are aware
that we are employing models. Every
test approach is a model—even if we
take the “don’t think about test design,
just bang out test cases to match the
use cases” approach. But if we’re not
consciously modeling, we’re probably
not doing it very well.

In these definitions, we see the
inextricable connection between scenar-
ios and models. For our purposes, then,

a test model is any reduction, mapping
or symbolic representation of a system,
or integrated group of systems, for the
purpose of defining or structuring a test
approach. A scenario is one kind of
model.

We don’t have to use scenarios to
model a software test, but we do have
to model to use scenarios.

DESIGNING A MODEL FOR A
SCENARIO-BASED TEST
It is useful to model at two levels when
we are testing with scenarios: The over-
all execution model for testing the solu-

tion and the scenarios that encapsu-
late the tests.

There are many different ways to
model both levels. The retail point-of-
sale (POS) system example discussed
below uses a hybrid model based on
business operations combined with sys-
tem data as the basis for the overall test
execution model, and system data for
the scenario model.

Business operations—e.g., day
(week, month, mock-year) in the life or
model office or business. A business oper-
ations model is the easiest to communicate
to all the stakeholders, who will immediate-
ly understand what we are trying to achieve
and why. Handily, it is also the most obvi-
ous to construct. But it is not always the
most rigorous, and we may miss testing
something important if we do not also look
at other kinds or levels of models.

System data—categorized within
each flow by how it is used in the solu-
tion and by how frequently we intend to
change it during testing: static, semista-
tic or dynamic.

Combining different model bases in
one test helps testers avoid the kinds of

unconscious constraints or bias-
es that can arise when we look
at a system in only one way. We
could also have based our mod-
els on such foundations as:

The entity life cycle of enti-
ties important to the system—
e.g., product life cycle (or
account, in a banking system) or
customer experience.

Personae defined by testers
for various people who have
some interaction with the sys-
tem, or who depend on it for
data to make business deci-
sions. These could include a
merchandising clerk, store man-
ager, sales associate or a cus-
tomer and category manager.

(See books by Alan Cooper for an expla-
nation of persona design.)

High-level functional decomposition
of the system or organization, to ensure
that we have included all major areas,
including those that may not have
changed but could be impacted by
changes elsewhere.

In a point-of-sale application, this
might include functional areas within the
system or business (e.g., ordering,
inventory management, billing), process-
es in each area (e.g., order capture, pro-
visioning) and functions within each
process (e.g., enter, edit, cancel order).

FIG. 1: TRANSACTION BASICS

[The test model

we employ embodies our

strategic choices.]

Already defined user stories or use
cases.

Stories created by testers, using
their imaginations and business domain
knowledge, including stories based on
particular metaphors, such as “soap
opera tests” (described by Hans
Buwalda, in “Soap Opera Testing,”
Better Software, February 2004).

Although none of these was central
in our test model, we used each to some
degree in our test modeling for the POS
system (except for predefined user sto-
ries and use cases, which didn’t exist for
this system). Using a range of modeling
techniques stimulated our thinking and
helped us avoid becoming blinkered by
our test model.

MODELING BASED ON DATA
We constructed our primary central
model using a conceptual framework
based on the system data. This is a
good fit for modeling the scenario test of
a transactional system.

A data-driven model focuses on the
data and data interfaces:

• Inputs, outputs and reference
data

• Points of entry to the system or
integrated solution

• Frequency of changes to data
• Who or what initiates or changes

data (actors)
• Data variations (including actors)
A model based on data represents a

systems view that can then be rounded out
using models based on business views. As
well as providing a base for scenarios,
focusing on the data helps us identify the
principal components we will need for the
overall execution model for the test:

• Setup data
• Entry points
• Verification points
• Events to schedule
It is also easy to structure and

analyze.

CONCEPTUAL FRAMEWORK FOR
A DATA-DRIVEN MODEL
Here is an example of a conceptual
framework.

At the most basic level, we want
scenarios to test the outcome of system
transactions.

Transactions drive dynamic data—
i.e., data we expect to change in the
course of system operation (see Figure
1). Transactions represent the principal
business functions the system is
designed to support. Some examples

for a POS system are sales, returns, fre-
quent shopper point redemptions and
customer service adjustments.

A transaction is initiated by an actor,
which could be human or the system
(see Figure 2).

There may be more than one actor
involved in a transaction—e.g., a sales
associate and a customer

Many scenarios will have multiple
transactions (see Figure 2).

Subsequent transactions can affect
the outcome by acting on the dynamic data
created by earlier related transactions.

Transactions operate in a context
partly determined by test bed data (see
Figure 3).

Reference test bed data is static (it
doesn’t change in the course of the
test)—e.g., user privilege profiles, fre-
quent shopper (loyalty) points awarded
per dollar spent, sales tax rates.
Deciding which data should be static is a
test strategy decision.

The test bed also contains semista-
tic data, which can change the context
and affect the outcomes of transactions.

Semistatic data changes occasion-
ally during testing, as the result of an
event. Examples of semistatic data
include items currently for sale, prices
and promotions.

Determining which data will be
semistatic and how frequently it will
change is also a test strategy decision.

Events affect transaction out-
comes—by changing the system or test
bed data context, or by acting on the
dynamic data. (see Figure 4).

Events can represent:
• periodic or occasional business
processes, such as rate changes,
price changes, weekly
promotions (deals) and month-
end ag gre gations

• system happenings, such as sys-
tem interface failures

• “external” business exceptions,
such as shipments arriving dam-
aged or trucks getting lost

Scenarios also operate within a
context of date and time.The date and
time a transaction or event occurs can
have a significant impact on a scenario

FIG. 2: ADD ACTORS, MORE TRANSACTIONS

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 29

FIG. 3: FACTORING IN TEST BED DATA

30 • Software Test & Performance NOVEMBER/DECEMBER 2009

outcome (see Figure 4).
Categorizing the data determines

each type’s role in the test and gives us
a conceptual framework for the sce-
nario model:

• Reference data sets the context
for scenarios and their compo-
nent transactions.

• A scenario begins with an event
or a transaction.

• Transactions have expected re -
sults.

• Events operate on transactions and
affect their results: A prior event
chan ges a transaction context
(e.g., an overnight price change),
and a following event changes the
scenario result and potentially
affects a transaction (e.g., product
not found in warehouse).

• Actors influence expected results
(e.g., through user privileges, or
customer discount or tax status).

We can apply this framework to the
design of both levels of test model: the
overall execution model (the central idea
or metaphor for the test approach) and
the scenario model.

TEST DESIGN FOR A POS SYSTEM
The example that follows shows how,
together with a small test team, I
applied the conceptual framework
described above to testing a POS sys-

tem on a client project. David Wright, a
senior tester with whom I have worked
on many systems integration test proj-
ects, and who has contributed many

ideas and practical details to develop-
ment of this method, was a core mem-
ber of my team. In addition to experi-
ence with end-to-end scenario testing,
David and I both have extensive retail
system domain knowledge, which was
essential to successful testing on this
project.

THE BACKSTORY
The client operates a chain of more
than 1,000 retail drugstores across
Canada. This project was for the com-
pany’s secondary line of business, a
home health care company, which sells
and rents health care aids and equip-
ment to retail customers through 51
stores in different regions of Canada.
The plan was to implement the POS
system standalone for the home health
care company, and then, following suc-
cessful implementation, to implement
it in the main drugstores, fully integrat-
ed with an extensive suite of store and
corporate systems.

The POS system is a standard
product, in production with several
major retailers internationally, but it
was being heavily customized by the
vendor for this client. The client had
contracted with an integrator to man-
age the implementation and mitigate

FIG. 4: ADD EVENTS, PLUS DATE & TIME

Periodic Events
Transactions

Through Test Day Daily Verification

Central Office
Semi-static data POS

Dynamic Tranactions

POS
Register results

Item management
Price management

Promotions

Sales
Returns

Exchanges
Rentals
Voids

Post-voids
Suspensions

Recalls/
Retrieves

Rainchecks

POS Receipts
Till

TLOG
Store daily reports

Cash balance

Store Back Office
Store-wide results

Weekly Verification
Central Office
Summary results

Sales Report

User IDs
User Profiles

Store
Parameters

Setup
Central Office

Static data

act on

result in

2 stores’ results

FIG. 5: OVERALL EXECUTION MODEL

its risks. I reported to the integrator
with my test team.

The vendor was contractually obli-
gated to do system testing. The inte-
grator had a strictly limited testing
budget, and there were several other
constraints on my test team’s ability to
develop sufficient detailed knowledge
of POS to perform an in-depth system
test within the project’s timelines. I
therefore decided that our strategy
should be to perform an end-to-end
acceptance test, focusing on financial
integrity (i.e., consistency and accura-
cy end-to-end). Because we expected
the client would eventually proceed
with the follow-on major integration
project in the drugstores, I built the
test strategy and the artifact structure
to apply to both projects, although an
estimated 40 percent of the detailed
scenario design would need to be
redone for the primary line of business.

EXECUTION MODEL
Having analyzed and categorized the
data for the POS system, I designed
this overall model for executing the
test (see Figure 5).

The POS system had four principal
modules (Item and Price Management,
Promotions Manage ment, Store
Operations, and Central Reporting),
operating in three location types. The
POS client would operate in each store
and Store Back Office. The Central
Office modules would be the same for
all stores and all would offer the same
items, but actual prices and promotions
would differ by region and be fed
overnight to each store. We decided to
run two test stores, covering two
regions in different time zones and with
different pricing and provincial tax
structures. One of our test stores could
be switched to a different region if we
identified problems requiring more in-
depth testing of location variations.

We combined a business opera-
tions view with our data-driven overall
model to create a test cycle model
(see Figure 6).

SCENARIO DESIGN
We decided to build our scenarios from
an element we defined as an item trans-
action. The team began by drilling down
into each framework element and defin-
ing it from a test point of view: i.e.,
important attributes for testing and the
possible variations for each. Item trans-
actions had some other elements listed

(actors, items) with them, giving us a list
that looked like this:

Transaction
• Type (sale, return, post-void,

rental, rental-purchase…)
• Timeframe (sale/rental + 3 days…)
• Completion status (completed,

void, suspended)
• Store
• Register
• User (cashier, manager, supervi-

sor, store super-user)
• Customer (walk-in, preferred, loy-

alty, status native, employee…)
• Item(s) (multiple attributes, each

with its own variations)
• Tender (cash, check, credit card,

debit, coupon, loyalty redemption…)
• Loyalty points (y/n)
• Delivery/pickup (cash and carry,

home delivery…)
• Promotions in effect (weekly flyer,

store clearance…)
• Other discount (damage…)
Using spreadsheets to structure

our analysis, we designed a full range of
item transactions, working through the
variations and combining them to make
core test cases. Wherever possible, we
built in shortcuts—e.g., Excel lists for
variations of most attributes. (Table 1
provides a simplified example of the
transaction definitions.)

We designed events in a similar
fashion, including price changes and
promotions. We also constructed an
item table with all their attributes and
variations.

We then designed scenarios,
using the item transactions we had
defined as the lowest-level building
blocks. This allowed us to combine
item transactions and also to use them
at different points in scenarios. (Figure
7 shows our scenario model.)

The scenario spreadsheets refer-

enced the item transaction and item
sheets, so we could make changes eas-
ily. Our spreadsheet structures also
allowed us to calculate expected results
for each test day and test cycle. This
was essential for a system with so many
date dependencies, where we had to
evaluate the cumulative results of each
store sales day daily, and at the end of
each cycle evaluate the corporate week
for all stores. (Table 2 provides a simpli-
fied version of the scenario design.)

In addition, we wrote Excel macros
to automate the creation of some test
artifacts from others. The testers’
worksheets for test execution, for
example, were generated automatically.

RESULTS OF THE POS TEST
The vendor POS system, and in particular

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 31

Once per
cycle events

Central Office

Stores
Daily, 3-4 days per cycle

Store 1 Back Office

1 time setup
before all cycles

User setup (from Store for Pilot)
Store parameters

Item load (from spreadsheet)

Store 1 POS Registers Store 1 Back Office

Central
Office Central Office

Open store

Open register
Login

POS transactions
-
-
-

Logout
Close register

(Verify POS receipts
Till balance)

Close store

Verify
Totaller

Cash Balance
Daily Reports

TLOG

Verify
Central reports
Sales report

Once per
cycle event
Run reports

Open store

Open register
Login

POS transactions
-
-
-

Logout
Close register

(Verify POS receipts
Till balance)

Close store

Verify
Totaller

Cash Balance
Daily Reports

TLOG

Item maintenance

Price maintenance

Promotions Store 2 Back Office Store 2 POS Registers Store 2 Back Office

FIG. 6: TEST CYCLE MODEL

32 • Software Test & Performance NOVEMBER/DECEMBER 2009

the customizations, turned out to be very
poor quality. As a result, a test that had
been planned to fit our budget, with four
cycles (including a regression test) over
four weeks, actually ran through 28 cycles
over 14 weeks—and then continued after
pilot implementation. My strategy, and our
test scenarios, proved effective. We
logged 478 bugs, all but 20 of which our
client considered important enough to
insist on having fixed (see Table 3).

It is important to ask whether this
was the most cost-effective way to find
those bugs. Probably it was not,
because many of them should have
been found and fixed by the vendor
before we got the system. But we
found many other bugs, primarily inte-
gration issues, which would probably
not have been found by any other kind
of test. And—given the total picture of
the project—it was critical that the inte-
grator conduct an independent integrat-
ed test. This was the most efficient way
for our team to do that within the given
constraints.

There were several business bene-
fits from our test and test strategy. The
most important was buy-in from the
client’s finance department. Because
our test verified financial integrity across
the system, it provided the finance peo-
ple with evidence of the state of the
solution from their point of view.

Our scenario test facilitated accept-
ance for implementation in the home
health care stores and provided informa-
tion on which to base the decision of
whether or not to proceed with integra-
tion and implementation in the 1,000-
plus drugstores.

Because we tested the end-to-end
function of complex data interactions
that are business norms for this client—
such as sales, returns and rentals of
items with date-dependent prices and
promotions, and returns when prices
have changed and new promotions are
in effect—we were able to provide the
business with an end-to-end view of sys-
tem function that crossed modules and
business departments. Our varied sce-
narios provided sufficiently realistic data
to verify critical business reports.

Finally, the spreadsheet artifacts we
used throughout the test and gave to
the client supplied solid evidence of test-
ing performed, in the event it should
ever be required for audits.

BIGGEST POS PROJECT BENEFITS
The principal benefit of my strategy from
a testing point of view was that my team
supplemented the vendor’s testing rather
than attempting to duplicate it. The ven-
dor’s testing did not include an integrated
view of POS function. Ours did, and that
allowed us to focus primarily on system

outcomes, and only secondarily on the
users’ immediate experiences.

By adopting a building-block ap -
proach, we incorporated efficiency in test
preparation and execution. This gave us
flexibility to reschedule our testing accord-
ing to the state of the system on any given
day. When we encountered bugs, we
could work with the vendor and drill down
into the components of a scenario, such
as item setup, item transaction and pro-
motion setup, to find the problem.

Our robust and structured transac-
tion-scenario artifacts provided the client
with a reusable regression test for future
releases, upgrades to infrastructure and
so on. We were able to layer operability
tests on top of our scenario testing, sim-
ulating real outage conditions and verify-
ing the outcomes.

WHEN TO CONSIDER SCENARIOS
Scenario testing as I have described it
here is not always the best test method.
It does not fit well with exploratory test-
ing, and it is not the most effective way
to test deep function. It is, however, a
very useful method for testing widely
across a system. It is better for testing
system outcomes than for evaluating a
user’s immediate experience.

Scenario testing should, therefore,
be considered as part of an overall test
strategy that includes different kinds of

TABLE 1: TRANSACTION DEFINITIONS (SIMPLIFIED)

Txn-ID

POS-1

POS-2

POS-3

Store

1

1

2

Type

sale

return

sale

Timeframe

n/a

sale+1

n/a

Completion

C

C

c

Register

4

2

1

User Profile

cashier

manager

cashier

Customer

walk-in

walk-in

employee

Item(s)

45270

45270

98651

54945

21498

Tender

Cash-CAD

Cash-CAD

Visa

Points

n

y

Pickup/Deliver

y

C&C

n/a

HD

Promos

n/a

n/a

sidewalk

Discounts

n/a

n/a

raincheck

TABLE 2: SCENARIO DESIGN (SIMPLIFIED)

Scenario
ID

POS-S-S1

POS-S-S19

POS-S-S65

Description

Senior phones in to buy 3 items on
Super Senior’s Day of which 1 is a
charge sale item and 1 is a govt funded
item, delivery and service charges
applied, pre-paid delivery

Loyalty customer pays for 5 items, of
which 4 are points-eligible; customer
changes mind befoe leaving register and
1 point-eligible and 1 non-eligible are
post-voided

Senior phones in to buy 3 items on
Super Senior’s Day of which 1 is a
charge sale item and 1 is a govt funded
item, delivery and service charges
applied, pre-paid delivery

Prior Txns

n/a

n/a

n/a

Central Office

PROMO-45
PROMO-7

n/a

PROMO-12
PROMO-7
ITEM-96

Store Back Office

Open store

Open store

Open store

Store
Open Register
Login

Open Register
Login

Open Register
Login

Main Txn

POS-S133

POS-S17

POS-S133

Follow-on
Txns

POS-PV17

n/a

Post-Txn
Events

Logout
Close Register
Close Store
RPT-16

PRIOR EVENTS

tests. Some situations where it could be
appropriate include:

• Acceptance tests of business sys-
tems—e.g., UAT or vendor
acceptance.

• End-to-end systems integration
tests of multisystem solutions or
enterprise integrated systems.

• Situations where a test team lacks
sufficient detailed system knowl-
edge to do under-the-covers or
deep function testing and has no
way to get it, and there is insuffi-
cient time to explore. When there
is a combination of inadequate
documentation, restricted or zero
access to people who wrote the
software, and critical time pres-
sures, scenario testing can be the
best solution to the testing prob-
lem. (All of these constraints
applied on the POS project, and
we overcame them with scenario
tests informed by business domain
knowledge.)

CRITICAL SUCCESS FACTORS
The single most important requirement
for designing good scenario tests is
business domain knowledge, in the form
of one or both of the following:

• Testers who have experience in

the domain
• Input from, and

reviews of sce-
narios by, busi-
ness represen-
tatives

Where neither of
these is available, it is
at least possible to
resort to industry
books, as Cem Kaner
suggests in his article.

To use the approach I’ve des cribed
here, you need:

• A model with a framework that
fits the type of application. A
data-driven model works well for
transactional systems.

For other types of applications—
e.g., a desktop publishing system—you
would need to create a different model
and framework, such as one based on
usage patterns.

• Testers skilled in structured
analysis. This is not the no-brain-
er you would think. Not all
testers—not even all good
testers—have this skill.

• A building-block approach, so you
can design and build varied and
complex tests from simple ele-
ments. Among other advantages,

this allows you to begin testing
with the simplest conditions
before adding complexity to your
scenarios.

It also makes it possible to auto-
mate some of the test artifacts and build
in calculated expected results. This
becomes essential in large-scale sys-
tems integration tests, where you have
to communicate accurate expected
results to multiple teams downstream in
the integration.

THE RISKS
If you adopt scenario testing, these are
the critical things to watch out for:

• Scenario testing can miss important
bugs you could find with under-the-
covers or deep function testing.
Remember that scenario testing is
better for testing end-to-end than it
is for testing deeply, and build your
strategy accordingly.

•Bugs found in scenario outcomes
can be difficult to diagnose.
Especially if system quality is sus-
pect, it is essential to begin with
simple scenarios that test basic
end-to-end function, only pro-
ceeding to complex scenarios
when you have established that
fundamental quality is present.

• In choosing a model, there is
always a risk of fixing on one that
is too restrictive. Applying two or
more model types will help pre-
vent this.

• Equally, there is a risk of choos-
ing a model that is too expansive
(and expensive).

FINAL ANALYSIS
Finally, never fall in love with one
model type. This applies to your mod-
els for a single test as much as it
applies to your model choices for dif-
ferent tests.

Every test is different, and every
model type can bring benefits that oth-
ers lack. �

Store 1

1 Test Cycle = (in store POS days *2 stores)

Store 2

Central Office Totals

1 Store POS day = n Customer POS Transactions

1 Customer POS Transaction = n Item Transactions

1 Item Transaction = the lowest level POS test case

Store Day Totals

Itemized POS receipts

Item table in spreadsheets: prices, promotions, etc.

Store POS Day Store POS Day

Customer POS Transaction Customer POS Transaction

Item Transaction Item TransactionItems

Test Cycle

FIG. 7: SCENARIO MODEL

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 33

TABLE 3: BUGS

Severity

1

2

3

4

Total

Count

8

331

116

23

478

%

2%

68%

25%

5%

34 • Software Test & Performance NOVEMBER/DECEMBER 2009

know how and when we’ve hit the target—that is,
how we’ve made the correction appropriately.

Here, we’ll assume we’ve already defined a
problem issue, whether code-specific or process-
specific (process-specific issues are often related
to software productivity and failure to meet

deadlines or budget targets), and we’ll delve into
the second piece of the Six Sigma puzzle:
“Measure.” (In upcoming issues, we’ll address
the next three aspects: “Analyze,” “Improve”
and “Control.”)

Before doing any measuring, you must:
• Identify key quality attributes to be measured
• Devise a measurement plan
• Understand the limitations of the measure-

ment system
We’ll break our discussion into two compo-

Six Sigma, Part II:
Time to Measure

By Jon Quigley and Kim Pries

In the first article in this five-part series (see “Tracking Quality Variations With Six Sigma Methods” at
stpcollaborative.com), we discussed the “Define” phase of the Six Sigma quality management process as
it relates to software testing and performance. We explained how clearly defining the problem and explic-
itly describing what needs to be accomplished allows us to set the scope for project activities so we’ll

Jon Quigley is the manager of the verification and test
group at Volvo Truck. Kim Pries is director of product
integrity and reliability for Stoneridge, which designs
and manufactures electronic automotive components.

S
IX

 S
IG

M
A

I. Define II. M
easure

III. Analyze IV. Im
prove V. Control

nents: measuring the software itself and
measuring the software process.

MEASURING THE SOFTWARE
Some of the common metrics used with
software are:

• Lines-of-code
• Function points
• Defect counts
• Defect types
• Complexity

Lines-of-code is an objective
measure of software size. It’s impor-
tant for developers to understand that
higher-level languages like C++ don’t
translate one-for-one into the exe-
cutable code the machine will use. This
is also the case when we use dynamic
languages such as Perl, Python and
Ruby. Java is converted into byte-
code, which, in turn, is converted into
executable code. For these reasons,
lines-of-code can be a problematic
metric. On the positive side, though, if
all development work is being done in
one language, the metric is simple to
generate and provides a basic level of
measurement.

Function points are an alternative to
lines-of-code. When using the function
point approach, we work with the soft-
ware specification and attempt to esti-
mate the complexity of the product using
a special set of rules. Function points
present problems because the estimation
process itself is highly subjective.
Sometimes an organization will use some
well-known numbers and “backfire” the
function point value from the lines-of-
code. So why not use the lines-of-code in
the first place? We might use function
points when we’re comparing the poten-
tial complexity of a product to some stan-
dard and we have no existing code.

Defect counts are easy to accumu-
late. They comprise categorical data,
which Six Sigma practitioners have to
use to make any meaningful statistical
analysis. Luckily, this kind of analysis
doesn’t have to be that difficult: We can
use a Pareto chart to display defect
counts by function. (See Figure 1 for an
example.)

Using our count data and the
Pareto chart—which is organized by
count from left to right, high to low—
we can easily see that the
“read_analog” function is a leading
source of software defects. By meas-
uring our work using this approach, we
can focus our attention on functions
that show frequent problems. This

doesn’t mean that we’ll ignore the
other functions, just that we know we
have serious issues with the functions
on the left side of the graph.

Using defect types as a metric
allows us to check our software to see
if we’re repeating certain kinds of
defects regularly and may provide
some direction to our testing group
during the “Analyze” phase of our Six
Sigma project. A few examples of
defect types are:

• Boundary issues
• Byte boundaries (with embedded

code)
• Array/matrix out-of-bounds issues

(with non-embedded code)
• Logic issues
• Odd expressions, especially with

“negative” tests (those using
“not”)

• Unusual case structures
• Syntax checking
• Functioning of compiler
• Data issues
• Illegal inputs
• Incorrect casting to convert from

one data type to another
One benefit of measuring the quan-

tity of each data type is that we can
again apply Pareto analysis to the
results and use the information during
our Six Sigma “Analyze” phase. Also,
we can either construct a taxonomy of
types or we can use a technical standard
such as IEEE 1044-1993. A taxonomy
will represent the types in a hierarchical
tree format.

Software complexity metrics attempt
to represent the intrinsic complexity of
the software by making calculations.
Probably the most well-known approach
is the cyclomatic complexity calculation
of Thomas McCabe. McCabe initially

used a graph theoretical approach—a
flow graph—to estimate complexity. The
formula for such an approach is:

Cyclomatic Complexity = E ? N + P, where
E = the count of edges of the graph
N = the count of nodes of the graph
P = the count of connected components

Luckily, we don’t have to develop
the graphs or calculate the formula by
ourselves. We can use tools such as
JavaNCSS for Java or Saikuro for
Ruby. These tools will go through the
code and make the calculations based
on the number of “if” and “case”
statements, as well as other flow-alter-
ing code, and present the developer
with the value. The cyclomatic com-
plexity is a completely objective value.
While some people may question the
meaning of cyclomatic complexity, the
value generated is, at a minimum, sug-
gestive of areas of code that may merit
closer attention.

MEASURING THE
SOFTWARE PROCESS
We can also use our measurement tools
to take a look at the development
process itself. For example:

• Project status
• Quality (addressed in the first

section of this article)
• Delivery
• Compliance with international

standards
• Coding standards
• Factor/response analysis
When looking at a portfolio of soft-

ware projects and assessing them over
time, we can put the status of the soft-
ware projects into the following cate-
gories:

• Ahead of budget/schedule

FIG. 1: DEFECT COUNT BY FUNCTION

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 35

36 • Software Test & Performance NOVEMBER/DECEMBER 2009

• On budget/schedule
• Behind budget/schedule
• Suspended (may resume)
• Stopped (candidate for aborted)
• Unstarted
• Completed
• Unknown
• Aborted (completely dead)
• Zombie (similar to unknown and

still consuming resources)
Some of these—“unknown,” for

instance—represent serious problems
with the process. Basically, the simplest
approach would be to build a table that
lists the development projects in the
first column and the status of each proj-
ect in the second.

Project budgets are an obvious
metric for the development process
and fit into a few of the categories we
just discussed. The highest cost fre-
quently comes from the payroll for the
developers. During a development we
might wish to estimate our level of
effort so we can put a value on the
software engineering we’re proposing
to do. One way to do this would be to
model our efforts using a Rayleigh
distribution.

Figure 2 shows how we can meas-
ure our actual effort (e.g., hours of
labor) against the probability distribu-
tion function. Front-loading is desirable
in order to avoid the “student” effect
(named for the tendency of students to
put in all their effort the night before a
test).

Another interesting feature of this
Rayleigh distribution is that we can
also measure the arrival of defects
through the duration of the project and
compare our results against the model.

Usually real data is noisy (some ele-
ments of randomness), but we can still
use this approach to potentially pro-
vide a basis for releasing the software
product as our defect arrival rate slows
down and we move into the right tail of
the distribution.

During our software process, we
want to measure delivery of functions,
modules and other configuration items
to see if we’re meeting our schedules.
Instead of using the states we defined
previously, we measure our historical
progress against development time
lines. Tools such as Microsoft Project
allow the project manager to baseline
the initial plan and then produce a sec-
ondary plot of the actual dates super-
imposed on the first timeline. We can
assess the distribution type, the
means, the variance and any other sta-
tistical values that would allow us to

model the software development proj-
ect. For example, using a tool like
@Risk from Palisade Corp. in concert
with Microsoft Project, we can run
Monte Carlo simulations of the proj-
ect. The Monte Carlo approach gener-
ates random values from a given prob-
ability distribution; that is, we’re using
the probability distribution we meas-
ured to generate a model for each
delivery. In so doing, we can provide
our software project managers with a
method for simulating the delivery
times of an entire project or portions of
a project.

Another method of process
improvement is to drive the develop-
ment team to compliance with an inter-
national standard. One such standard
is ISO/IEC 15504 in nine parts.
ISO/IEC 15504 is also known as the
Software Process Improvement and
Capability dEtermination (SPICE),
which is a variation on the maturity
models developed by the Software
Engineering Institute in the 1980s—the
Capability Maturity Model (CMM) and
the Capability Maturity Model
Integration (CMMI). These approaches
specify a stepwise approach to
increasing the capability of software
organizations. All of these organiza-
tions define best practices and publish
documents for use by auditors, but no
software organization has to wait for a
formal audit to establish the practices
contained in these standards.

We can also measure compliance
with coding standards such as MISRA C.
MISRA, the Motor Industry Software
Reliability Association, is one group that
specified best practices in the C language

XXXXXXXXXXXXXXXXXXXXXXX

FIG. 3: CORRELATING INPUTS AND OUTPUTS

FIG. 2: FRONTLOADED EFFORT

for embedded systems in the automotive
industry. An organization doesn’t have to
purchase a coding standard—with enough
product history, it can develop its own.
The standard developers can refer to the
software metrics, especially the
taxonomy of failure types and the
typical functions that become
“problem children.”

One of the most valued
tools in the Six Sigma toolbox is
the IPO diagram. (See Figure 3.)

This diagram offers a model
for measuring and correlating fac-
tors (inputs) against their effects
(outputs). For example, we might
use this approach to discern
which factors are providing our
developers with fewer defects:
They could be using static analyz-
ers, dynamic analyzers, debug-
gers, oscilloscopes, logic analyz-
ers and other tools. We’d then
conduct experiments to provide
ourselves with a meaningful basis
for recommending one tool or family of
tools over another. Some readers may
recognize this approach as the Design
of Experiments, or DoE. The downside
to this approach is that we usually need
special software to perform the analysis.

Some choices of support software are:
• Minitab
• Design Expert
• DOE++
• Nutek-4

For something as complex as
regression analysis, we can use a free
statistical language called “R” to per-
form our calculations. R is command-
line driven, although a graphical user
interface called “Rcmdr” helps ease the

shock of using an old-fashioned com-
mand line. R even has an interface to
Microsoft Excel that allows R to be
used as a server to Excel as a client.
Designed experiments and regression

are powerful tools for analyzing
processes.

WHAT’S NEXT?
We can apply the Six Sigma
“Measure” approach to soft-
ware directly, and we can also
use it for the software develop-
ment process. When Six Sigma
tools are applied to a process,
we usually call it transactional
Six Sigma because we’re
dealing with people. From “Mea -
sure,” we’ll move to “Anal yze”
in our next article and show you
what we do with the factors
we’ve already measured.

Don’t get frustrated, thinking
you have to use statistics as part
of the project. In many cases,

using Pareto charts and other basic tools
is more than enough to provide direction
for future analysis and improvement. And
sometimes, simply measuring a
previously un known factor reveals the
solution to your problem. �

Statement of Ownership, Management, and Circulation for Software Test & Performance as

required by PS Form 3526-R. Publication title: Software Test & Performance. Publication num-

ber: 023-771. Filing date: September 25, 2009. Issue frequency: Monthly. Number of issues pub-

lished annually: 12. Annual subscription price: $69.00. Complete mailing address of known office

of publication: 105 Maxess Road, Suite 207, Melville, NY 11747. Publisher: Andrew Muns;

Editor/Managing Editor: Edward J. Correia; Owner: Redwood Collaborative Media, Inc., all locat-

ed at 105 Maxess Road, Melville, NY 11747. Shareholders holding 1% or more of the total

amount of stock: Ronald Muns, 1640 Little Raven, Denver, CO 80202; Robert Andrew Muns, 20

McKesson Hill Rd, Chappaqua, NY 10514; Katherine Muns, 1106 E. Moyamensing, Philadelphia,

PA 19147; Pamela Kay Garrett, 3358 Turnberry Circle, Charlottesville, VA 22911; Erik Leslie, 2485

S. Williams St, Denver, CO 80210; Cole Leslie, 16420 Little Raven, Denver, CO 80202. The tax

status has not changed during preceding 12 months. Issue date for circulation data below:

October 2009. Extent and nature of circulation: Requested US distribution. The average number

of copies of each issue published during the 12 months preceding the filing date include: total

number of copies (net press run): 12,267; paid and/or requested outside-county mail subscrip-

tions: 11,496; in-county paid/requested subscriptions: 0; sales through dealers, carriers, and

other paid or requested distribution outside USPS: 0; requested copies distributed by other mail

classes through the USPS: 0; total paid and/or requested circulation: 11,496; non-requested

copies by mail outside-county: 413; in-county non-requested copies by mail: 0; non-requested

copies distributed by other mail classes through the USPS: 0; total non-requested distribution:

413; total distribution: 11,909; copies not distributed: 358; for a total of 12,267 copies. The per-

cent of paid and/or requested circulation is 93.7%. The actual number of copies of the October,

2008 issue include: total number of copies (net press run): 5,148; paid and/or requested outside-

county mail subscriptions: 4,408; in-county paid/requested subscriptions: 0; sales through deal-

ers, carriers, and other paid or requested distribution outside USPS: 0; requested copies distrib-

uted by other mail classes through the USPS: 0; total paid and/or requested circulation: 4,408;

non-requested copies by mail outside-county: 326; in-county non-requested copies by mail: 0;

non-requested copies distributed by other mail classes through the USPS: 0; total non-requested

distribution: 326; total distribution: 4,734; copies not distributed: 414; for a total of 5,148 copies.

The percent of paid and/or requested circulation is 85.6%. Publication of the Statement of

Ownership for a requestor publication is required and will be printed in the November/December

2009 issue of this publication. I certify that all information furnished on this form is true and com-

plete. Signed: Andrew Muns, President and CEO, September 21, 2009.

Advertiser URL Page

Automated QA www.MissionOffMercury.com 10

Browsermob www.browsermob.com/stp 19

Checkpoint www.checkpointech.com 39

Electric Cloud www.electric-cloud.com 13

Hewlett-Packard www.hp.com/go /alm 40

Ranorex www.ranorex.com 7

STP Collaborative www.stpcollaborative.com 2

Seapine www.seapine.com/stpswift 3

IInnddeexx ttoo AAddvveerrttiisseerrss

[In many cases, Pareto

charts and other basic

tools are enough to provide

direction for future analysis

and improvement.]

NOVEMBER/DECEMBER 2009 www.stpcollaborative.com • 37

THIS SHOULD BE ENGRAVED ON
a plaque in every development lab:
Modeling application usage in the wild is
no longer a black art.

That’s certainly good to know, but
why was application usage profiling so
labyrinthine in the first
place? It’s self-evident,
says PreEmptive Solu -
tions’ Sebastian Holst. “A
runtime application must
serve many masters with
markedly diverse profiling
requirements, priorities
and expectations.”

Development organi-
zations view things from a
softwarecentric perspec-
tive while IT organizations,
of necessity, adopt an
operational worldview, according to Holst.
As a result, developers’ priorities are more
granular than management’s, and are
organized differently from those of their
QA peers. “IT auditors have a different
charter than the operations managers and
security officers with whom they collabo-
rate,” Holst says. And, he adds, let’s not
forget the end user and line-of-business
owner who ultimately fund this diverse
community of application stakeholders.

Profiling and testing must serve the
varied and often mutually exclusive inter-
ests of these stakeholders. Performance,
accuracy, ease of use, security, bandwidth
efficiency and a dozen other features and
functions are critical, but only to specific
stakeholders in specific ways.

The mix changes depending on the
application and the business mission.
Holst cites four examples: An automated
teller machine manufacturer wants to
measure implementation efficiency, moni-
tor usage for refactoring Java and ensure
end-of-life policy enforcement; a trans-

portation services ISV strives to improve
support response efficiency for its end-
user audience of nontech-savvy trucking
industry professionals; an ISV aims to
automate its customer-experience
improvement process; and a manufactur-

er of hearing aids plans to
improve the process its
dealers use to fit and tune
devices to users’ ears.

Regardless of the me -
t rics development and test
teams track for these
diverse markets and goals,
a common core of ques-
tions remains constant,
says Holst: What’s run-
ning, how well does it per-
form, how does it compare
(with a prior version or as a

hosted vs. nonhosted model), how does it
affect business outcome or ROI, and can
it be managed from
cradle to grave?

How much more ef -
fec tive and efficient could
testing be if you had reli-
able and accurate run-
time intelligence from the
field detailing which fea-
tures were being used,
by whom, where, when
and how? It’s not as far
away as it may seem:
Post-build injection is
emerging as a de facto
.NET standard and is or
will be available for both
.NET and Java. Support
for Azure and Silverlight
is provided.

Application runtime
intelligence is emerging as a great way to
measure how enterprises not only use but
experience software, Holst says.
PreEmptive’s Runtime Intelligence and
Instrumentation Platform technology
enables executables to be injected–post-
build–with application instrumentation logic
that streams runtime data to one or more
cloud-based repositories. The resulting

intelligence can be integrated into CRM,
ALM and ERP platforms.

How likely is it to become standard in
every professional tester’s arsenal? For
starters, Microsoft feels strongly enough
about PreEmptive’s Dotfuscator Com -
munity Edition to integrate its functionality
into Visual Studio 2010.

To realize this ideal, Holst identifies
four requirements for the technology:
Runtime data collection, transport, analyt-
ics and reporting; developer instrumenta-
tion platform and tools; security and priva-
cy policy management services; and role-
based access for both the software sup-
plier and end-user organizations.

Injection makes it easier to under-
stand various end-user hardware configu-
rations, for example. It’s virtually impossi-
ble for any company to test all the config-
urations its customers use, but a post-
build injection lets you break out usage

data by nearly any crite-
ria. A company may find
it has only one customer
still using Windows 2000
and de cide to drop sup-
port, but the analytics
could grab the customer
ID, query the CRM sys-
tem and return the con-
tract value. “If it shows
that this one customer
constitutes millions of
dollars in revenue, the
business may continue
support,” Holst says.

Attempting to mo -
del the real-world envi-
ronment doesn’t
necessarily yield
accurate re sults

because the “squeak y wheels” who
speak up may not represent users as a
whole, while conversely, satisfied cus-
tomers tend to stay silent. But through
injection of instrumentation, it’s now pos-
sible to understand the environment and
see which features are used most and
least often, and which can have significant
ramifications on systems design and sup-

38 • Software Test & Performance NOVEMBER/DECEMBER 2009

Post-Build Injection Pros
�

Joel Shore is a 20-year industry veteran and has
authored numerous books on personal computing.
He owns and operates Reference Guide, a technical
product reviewing and documentation consultancy
in Southborough, Mass.

“Post-build

injection is or will

be available for

both .NET and

Java. ”

CASE STUDY

Joel Shore

