Engineering College Council Kent Fuchs

April 20, 2006

Overview

- Changes in Leadership
- Areas of Focus
- Energy Initiative
- Biomedical Engineering
- U.S. News Graduate Program Rankings
- Undergraduate Education
- Curriculum Transformation
- Experiential Learning
- Facilities
- Quantitative Progress

President David J. Skorton

- $12^{\text {th }}$ president of Cornell University, effective July 1, 2006

- President of University of Iowa, March 2003 - June 2006
- Vice President for Research and External Affairs 2000-2003
- Vice President Research 1992-2000
- Professor, University Iowa since 1980 Internal Medicine, Electrical \& Computer Engineering, and Biomedical Engineering
- Cardiologist
- Jazz musician

Recent Awards

- New NAE Members
- Toby Berger, ECE
- Jean-Yves Parlange, BEE

- TR35-MIT Technology Review's Top 35 Researchers for 2005
- Rajit Manohar, ECE
- Matthew DeLisa, CBE
- MacArthur Genius Award
- Jon Kleinberg, CS

Changes Initiated

- ORIE proposed name change
- from Operations Research \& Industrial Engineering
- to Operations Research \& Information Engineering
- Refocusing College's Office of Research and Graduate Studies
- Jeffrey Newman, New Director of Research and Graduate Studies
- Infotonics Technology Center Inc.,
- Legal Counsel, 2005
- Director, Intellectual Property \& Business Arrangements, 2003-04
- Radiodetection Corp., Bristol, UK
- Vice President, Intellectual Property Rights, 2001

College of Engineering Key Facts

4,150 Students (2900 BS, 400 MEng, 850 MS/PhD)

- 250 Faculty (215 fte)
- 600 Employees (Including Faculty)
- 14 Undergraduate Majors
- 21 Graduate Fields (MEng, Ms/PhD)
- \$160M Total Budget
- \$112M Research Expenditures

Over Last 3 Years
2000 BS Degrees Awarded

- 1200 MEng Degrees Awarded
- 625 MS/PhD Degrees Awarded

Innovation in Research

- Systems biology and biomedical engineering
- Nanomaterials, nanoscience, and nanodevices
- Energy, environment, and sustainable development
- Information, computation, and communication

- Advanced materials
- Complex systems and networks

Energy Initiative

The College will lead in:

- The development of new energy systems
- Impact on the environment
- Goal to raise a \$15M endowment
- Search for a senior faculty member is underway

> The world population in 2050 will be 50% greater than today and energy consumption will triple.

Oil and Gas Investments Up to $\$ 200$ Billion per Year Oil and Gas Investments Up to
Worda Energy imestment. 2001-2030
Word Enegy lmestment, 2001-2030

$$
\text { Total World Energy Investment: } \$ 16 \text { Trillion }
$$

Department of Biomedical Engineering

- Combining an understanding of molecular detail and cellular behavior to create new diagnostics and therapies
- Focus on biomaterials, biomedical diagnostics, computational biology, drug design and delivery, biomedical mechanics, nanobiotechnology, imaging
- Undergraduate Minor (6 courses)
- MEng and MS/PhD Programs (10 courses)
- Diversity - 48\% women and 20\% under-represented minorities

Biomedical Engineering Goals

- Become the very best BME department in molecular/cellular imaging and nanobiotechnology
- Be the lead partner with the Weill Cornell Medical College to advance interdisciplinary research and education
- Locate the department in the New Life Sciences building
- Grow the department to 15 faculty members

Biomedical Engineering Faculty

- Michael Shuler, Professor, BME/CBE and Chair BME - Systems Biology, Design, Production \& Metabolism
- David Skorton, Professor and President of Cornell - Biomedical Instrumentation and Diagnostics
- Larry Bonassar, Assoc. Professor BME/MAE and Assoc. Chair, BME Biomedical Mechanics
- Warren Zipfel, Assoc. Professor, BME - Biomedical Instrumentation and Diagnostics
- David Putnam, Asst. Professor, BME/CBE - Biomaterials, Drug Delivery, Design, Production \& Metabolism
- Chris Schaffer, Asst. Professor, BME - Biomedical Instrumentation \& Diagnostics, Systems Biology
- Peter Doerschuk, Professor, BME (Starting July 1, 2006) - Systems and Computational Biology; Biomedical Instrumentation and Diagnostics
- Cynthia Reinhart-King, Asst. Professor, BME (Starting July 1, 2007) Cellular Biomedical Engineering; Biomedical Mechanics

ORIE in New York City

- Ithaca - NYC collaboration (Broad Street)
- Putting ideas into practice: academia, industry, end users
- Cornell Institute for Disease and Disaster Preparedness
- Impact on research, education, faculty, and students
- \$3.5M in support (\$700K internal)

Undergraduate Programs

- Curriculum Transformation
- Common Core
- Majors
- Experiential Learning
- Environmental Engineering ABET Accreditation Review

Curriculum Transformation

- Faculty Steering Committee presented initial findings to the engineering faculty in December 2005
- A second faculty task force (Shef Baker, Chair, MSE; David Caughey, MAE; Mike Duncan, CBE; Bruce Kusse, AEP; Andy Ruina, TAM; Charles Seyler, ECE; Lisa Schneider, Learning Initiatives)

Goal: Every Student Participate in

 Experiential Learning- International study and internships
- Cooperative Education Program internships
- Field-based programs
- Undergraduate research
- Project teams

International Partnerships

- Europe
- École Centrale, France
- Cantabria, Spain
- Asia
- IIT Kanpur, India
- Tsinghua Univ., China
- Hong Kong Univ. of Science
 and Technology

Example:
 Undergraduate Research 05-06

Real World
Problems ...
Innovative Solutions

UNDERGRADUATE
RESEARCH GRANTS
For Engineering Students

- Student Grant Program
- \$206K (college funds and donor gifts)
- Funded 157 students during the academic year and summer
- Faculty Grant Program
- Goal to fund new undergraduate researchers in faculty labs
- \$100K awarded to 23 faculty
- Sponsoring 30 students

Solar Decathlon

- Designed and built 300 sq ft Solar House,
- Placed $2^{\text {nd }}$ in Washington, D.C. competition
- 70 students on the team

Engineering, Architecture, JGSM, CALS,
Arts and Sciences, etc.

- Funding: Cornell, DOE, friends

Example:

Engineers for a Sustainable World

"I work with Engineers for a Sustainable World here at lowa, and I know that (ESW) started at Cornell." The Cornell Sun-2/27/06
David Skorton

Example:

Engineers for a Sustainable World Honduras Water Supply Project

- Improving water treatment technologies so communities can afford safe, clean water
- Creating new knowledge with laboratory research
- Demonstrating the technologies with a portable pilot plant
- Building prototype plants for small communities
- Transferring the technology to Honduran institutions

Participating in New Facilities

- Nanosciences
- Life Sciences
- Physical Sciences
- Information Sciences

Information Sciences Building

- \$25M gift from Bill and Melinda Gates Foundation
- Computer Science, Information Sciences, Computational Biology, Computer Graphics, Theory Center, Operations Research
- Project Feasibility 60K - 150K NSF; \$50M - \$125M
- Further study of site capacities and resulting program scope in progress
- Student accessibility to site is a primary consideration

Cornell Engineering Graduate Rank in U.S. News

Rank	School	Schools				$\begin{array}{\|c\|} \hline \text { Rate } \\ \text { Accept. } \end{array}$	$\begin{array}{\|l\|} \hline \text { PhD Stdnts } \\ \text { Per Faculty } \\ \hline \end{array}$	$\begin{aligned} & \text { \%Nat. } \\ & \text { Acad. } \end{aligned}$	eerí	ing April		duate 06
					GRE				Research Expenditures		$\begin{array}{\|l\|} \hline \text { PhD's } \\ \text { Granted } \end{array}$	05 Total Grad Enrollment
		Score	Peer	Recruiter	Quant				Total	Per Faculty		
1	MTT	100	4.9	4.8	775	25.4\%	4.4	13.2\%	\$ 224.8	\$ 622.7	273	2,717
2	STANFORD	95	4.9	4.6	778	35.8\%	5.1	14.8\%	\$ 142.7	\$ 689.3	260	3,218
3	UC-BERKLEY	86	4.8	4.6	773	17.5\%	4.5	21.0\%	\$ 118.0	\$ 477.8	201	1,694
4	GEORGIA TECH	85	4.5	4.3	760	33.8\%	4.1	5.0\%	\$ 202.2	\$ 426.6	275	3,685
5	U OF ILLINOIS	82	4.5	4.3	773	19.9\%	4.1	2.2\%	\$ 195.8	\$ 473.0	220	2,507
6	PURDUE	80	4.2	4.1	751	36.5\%	4.0	5.1\%	\$ 221.6	\$ 676.0	183	2,273
6	U OFMICHIGAN	80	4.5	4.1	770	42.3\%	4.4	4.0\%	\$ 157.4	\$ 507.6	226	2,390
8	CMU	78	4.3	4.3	772	24.8\%	4.4	8.6\%	\$ 142.3	\$ 711.7	136	1,570
9	USC	76	3.7	3.6	749	48.5\%	5.7	14.1\%	\$ 157.4	\$ 965.4	91	3,560
10	CAL TECH	75	4.7	4.6	790	10.9\%	5.3	10.1\%	\$ 51.2	\$ 538.5	74	577
11	CORNELL	73	4.3	4.3	760	22.4\%	4.2	8.7\%	\$ 112.2	\$ 544.8	116	1,234
11	UC-SAN DIEGO	73	3.8	3.9	764	21.8\%	4.9	11.0\%	\$ 128.8	\$ 805.2	68	1,147
13	U OF TEXAS	69	4.2	4.1	760	28.6\%	3.7	8.8\%	\$ 106.9	\$ 464.6	143	2,059
14	TEXAS A \& m	68	3.7	3.7	740	44.4\%	3.0	3.5\%	\$ 179.0	\$ 675.4	148	2,187
15	UC-LOS ANGELES	66	3.7	3.8	766	34.6\%	5.2	11.4\%	\$ 88.3	\$ 605.1	137	1,256
15	U OF MARYLAND	66	3.6	3.7	760	24.0\%	4.5	5.3\%	\$ 145.3	\$ 637.1	149	1,943
15	U OF WISCONSIN	66	4.1	3.8	779	21.2\%	3.4	4.5\%	\$ 123.2	\$ 528.9	72	1,517

Total Applications for Undergraduate Admission

Applications - International

Fall Freshman Engineering Applications by Interest

First Year Undergraduate Women and Minorities

*(Note: University Survey Process Changed in 1998, moving from odd- to evennumbered Years, and annually after 2000-- No Survey Was Produced in 1999.)

Employer Recruitment Visits

J ob Interviews

Co-Op Student Participants

Average Undergraduate Salaries

Graduate Student Enrollment

Graduate Student Enrollment Underrepresented Minorities

