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Abstract High-speed cine and video photographs were
used to capture the flow patterns of a column of water
jet impinging into a pool of water. The impact results in
air entrainment into water in the form of a void with no
mixing between the water in the jet and the surrounding
water. Conservation of fluid momentum shows that the
rate of increase of the height of the air void depends on
the drag coefficient of the jet front. By neglecting the
frictional losses, the application of energy conservation
yields an expression that relates the maximum height of
the air void with the properties of the water jet.

1 Introduction

The entrainment of air into a pool of water as a result of
water jet impingement has been of interest in many
facets of engineering. For a water jet which is continu-
ously pouring into an otherwise calm free surface, the
entrainment of air is in the form of bubbles being
‘‘dragged’’ below the free surface. This mechanism has
been well studied with recent research in this area rep-
resented by the works of Cummings and Chanson (1997)
and Bonetto et al. (1994). The analysis of Cummings and
Chanson is based on a diffusion process in which the

amount of air entrainment is calculated in terms of an
air–water ratio from a diffusion equation. Bonetto et al.
(1994) considered the Helmholtz instability on the free
surface of the jet as a mechanism for trapping air
bubbles into water.

Air entrainment also occurs during a very short time
immediately after the water jet makes contact with the
horizontal free surface. The collision between the two
free surfaces creates free surface waves and resulting air
being trapped in a void below the free surface—the
phenomenon is dependent on the Froude and Weber
numbers.

In an experimental study on the falling of a short
water column into water, Oguz et al. (1995) showed
features of air entrainment as the column entered the
free surface. The study was carried further by Zhu et al.
(2000). Their carefully designed flow system produces a
column of water that flowed steadily into a pool of water
without any disturbance on the free surface. The diam-
eter of the water jet was then perturbed in the nozzle and
as the perturbation in the jet reached the horizontal free
surface air was entrained into the free surface in the
form of a void. The entrainment of air in this form was
first observed by Benjamin and Ellis in 1966. In flow
visualization of the collapse of a vapor bubble, Benjamin
and Ellis discovered penetration of the free surface by a
high-speed water micro-jet. The fact that the jet of water
was visible in the surrounding water, as shown in the
high-speed photograph, is due to a layer of the entrained
vapor which separated the impinging jet from the sur-
rounding water. Significant research interest was focused
on computer studies of the pulsations of a vapor bubble
with the aim to gain further understanding of the
mechanism that causes cavitations. In the collapse of a
vapor (or gas) bubble in water in the presence of a rigid
wall, the side of the bubble away from the wall will
concave inward thus forming a thin water jet (micro-jet)
penetrating the cavity. In acute situations, the micro-jet
will pass through the cavity and strike at the interface on
the other side of the cavity. Thus the situation of a water
jet impinging on a free surface has occurred. The phe-
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nomenon of the impact was first modeled by Best (1993)
in which a mathematical cut in the velocity potential was
used to represent the continuation of the collided
interfaces. Note that the model by Best assumed a
velocity of the interface immediately after the impact
between the jet and the free surface. Zhang et al. (1993),
in their calculations, made use of a vortex sheet to rep-
resent the collided interfaces. The trajectories of points
on the vortex sheet was traced by the flow-induced
velocity vectors that are normal to the vortex sheet. The
cohesion of two free surfaces in forming a vortex sheet
was an over-simplified model as it did not conserve the
momentum of the colliding fluids. It has become neces-
sary to conduct a visualization study of a water jet
impacting on a free surface, which may provide the
much needed information for the formulation of an
impact boundary condition for computer simulation of
the impact between a free jet and free surface.

This work came about from the discussion amongst
the authors on jet impact problems that are common in
industry. Some examples include the welding process
where a jet of liquid metal strikes the weld pool, the
penetration of a micro-jet during the collapse of a va-
por bubble in liquid, and in spray cooling where a
cooling jet has to strike at a layer of water floating on a
hot surface. The disturbance created by the jet impact
and the penetration of the jet will be of interest to the
mixing of the two liquids and the characteristics of heat
transfer, for example, in the processes of welding and
jet cooling.

2 The experiments

A visualization study reported here is similar to the
experiments by Oguz et al. (1995). The aim is to observe
a long stream of water jet from the moment it makes
contact with the free surface.

The apparatus consists of a water feeder tank located
above a receiver tank which contains water at a pre-
scribed depth. The height of the feeder tank is adjustable
and a nozzle is attached to its bottom through a valve.
The receiver tank is transparent so that the interior of
the tank is visible. A sudden opening of the valve will
release a column of water jet flowing down towards the
receiver tank. The velocity of the water jet reaching
the free surface in the receiver tank is dependent on the
height of the water level at the feeder tank and in
the pipe and the control valve. A schematic diagram of
the experimental set-up is shown in Fig. 1.

In the experiments, a column of water was released
from the feeder tank. As the water jet entered the free
surface of the reservoir tank, a high-speed video camera
recorded the flow at a rate of 1,000 frames per second
and in the case of using a cine camera, the filming rate
was 2,000 frames per second. Backlighting was used
during the filming with the cine camera in order to have
adequate exposure at the required filming rate. The
water from the feeder tank was dyed blue so that the

movement of the water from the jet inside the receiver
tank could be traced.

Relevant experimental data for jets impinging on
deep water are shown in Table 1.

3 Observations

A visualization study similar to that of Pumphrey and
Elmon (1990) was recorded from a sequence of four
water droplets striking the free surface. As shown in
Fig. 2, the impact by the first three droplets created a
cascade of three hemi-spherical voids. The voids re-
tracted at the time when the fourth droplet impacted the
free surface, resulting in a bubble separating from
the void and carried downward by the momentum of the
droplet. It is evident that steady state virtually existed at

Table 1 A tabulation of experimental data for jet impingement
into deep water

Test no. Vj (m/s) V2 (m/s) Fr k

1 0.38 0.30 2.6 0.787
2 0.39 0.21 2.8 0.538
3 0.42 0.26 3.3 0.605
4 0.45 0.39 3.5 0.872
5 0.88 0.63 13.3 0.714
6 1.22 0.76 20.1 0.627
7 1.14 0.79 20.2 0.695
8 1.42 0.91 27.2 0.642
9 1.35 0.78 28.4 0.581
10 1.52 1.00 31.3 0.659
11 1.47 0.90 34.1 0.611
12 1.90 1.12 48.9 0.591
13 1.89 1.03 55.7 0.544
14 2.04 0.90 65.1 0.443
15 2.06 1.12 66.6 0.543

Vj velocity of the jet prior to impingement; V2 velocity after
impingement; Fr Froude number; and k=V2/ Vj is the velocity
ratio.

Fig. 1 Schematic diagram of the experimental set-up
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the point in time where the void, created by each droplet,
achieved its maximum size. The next experiment will
show that the mode of flow of a continuous jet

impacting onto a pool of water is very different to that of
droplet impact.

Figure 3 shows the time sequence of a water jet
striking a free surface for test 6 (see Table 1); the filming
speed was 2,000 frames per second. The water from the
jet was dyed blue and thus appeared red in the negative
images. The velocity of the impinging jet was 1.22 m/s.

The penetrating jet entrained air below the free sur-
face and formed a conical air void surrounding the jet.
The void grew in size and continued to deform in shape
as the water jet penetrated the water. The water from the
jet (appears red in negative image) was also found
around the wall of the void. It is evident that during the
period of jet penetration, the dyed water from the jet did
not mix with the pool of water; instead, the water from
the jet formed a layer around the void and separated the
void from the surrounding water. Here movement of the
lowest point of the interface is defined as the jet front
and its velocity relative to the calm free surface is
denoted as v2.

A close-up view of the flow in the void created by an
impinging water jet is presented in Fig. 4. After 99 ms
the void stopped growing, and the dyed water from the
jet began to break through the bottom of the void and
enter the water below. At 140 ms, a tiny bubble pinched
off from the void, leading the moving dye streak. As the
dye streak moved downward, the void retracted towards
the free surface. Turbulent mixing fully developed after
160 ms. A similar phenomenon was reported by Zhu
et al. (1998, 2000) in a computer and experimental study
of air entrainment induced by the perturbation of an
otherwise steady column of water pouring into a free
surface. It must be noted that before Zhu began his
experiment a steady state in which a column of jet
flowing into the free surface was established (that is, the
free surface is calm). He then introduced a perturbation
on the jet column. As the perturbed section of the jet
entered the calm free surface an air void was created.
Note that the jet front was absent in Zhu’s case. How-
ever, we expect the shape of the void in Zhu’s case to be
similar to the void shown in Fig. 3 since both were
created by the impact of bulbous sections of the jets.

When analysing the movement of the tip of the jet, an
example of which is shown in Fig. 5, it was found that
the tip had a velocity of vj (jet velocity) as it entered the
water, and was reduced to a constant velocity v2 after
impacting the free surface. This velocity, v2, which was
the velocity of the jet front, appeared to remain constant
over the time interval where the void was expanding.
The velocity ratio for the case shown in Fig. 3 is 0.627;
velocity ratios measured for various tests in deep water

Fig. 2 A sequence of high-speed photographs of water droplets
striking a free surface. The first droplet created a semi-spherical
void at 502 ms. Two subsequent droplets each created a void at 512
and 520 ms. When the fourth droplet arrived at 548 ms, an air
bubble separated from the void and was carried downward by the
momentum of the droplet

b

498



experiments are tabulated in Table 1. Figure 6 shows the
relationship between the velocity ratios and the Froude
number (based on the diameter of the jet dj) defined as:
Fr ¼ v2j = gdj

� �
:

Fig. 3 A sequence of high-
speed photographs for test 6
(see Table 1). The void created
by air entrainment grew to a
maximum size 99 ms after the
impact. The jet then broke
through the bottom of the void
and carried a pinched off
bubble downward (at 140 ms)
while the void retracted to the
free surface. Note that mixing
of the two liquids occurred with
the formation of turbulence
after the void collapsed at
about 160 ms after the impact.
The velocity of the impinging
jet was 1.22 m/s

Fig. 4 A close-up view of the results from test 6 at 99 ms after the
impact. Water from the jet (red) formed a thin layer covering the
inside of the void without mixing with the surrounding water

Fig. 5 Jet front distance from the calm free surface for test 6.
Negative distance is above the free surface
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4 The analysis

The mathematical model for droplet impact so elegantly
constructed by Pumphrey and Elmon (1990) is based on
the conservation of energy at two instances when the
fluid is assumed to be instantaneously at rest, namely,
before the droplet begins to fall and when the void has
reached it maximum volume. This is in contrast to the
case of jet impact. As the jet continues to flow into the
pool of water, it is not possible to construct an analysis
similar to that of Pumphrey and Elmon (1990).

In the experiment conducted by Zhu et al. (1998,
2000), a steady stream of water column flowing into the
free surface was established before the water column was
perturbed to create a void on the free surface. As there
was no moving front that can be identified, the analysis
by Zhu took a different approach to the analysis pre-
sented here.

4.1 The conservation of momentum

The momentum equation may be applied with the fol-
lowing assumptions derived from observations in the
experiments.

• The acceleration of the water jet due to gravity is
negligible.

• The velocity of the water jet below the free surface
remains constant with time.

• A quasi-steady state is assumed in the frame of ref-
erence which is moving with the velocity of the sub-
merged jet.

• There is no mixing between the water in the jet and the
water below the free surface.

The control volume in which the momentum equation
applies consists of the section of the jet below the free
surface. This is shown in the schematic diagram of
Fig. 7. If the frame of reference is moving with the front
of the jet, the flow around the surfaces of the jet and the
void will appear to be steady free streamline flow. Thus,
the velocity of water on the free surface around the jet

front equals the relative velocity of the jet, that is, (vj–
v2). The components that make up the momentum
equation are the momentum flux qAj(vj–v2)

2, the force
due to pressure

R
Aj

p2dA; and the body force qAjhg. Here,
p2 is the pressure distribution around a streamline sep-
arating the water of the jet from the pool of water, q is
the density of water, Aj is the cross-sectional area of the
jet and h is its depth of penetration below the free sur-
face. Hence the momentum equation takes the form:

qAj vj � v2
� �2¼

ZZ

Aj

p2dA� qAjgh ð1Þ

where the integral on the right hand side of Eq. 1 rep-
resents the force due to pressure on the immersed jet
front.

In this frame of reference, the free surface will appear
to be moving with velocity v2. The shape of the jet front
will depend on the resistance between the two liquids as
well as the pressure distribution on the front. From
Bernoulli’s equation, the pressure on the jet front, p2,
can be expressed in terms of the velocity, v, which is
tangential to the interface:

p2 ¼ qghþ 1
2q v22 � v2j
� �

ð2Þ

Fig. 7 Control volume for the momentum analysis of a water jet

Fig. 6 Velocity ratio versus Froude number for a jet impinging at
deep water. Results from the momentum analysis for a disc-like
front (CD=1.17) and a spherical front (CD=0.38) are included for
comparison

500



By substituting the expression for p2 from Eq. 2, the
integral on the right hand side of Eq. 1, can be integrated
over the jet cross-section. The first term on the right in
Eq. 2 yields the weight of the jet column and the second
term can be expressed in terms of the drag coefficient,
CD, of the jet front:
ZZ

Aj

p2dA ¼ qAjghþ 1
2qAjCDv22 ð3Þ

The above equation consists of a buoyancy (statics)
term and a form drag (dynamics) term. Note that the
drag coefficient, CD, is defined in a similar manner as
that for a bluff body in super-cavitation flow.

Hence Eq. 1 becomes:

1� v2
vj

� �2

¼ CD

2

v2
vj

� �2

ð4Þ

It is worth noting that the value of CD depends on the
shape of the jet front which in turn depends on many
factors including gravity, the jet speed and the initial
shape of the jet before impact.

The theoretical value for the velocity ratio, v2/vj, also
denoted by k, is given by:

k ¼ v2
vj
¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffi
CD=2

p ð5Þ

The values of the drag coefficient, CD, may be esti-
mated from known data. From the experiments, the
measured jet diameters ranged from 5.7 to 7.5 mm and
the velocities of the jet front vary from 0.16 to 1.2 m/s,
which give Reynolds numbers in the range of 300–7,000.
The shape of the jet front can be considered to take a
form between a smooth sphere and a flat circular disc.
At Reynolds number above 1,000, where the contribu-
tion of viscous force is insignificant compared with that
of pressure, the drag coefficient of a disc normal to the
flow is 1.17 and for a smooth sphere it is 0.38 (Hoerner
1965). Substitution of these values into Eq. 5 yields the
velocity ratios of 0.567 and 0.691, respectively. These are
also shown in Fig. 6. With the exception of very low
Froude number (Fr < 3), where surface tension may be
important, it is evident that the experimental results fall
close to the range of these two values. Note that one
unusual result came from the point for Froude number
65.1 where the velocity ratio is 0.443. This is due to the
impinging jet which stopped flowing into the water be-
fore the void reached its maximum volume.

The tendency for surface tension is to produce a
rounded head of the jet, whereby the rounding process
introduces unsteady motions on the bulbous head of the
jet, and upon impact causes variations in the initial shape
of the void. It follows that the mode of propagation of a
free surface wave varied according to the initial shape of
the void. This led to some scattering of the data. It should
be noted that it was difficult to control the shape of the jet
front during the free fall of the jet.

4.2 The conservation of energy

In their study of the hemispherical air void below a free
surface created by a falling water droplet, Pumphrey and
Elmon (1990) assumed that the kinetic energy of the
surrounding fluid was zero when the air void created by
the impact of the water droplet was at its maximum
volume. In this way, the potential energy of the droplet
can be related to the instant when the flow has reached
static equilibrium—that is, when the size of the hemi-
spherical void created by the droplet is at its maximum.
The analysis using energy conservation applied in the
case of jet impingement on a free surface will take a
different approach. The control volume will be the fluids
(water and air) below the calm free surface. Hence, the
control surface is a horizontal plane which coincides
with the calm free surface.

The unsteady energy equation with no heat transfer,
in the convention as defined by Fox and MacDonald
(1998), is given by:

_W þ @

@t

ZZZ

control
volume

qed8 þ
ZZ

control
surface

qe~vd~A ¼ 0 ð6Þ

The first term on the left, _W is the work done by the
atmospheric pressure in deforming the free surface and
is expressed as a surface integration in Eq. 7 which
consists of the atmospheric pressure, patm, the velocity
vector, ~v and the area vector, ~A. Since the atmospheric
pressure is uniform and there is no net change of volume
of water inside the control surface:

_W ¼
ZZ

control
surface

patm~vd~A ¼ 0 ð7Þ

The second term on the left in Eq. 6 involves the
specific energy, e, in the control volume. For incom-
pressible flow, it is given by:

e ¼ v2

2
þ gz ð8Þ

where z is the vertical height measured upward from the
free surface; thus, the value of z for a point in the control
volume is negative.

Hence the integration over the control volume for the
second term yields the expression:

@

@t

ZZZ

control

volume

qed8¼ @

@t

ZZZ

control

volume

q
v2

2

� 	
d8þ @

@t

ZZZ

control

volume

q gz½ �d8

¼ @

@t
q

v2j
2

AjhðtÞ
" #

þ _KðtÞ þ qg
@

@t
M½ �

ð9Þ
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where M is the moment of the volume of the void and
the moment is taken about the free surface.

Note that the integration of the term involving qv2

gives rise to two components: the kinetic energy of the
jet with cross-section area Aj in the air void of height
h(t), and the kinetic energy K(t) of the water in the
control volume excluding that of the water jet. The
integration of the term involving qgz yields the first
moment of the weight of the control volume, qgM,
about the free surface. Since z is negative below the free
surface, M is a negative quantity.

The third term of Eq. 6 is dominated by the kinetic
energy flux of the jet. The fluxes of the kinetic energy
and the potential energy across the control surface are
assumed negligible; thus,

ZZ

control
surface

qe~vd~A ¼
ZZ

control
surface

q
v2

2
þ gz

� 	
~vd~A ¼ �qAj

v2j
2

vj

ð10Þ

The result of the integration is negative since the jet is
entering the free surface from above.

The terms in Eq. 6 are replaced by Eqs. 7, 9 and 10,
respectively, giving

@

@t
q

v2j
2

AjhðtÞ
" #

þ _KðtÞ þ qg
@

@t
½M � � qAj

v2j
2

vj ¼ 0 ð11Þ

The above equation can be integrated with respect to
time. Observation revealed that the depth of the void
grew with a constant velocity, v2, hence the time vari-
able, t, can be replaced by h(t)/v2, giving

q
v2j
2

AjhðtÞ þ KðtÞ þ qg MðtÞj j
" #

� qAj

v2j
2

vj
hðtÞ
v2
¼ 0 ð12Þ

Since MðtÞj j is the moment of the volume of the void,
the term qg MðtÞj j represents the moment of the weight
of water displaced by the void.

The above is re-arranged and the ratio, v2/vj, is re-
placed with k:

Fr
2

1

k
� 1

� 	
� MðtÞj j

AjhðtÞdj
¼ KðtÞ

qgAjdjhðtÞ
ð13Þ

Note that K(t), which is the kinetic energy in the
water surrounding the void, and MðtÞj j, the moment of
volume of the void, are both positive quantities. If the
void is prismatic in shape, then MðtÞj j is proportional to
h tð Þ½ �2 On the other hand MðtÞj j is proportional to h tð Þ½ �4
if the dimensions of the void are proportional to its
height. At any rate, the magnitude of the second term on
the left hand side of Eq. 13 will increase with h(t).
Experiments showed that the velocity ratio k remained
constant throughout the growth period of the void;
hence, the first term on the left hand side of Eq. 13 is a

constant independent of time. It follows that the mo-
ment of the void, MðtÞj j will continue to increase with
the result that the value of K(t) will continue to
diminish. However, the conservation of energy will de-
mand that the kinetic energy, K(t), is positive definite;
hence, the void can only grow to a maximum size and
beyond this point it will contract as the jet breaks
through the void to enter the water below, as observed in
the experiments.

The maximum limit for the height of a void, h(t), can
be estimated from Eq. 13 by setting K(t) to zero. For a
void which occupies a volume enclosed by a conical
shape and a water jet which is cylindrical in shape with
diameter dj, its moment MðtÞj j is given by:

MðtÞj j ¼ G hðtÞ½ �4�Aj

2
hðtÞ½ �2 ð14Þ

where G hðtÞ½ �4 is the moment of the conical volume
about its base.

The maximum height, hm, satisfies the following
equation:

Fr
2

1

k
� 1

� 	
� 4Gh3

m

pd3
j

þ hm
2dj
¼ 0 ð15Þ

Equation 15 is cubic in hm/dj and its root can be
obtained from the Cardan’s method of solution which
gives:

hm
dj
¼ pFr

8G
1�k

k

� �� 	1=3

� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p
54GFr2

k
1�k

� �2
s2

4

3

5

1=3
8
><

>:

þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� p
54GFr2

k
1�k

� �2
s2

4

3

5

1=3
9
>=

>;
ð16Þ

An illustration on the use of Eq. 16 is presented in the
Appendix. The value of G is estimated from the images
and, together with Fr and k, produce the estimated value
of hm/dj. These values are compared with the results
from direct measurement. As expected from the
assumption of zero kinetic energy (setting K(t) to zero)
mentioned earlier, Eq. 16 over predicts the maximum
height to jet diameter ratio with an exception of one case
where the Froude number is the lowest.

For large Froude number, that is 54GFr2
p

1�k
k

� �2
> 1 , the

above value of hm=dj is approximately:

hm

dj
� p

8G
1�k

k

� �� 	1=3
Fr1=3þ p

54G
k

1�k

� �2
" #1=3

Fr�1=3

8
<

:

9
=

;

ð17Þ

and for a small value of Fr, it is:
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hm
dj
� 2

p
8G

1� k
k

� �� 	1=3
Fr1=3 ð18Þ

However, it must be noted that surface tension effects
may not be negligible in the case where the Froude
number is small.

Zhu et al. (2000) gave the expression for hm=dj in the
form:

hm
dj
� 1

4

Dc

dj

� �2=3

Fr1=3 þ 1:8 Frð Þ1=4 ð19Þ

where Dc is the diameter of the base of the void.
It can be said that the first term varies with the 1/3-

power of Fr in the same way as the results given in Eqs.
16, 17 and 18.

5 Concluding remarks

The visualization study showed that a void is formed as
a water jet impacts a pool of water. Of interest are the
shapes of the entrained void. The effects of surface
tension mold the tip of the jet into a globular form. As a
result, the initial impact is similar to that between a
droplet and a free surface; hence the void is initially
hemispherical in shape. Further addition of jet
momentum elongates the void into a conical form. The
void grows to a maximum volume and subsequent
instability causes it to collapse and the mixing of the two
fluids will then occur. There was no evidence of mixing
between the water in the impinging jet and the bulk of
water during the formation of the void. It is also found
that during the growing phase of the void, the velocities
of the jet fronts remain constant and are not affected by
gravity.

The above observations allow application of the
conservation of momentum to produce Eq. 5, which
shows that the velocity ratio is only dependent on the
drag coefficient of the jet front. The absence of the
height of the air void, h(t), in the equation further
confirms the observations that the velocity ratio should
remain constant during the growing phase of the void.
Note also that the shape of the jet as it impacts onto the
water is represented by its corresponding drag coefficient
in Eq. 5. Figure 6 demonstrated that the predicted val-
ues of v2/vj agreed with the experimental results for a
possible variation of the shape of the jet front.

The study by Zhu et al. (2000) on air entrainment
caused by perturbing an otherwise laminar jet has indi-
cated that the energy for creating the void is larger than
that in the perturbed section of the jet. It is concluded
that, after the perturbed jet created the void, the fol-
lowing laminar jet will continue to feed energy into the
void to sustain its growth. In the same way, the air voids
shown in Figs. 2 and 4 were created by the impact of the
globular fronts of the impinging jets and were sustained
for a finite time by the energy of the water jets. The
conservation of energy gives rise to Eq. 13, which shows

that the maximum height of the void is predominantly
proportional to one-third power of the Froude number.

The effects of surface tension may be accounted for
by including, on the left hand side of Eq. 13, a term
which consists of the product of the surface tension and
the surface area of the void.
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6 Appendix

The images of the experiments may be analyzed further
to yield data that enable G to be calculated. Instead of
calculating the first moment of the void at the time of
breaking up by measuring its exact shape, we assume
that the shape of the void is close to that of a truncated
cone. The base diameter of the cone, Dc, is the diameter
of the void at the free surface. The smaller circular
surface of the truncated cone with have a diameter equal
to the diameter of the jet, dj. The height of the cone is hm.
The first moment of the truncated cone about its base
diameter is given by:

G ¼ p
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Table 2 Jet impingement into deep water—continuation from
Table 1

Test no. Fr k hm Dm dj hm/dj hm/dj(calc)

1 2.6 0.787 14.5 15.5 5.8 2.500 2.309
2 2.8 0.538 9.5 12.9 5.7 1.667 2.218
3 3.3 0.605 13.8 16.4 5.6 2.462 2.596
4 3.5 0.872 10.3 12.3 5.9 1.750 1.847
5 13.3 0.714 17.6 14.4 5.9 3.000 4.043
6 20.1 0.627 20.0 29.0 7.5 2.667 3.667
7 20.2 0.695 21.4 21.4 6.5 3.292 4.274
8 27.2 0.642 24.0 31.5 7.5 3.200 4.281
9 28.4 0.581 21.8 17.0 6.5 3.354 6.099
10 31.3 0.659 27.5 32.5 7.5 3.667 4.726
11 34.1 0.611 28.3 23.1 6.5 4.354 6.452
12 48.9 0.591 29.5 35.0 7.5 3.933 5.940
13 55.7 0.544 46.5 24.9 6.5 7.154 11.040
14 65.1 0.443 33.3 26.6 6.5 5.123 10.044
15 66.6 0.543 40.4 25.9 6.5 6.215 10.348

Fr Froude number; k velocity ratio; hm maximum depth of void;
Dm void diameter on free surface; dj jet diameter; hm/dj(calc) value
of the ratio calculated from Eq. 16.
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Thus G can be calculated from the values of hm, Dc

and dj, which are measured at the moment the void
reaches it maximum height. The value of G is substituted
into Eq. 16 to yield the upper limit of the ratio hm/dj.

Table 2 is the continuation of Table 1; it contains the
measured values of hm, Dc and dj. The ratio hm/dj is
compared with hm/dj(calc), which is calculated from Eq.
16. It is evident that, hm/dj(calc) over-predicted the value
of hm/dj; however, the exception is test 1 where the Fr is
the lowest.

Table 2 shows the extent the theory deviated from the
measurements. The calculated values appear to be in
good agreement with measurements for Fr<10, are
about 30% too high for Fr around 20, and are over 50%
too high for Fr>50.
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