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Experiment vs. Simulation 

• Computational Fluid Dynamics (CFD): 
Computational modeling of fluid flow  

– Also called “Computer Simulation” or just 
“Simulation”. 

• CFD software in HT2: ANSYS FLUENT™  
– Used to obtain an approximate solution to  

the governing equations.  
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ANSYS FLUENT™ Software 
• One among many general-purpose CFD 

solvers used in industry. 
• Can solve the Navier-Stokes and Euler 

(inviscid) equations approximately. 
• A wide range of physics can be included  

– Turbulence, heating, etc.   
• No endorsement of ANSYS FLUENT 

implied. 
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Why Perform the CFD Simulation? 
• We can 

– See how simulation can 
complement experiments. 

– Look “under the hood” using the 
simulation. 

• Get a better understanding of the 
flow than is possible from point 
measurements  

• Check assumptions made in 
post-processing experimental 
data 

– Get an overview of the CFD 
simulation process and its 
benefits and challenges. 

• “Garbage in, garbage out”  

Temperature Distribution 
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CFD Simulation 
• A tutorial on how to apply 

FLUENT to simulate the 
forced convection 
experiment is available at: 
https://confluence.cornell.edu
/display/simulation/forcedcon
vection 

• Run FLUENT and tutorial 
side-by-side. 

• Skip geometry and mesh 
steps (mesh is provided). 
 
 
 
 

https://confluence.cornell.edu/display/simulation/forcedconvection
https://confluence.cornell.edu/display/simulation/forcedconvection
https://confluence.cornell.edu/display/simulation/forcedconvection
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Computer Labs with FLUENT 
• CIT labs  

– B7 Upson  
– 318 Phillips  
– ACCEL lab in Carpenter Hall 
– See lab manual for details 



Cornell University 

Strategy of CFD 

• Eg.: Continuous Domain: p = p(x), 0<x<1 
        Discrete Domain:      pi = p(xi), i=1,2,…,N 

• Truncation error introduced. Can be reduced by 
refining the mesh. 

• Mesh refinement study required to assess the level 
of truncation error. 



Cornell University 

CFD Simulation 
• We’ll be using FLUENT to 

solve a boundary value 
problem. 

• We need to specify the 
governing equations, 
boundary conditions and 
domain in FLUENT. 

• FLUENT will obtain an 
approximate numerical 
solution to the BVP. 

Boundary Value 
Problem 
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Domain 
• Length of pipe included in 

the simulation: From A to D. 
• Assume flow is 

axisymmetric. Hence, 
domain is rectangular. 

• Rotate the rectangle 360o 

about the axis to get the full 
pipe geometry. 

• Solve axisymmetric form of 
the governing equations. 
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Short Exercise: Pre-Analysis Step 
• Prior to performing a CFD simulation, you should 

make back-of-the-envelope estimates of expeted 
results. 
– Use these to check CFD results 
– Helps avoid “garbage in, garbage out” 

• Sketch expected results for the following: 
– Centerline temperature variation in axial direction 
– Wall temperature variation in axial direction 
– Centerline pressure variation in axial direction 
– Axial velocity vs. r at inlet and end of flow 

development section (cold and hot flow) 



Cornell University 

Governing Equations 
•  Coupled non-linear 

partial differential 
equations 

• No. of unknowns=5 
• No. of equations = 5 
• Need to modify these 

to account for the 
effect of turbulence 
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Turbulence 

• Cannot usually resolve rapid fluctuations in turbulent flow 
• We solve only for averaged quantities:  
• Average the governing equations       Reynolds Averaged 

Navier Stokes (RANS) equations.  
• RANS equations govern the mean velocities, pressure and 

temperature.  

'uuu +=
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Turbulence 
• Problem: Fluctuating quantities appear in the RANS 

equations 
• Example: x-momentum for 2D, incompressible flow 

 
 
 

• Underlined terms: additional momentum fluxes 
resulting from turbulent fluctuations.  

• Called “turbulent stresses” or “Reynolds stresses”.  
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Turbulence  
• Common approach: Relate the Reynolds 

stresses to the mean velocity gradients 
through an equation of the form:  
 
 

• RANS equations end up looking almost like 
the laminar equations. 
 

μt(x,y): “Turbulent viscosity”  
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k-ε Tubulence Model 
• There are many different semi-empirical “models” to 

calculate the turbulent viscosity  
• All can be useful and all can burn you 
• A model that is used a lot is the k-ε turbulence model  

 
 

• k: kinetic energy contained in the fluctuations 
• ε: rate at which k is dissipated into heat  
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k-ε Tubulence Model 
• A semi-empirical transport equation is 

formulated each for k and ε in terms of mean 
quantities.  

• Each of these two equations is a second-
order PDE.  

• k equation from FLUENT manual: 
 
 

• Will use k-ε turbulence model out-of-the-box. 
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Ideal Gas Law 
• Variations in absolute pressure are small. 
• Use “Incompressible ideal gas” model in 

FLUENT: Neglects variations in absolute 
pressure in ideal gas law 
 

• Changes in density are due to changes in 
temperature. 

• Saves on computational work without sacrificing 
accuracy. 

• Pref :FLUENT calls this “operating pressure”. 
Input measured ambient value. 

RT
Pref=ρ
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Governing Equations: Final Form 
• No. of unknowns = 

7 
• No. of equations = 

7 
– 6 coupled non-

linear partial 
differential 
equations 

– 1 algebraic 
equation 
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Governing Equations: Material 
Properties 
• Material properties appearing in the governing 

equations: μ, Cp, thermal conductivity 
• These are functions of temperature for air 
• Approximation: Assume these are constant and 

use average values over temperature range that 
you get in the experiment 
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Boundary Conditions 
• Boundaries are labeled as follows. 

 
 
 

• FLUENT provides a variety of boundary 
types: “velocity inlet”, “pressure outlet” etc. 

• For each labeled boundary, you have to pick 
the appropriate boundary type and then input 
the settings (velocity, pressure etc). for that 
boundary type. 
 

ρ
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Boundary Conditions at Inlet 

• Use “velocity inlet” boundary type.  
• Assume uniform flow in axial direction at inlet. 

– Measured pressure drop across nozzle       Mass flow rate 
       Average inlet velocity  

• Temperature is measured value at inlet. 
• Inlet k and ε are plausible estimates 

– Solution is not sensitive to these since most of the 
turbulence is generated in the boundary layers. 

ρ
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Boundary Conditions at Outlet 

• Use “pressure outlet” boundary type.  
• Need to input measured gauge pressure 

(baseline is “operating pressure”). 
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Boundary Conditions for Heated Section 

• Use “wall” boundary type.  
• FLUENT imposes no-slip condition for 

velocity. 
• Specify measured constant heat flux. 
• We’ll neglect heat conduction within pipe wall. 
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Solution 
• Since governing 

equations are 
nonlinear, iterations 
are required to solve 
the equations.  
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Results 
• Temperature contours:  

– Is the flow well-mixed at the end of the adiabatic 
mixing section as assumed in the experiment?  
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Results 
• Velocity vectors in the first section:  

– Do you see any flow development? Squint hard! 
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Results 
• Temperature variation 

along pipe axis.  
– Symbols represent 

experimental values. 
– How well does this 

match your sketch? 
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Results 
• Wall temperature 

variation.  
– How well does this 

match your sketch? 
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Results 
• Pressure variation 

along pipe axis.  
• How well does this 

match your sketch? 
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Results: Nu and f from FLUENT 
• To calculate Nu and f from T and P, use same 

procedure as the experiment.  
• The necessary T and P values can be obtained from 

the relevant FLUENT plots. 
• Export button in post-processor exports plot data 

into an Excel file. 
• Mean Tw should be calculated between the same 

locations as expt. (thermocouple locations 2-8). 
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Results 
• Axial velocity profiles 

in first section.  
– Is the flow fully 

developed as it enters 
the heated section? 

– Note steep gradient at 
the wall typical of 
turbulent flows. 
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Results 
• Non-dimensionalized 

axial velocity profiles 
in heated and mixing 
sections.  

– Does flow accelerate or 
deccelerate with 
heating? Why? 
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Results 
• Temperature profiles 

at various locations.  
– How does temperature 

vary at the outlet (end 
of the mixing section)? 
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Verification 
• Re-do solution on a 

refined mesh to check 
effect of mesh on 
solution. 
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CFD Tasks for HT2 
1. Go through the online tutorial to learn how to apply 

FLUENT to simulate the HT2 experiment. 
• Skip Step 2: Geometry and Step 3: Mesh 
• Download the mesh using the link provided in Step 1  

2. Repeat the simulation for your particular 
experimental conditions. 

3. Compare your simulation results with your 
experimental results. Understand and comment on 
agreements and discrepancies. 

4. Include a summary of your FLUENT settings as an 
appendix in report. In FLUENT, select 

– Report > Input summary 
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