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Experiment vs. Modeling

•

 

Computational Fluid Dynamics (CFD): Computational 
modeling of fluid flow problems.

•

 

Falls under the rubric of “Computer Simulation”

 

or just 
“Simulation”.

•

 

We’ll use FLUENT software for the HT2 simulation. 
Popular CFD package used in industry.

•

 

FLUENT will be used to obtain an approximate solution to  
the governing equations. 
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Why Perform the CFD Simulation?
•

 
We can

–

 

See how simulation can 
complement experiments.

–

 

Look “under the hood”

 

using the 
simulation.

•

 

Get a better understanding of the 
flow than is possible from point 
measurements 

•

 

Check assumptions made in 
post-processing experimental 
data

–

 

Get an overview of the CFD 
simulation process and its 
benefits and challenges.

•

 

“Garbage in, garbage out”
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CFD Simulation
•

 
A tutorial on how to apply 
FLUENT to simulate the 
forced convection 
experiment is available at: 
https://confluence.cornell.edu 
/display/simulation/forcedcon 
vection

•
 

Run FLUENT and tutorial 
side-by-side.

•
 

Skip geometry and mesh 
steps (mesh is provided).

https://confluence.cornell.edu/display/simulation/forcedconvection
https://confluence.cornell.edu/display/simulation/forcedconvection
https://confluence.cornell.edu/display/simulation/forcedconvection
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Strategy of CFD

•
 
Eg.: Continuous Domain: p = p(x), 0<x<1

 Discrete Domain:      pi

 

= p(xi

 

), i=1,2,…,N
•

 
Truncation error introduced. Can be reduced by 
refining the mesh.

•
 
Mesh refinement study required to assess the level 
of truncation error.
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CFD Simulation
•

 
We’ll be using FLUENT to 
solve a boundary value 
problem.

•
 

We need to specify the 
governing equations, 
boundary conditions and 
domain in FLUENT.

•
 

FLUENT will obtain an 
approximate numerical 
solution to the BVP.

Boundary Value 
Problem
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Domain
•

 
Length of pipe included in 
the simulation: From A to D.

•
 
Assume flow is 
axisymmetric. Hence, 
domain is rectangular.

•
 
Rotate the rectangle 360o 

about the axis to get the full 
pipe geometry.

•
 
We’ll solve the axisymmetric

 form of the governing 
equations.
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Governing Equations
•

 
Coupled non-linear 
partial differential 
equations

•
 

No. of independent 
variables =5

•
 

No. of equations = 5
•

 
Need to modify these 
to account for the 
effect of turbulence
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Turbulence

•

 

Cannot resolve rapid fluctuations in turbulent flow
•

 

We solve only for averaged quantities: 
•

 

Average the governing equations       Reynolds Averaged 
Navier

 

Stokes (RANS) equations. 
•

 

RANS equations govern the mean

 

velocities, pressure and 
temperature. 

uuu −='
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Turbulence
•

 
Problem: Fluctuating quantities appear in the RANS 
equations

•
 
Example: x-momentum for 2D, incompressible flow

•
 
Underlined terms: additional momentum fluxes 
resulting from turbulent fluctuations. 

•
 
Called “turbulent stresses”

 
or “Reynolds stresses”. 
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Turbulence 
•

 
Common approach: Relate the Reynolds 
stresses to the mean velocity gradients 
through an equation of the form: 

•
 

RANS equations end up looking almost like 
the laminar equations.

μt

 

(x,y): “Turbulent viscosity”
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k-ε
 

Tubulence
 

Model
•

 
There are many different semi-empirical “models”

 
to 

calculate the turbulent viscosity 
•

 
All can be useful and all can burn you

•
 

A model that is used a lot is the k-ε
 

turbulence model 

•
 

k: kinetic energy contained in the fluctuations
•

 
ε:

 
rate at which k

 
is dissipated into heat 
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k-ε
 

Tubulence
 

Model
•

 
A semi-empirical transport equation is 
formulated each for k

 
and ε

 
in terms of mean 

quantities. 
•

 
Each of these two equations is a second-

 order PDE. 
•

 
k

 
equation from FLUENT manual:

•
 

Will use k-ε
 

turbulence model out-of-the-box.
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Ideal Gas Law
•

 
Variations in absolute

 
pressure are small.

•
 
Use “Incompressible ideal gas”

 
model in 

FLUENT: Neglects variations in absolute 
pressure in ideal gas law

•
 
Changes in density are due to changes in 
temperature.

•
 
Saves on computational work without sacrificing 
accuracy.

•
 
Pref

 

:FLUENT calls this “operating pressure”. 
Input measured ambient value.

RT
Pref=ρ
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Governing Equations: Final Form
•

 
Coupled non-linear 
partial differential 
equations

•
 

No. of independent 
variables =7

•
 

No. of equations = 7
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Material Properties
•

 
Material properties appearing in the governing 
equations: μ, Cp

 

, thermal conductivity
•

 
These are functions of temperature for air

•
 
Approximation: Assume these are constant and 
use average values over temperature range that 
you get in the experiment
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Boundary Conditions
•

 
Boundaries are labeled as follows.

•
 

FLUENT provides a variety of boundary 
types: “velocity inlet”, “pressure outlet”

 
etc.

•
 

For each labeled boundary, you have to pick 
the appropriate boundary type and then input 
the settings (velocity, pressure etc). for that 
boundary type.

ρ
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Boundary Conditions at Inlet

•

 

Use “velocity inlet”

 

boundary type. 
•

 

Assume uniform flow in axial direction at inlet.
•

 

Calculate velocity magnitude from measured mass flow rate. 
•

 

Inlet values k

 

and ε

 

are wild guesses. Solution is not sensitive to 
these since most of the turbulence is generated in the boundary 
layers.

ρ
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Boundary Conditions at Outlet

•
 

Use “pressure outlet”
 

boundary type. 
•

 
Need to input measured gauge pressure (baseline is 
“operating pressure”).

•
 

Unfortunately, this pressure value is anomalous.  Use 
a linear extrapolation of the pressure trend.
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Boundary Conditions for Heated Section

•
 

Use “wall”
 

boundary type. 
•

 
Input measured constant heat flux.

•
 

FLUENT imposes no-slip condition for velocity.
•

 
We’ll neglect heat conduction within pipe wall



Cornell University

Solution
•

 
Since governing equations are nonlinear, 
iterations are required to solve the equations. 
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Results
•

 
Temperature contours: Is the flow well-mixed at 
the end of the adiabatic mixing section? 
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Results
•

 
Velocity vectors in the first section showing flow 
development.
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Results
•

 
Temperature variation along pipe axis. Symbols 
represent experimental values.
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Results
•

 
Wall temperature variation. Shows thermal 
entrance length effects.  
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Results
•

 
Pressure variation along pipe axis. Symbols 
represent experimental values.
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Results
•

 

Axial velocity profiles in the flow development section. 
•

 

Plot shows flow is nearly fully developed as it enter the 
heated section.
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Results
•

 

Axial velocity profiles in heated and mixing sections. Flow 
accelerates due to heating as expected.
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Results
•

 
Temperature profiles at various locations. 

•
 
Plot shows temperature is nearly uniform at the 
outlet (end of the mixing section).
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Verification
•

 
Re-do solution on a refined mesh to check 
effect of mesh on solution.
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CFD Tasks for HT2
1.

 
Go through the online tutorial to learn how to apply 
FLUENT to simulate the HT2 experiment.

•

 

Skip Step 2: Geometry

 

and Step 3: Mesh
•

 

Download the mesh using the link provided in Step 1 

2.
 

Repeat the simulation for your particular 
experimental conditions.

3.
 

Compare your simulation results with your 
experimental results. Understand and comment on 
agreements and discrepancies.

See lab manual for computer labs with ANSYS FLUENT 
12.
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Contact for HT2 Simulation
•

 
Dr. Rajesh Bhaskaran

•
 

E-mail: bhaskaran@cornell.edu
•

 
Fall 2009 Office hours (held in Swanson lab, 
163 Rhodes Hall):
–

 
Wed. 4-5 pm

–
 

Fri. 2:30-3:30 pm

mailto:bhaskaran@cornell.edu
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