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Computational Fluid Dynamics (CFD) 
Simulation for HT2 Experiment

MAE 4272      
Mechanical & Aerospace Engineering

Cornell University

Computational Fluid Dynamics (CFD)

• CFD software can simulate flow 
behavior by solving the 
governing equations of fluid flow 
numerically
– CFD solution is approximate
– CFD software we’ll use: ANSYS 

Fluent™ 
• Benefits

– Can visualize the flow and do 
what-if studies

• Challenges
– Garbage in, garbage out
– Need to determine carefully how 

good the results are

Experimental setup

Temperature distribution 
from CFD Solution
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Verification and Validation (V&V)

• Systematic process for checking results
• Each of these terms has a specific meaning

– More on that soon
• To understand how to verify and validate results, need to know 

what’s inside the CFD blackbox

User inputs Color pictures
& other results

CFD Black Box

User inputs Color pictures
& other results

CFD Blackbox

What’s Inside the CFD Blackbox?

Numerical

Solution

Post-processing

Physical 
Problem

Assumptions

Physical principles

Hand calculations

Experimental data

Mathematical 
Model

Selected 
variables at 

selected points
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Verification & Validation: Definition

• Verification: Did I solve the model right?
– Check consistency with mathematical model,  level of 

numerical errors, comparison with hand calcs
• Validation: Did I solve the right model?

– Check against experimental data 

Pre-Analysis: Forms the Basis for V&V

1. Mathematical model
2. Numerical solution procedure
3. Hand-calculations of expected 

results/trends
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Mathematical Model: Boundary Value Problem

• Governing eqs. defined in a domain
• Boundary conditions defined at the edges 

of the domain
• Governing eqs. are based on conservation 

of mass, momentum and energy applied to 
a differential fluid blob 

• Governing eqs. are very complicated non-
linear differential equations
– Variable density
– Turbulent flow

• We’ll start by looking at constant density 
equations and then move to variable 
density equations with turbulence effects

z

r
• Use cylindrical co-ordinates 

,ݎ θ, ݖ
• ݌ ൌ ݌ ,ݎ ݖ

• ࢂ ൌ v୰	݁̂௥ ൅ v௭	݁̂௭ ൅ vఏ	݁̂ఏ
• ௥ݒ ൌ ,௥ሺrݒ zሻ
• ௭ݒ ൌ ௭ݒ ,ݎ ݖ

Mathematical Model: Axisymmetric Assumption

x

y
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Domain

Length of pipe included in the simulation: 
From A to D

Governing Equations for Constant Density Flows

1. Conservation of mass 
 ߘ	 ⋅ ܸ ൌ 0	

2. Conservation of momentum (ܨԦ ൌ ݉ Ԧܽ in axial and radial directions)
 ሺܸߩ ⋅ ሻܸߘ 		ൌ െ݌ߘ ൅ ଶܸߘߤ

3. Conservation of energy (First law of thermodynamics)
 ߩ ܸ ⋅ ߘ ௏ܶܥ ൌ ଶܶߘ݇ െ 	݌ ߘ ⋅ ܸ ൅ Φߤ

4 unknown functions: 
௥ݒ ,ݎ ݖ , ௭ݒ ,ݎ ݖ , ݌ ,ݎ ݖ , ܶሺݎ, ሻݖ

Energy equation is decoupled 
from mass and momentum eqs.
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Governing Equations for Variable Density Flows

1. Conservation of mass 
 ߘ	 ⋅ ሺܸߩሻ ൌ 0	

2. Conservation of momentum (ܨԦ ൌ ݉ Ԧܽ in axial and radial directions)
 ߩ ܸ ⋅ ߘ ܸ 		ൌ െ݌ߘ ൅ ߘ	ߤ ⋅ ܸ	ߘ ൅ ்ܸ	ߘ െ ଶ

ଷ
ߘሺߘ	ߤ ⋅ ܸሻ

3. Conservation of energy (First law of thermodynamics)
 ߩ ܸ ⋅ ߘ ௏ܶܥ ൌ ଶܶߘ݇ െ 	݌ ߘ ⋅ ܸ ൅ Φߤ

4. Ideal gas law
 ߩ ൌ ௣

ோ்
≃

௣ೌೡ೐ೝೌ೒೐	
ோ்

	

5 unknown functions: 
௥ݒ ,ݎ ݖ , ௭ݒ ,ݎ ݖ , ݌ ,ݎ ݖ , ܶ ,ݎ ݖ , ,ݎሺߩ ሻݖ

Energy equation is coupled to mass and momentum eqs.

Turbulence Overview

From ANSYS training documentation. Used courtesy of ANSYS, Inc.

• Turbulent flow: Fluctuating but not 
about the laminar solution

• Reynolds decomposition: 
– ௭ݒ ൌ ௭ഥݒ ൅ ′௭ݒ
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Reynolds-Averaged Governing Equations 

1. Conservation of mass 
 ߘ	 ⋅ ሺߩ	ܸ	ሻ ൌ 0	

2. Conservation of momentum (ܨԦ ൌ ݉ Ԧܽ in axial and radial directions)
 ߩ ܸ ⋅ ߘ ܸ 		ൌ െ݌ߘ ൅ ߘ	ߤ ⋅ ܸ	ߘ ൅ ்ܸ	ߘ െ ଶ

ଷ
ߘሺߘ	ߤ ⋅ ܸሻ +  Turbulent  

terms
3. Conservation of energy (First law of thermodynamics)

 ߩ ܸ ⋅ ߘ ௏ܶܥ ൌ ଶܶߘ݇ െ 	݌ ߘ ⋅ ܸ ൅ Φߤ + Turbulent terms
4. Ideal gas law

 ߩ ൌ ௣

ோ்
≃

௣ೌೡ೐ೝೌ೒೐	
ோ்

	

Turbulent terms depend 
on unknown fluctuating 

quantities ݒ௭ᇱetc. 

Can calculate 
approximately using 
a turbulence model

݇ െ ߳ Turbulence Model

• k: Turbulent kinetic energy
– Measure of how much energy is 

contained in the fluctuations
• ߳: Turbulent dissipation

– Measure of the rate at which turbulent 
kinetic energy is dissipated

• Two additional conservation 
equations: one each for ݇ and ߳

• Unknown turbulent terms are 
calculated from ݇ and ߳

ߩ ܸ ⋅ ߘ ܸ 		ൌ െ݌ߘ ൅ ߘ	ߤ ⋅ ܸ	ߘ ൅ ்ܸ	ߘ െ ଶ

ଷ
ߘሺߘ	ߤ ⋅ ܸሻ

+  Turbulent  terms
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Reynolds-Averaged Governing Eqs. with ݇ െ ߳ Model   

1. Conservation of mass 
 ߘ	 ⋅ ሺߩ	ܸ	ሻ ൌ 0	

2. Conservation of momentum (ܨԦ ൌ ݉ Ԧܽ in axial and radial directions)
 ߩ ܸ ⋅ ߘ ܸ 		ൌ െ݌ߘ ൅ ߘ	ߤ ⋅ ܸ	ߘ ൅ ்ܸ	ߘ െ ଶ

ଷ
ߘሺߘ	ߤ ⋅ ܸሻ +  Turbulent  

terms
3. Conservation of energy (First law of thermodynamics)

 ߩ ܸ ⋅ ߘ ௏ܶܥ ൌ ଶܶߘ݇ െ 	݌ ߘ ⋅ ܸ ൅ Φߤ + Turbulent terms
4. Ideal gas law

 ߩ ൌ ௣

ோ்
≃

௣ೌೡ೐ೝೌ೒೐	
ோ்

	

5. ݇ conservation eq.
6. ϵ conservation eq.

7 unknown functions: 
,௥ݒ ,௭ݒ ,݌ ܶ, ,ߩ k, ߳

6 differential eqs. 
+ 1 algebraic eq.

Mathematical Model: Boundary Conditions

z

r
௥ݒ ൌ ௭ݒ ൌ 0

௭ݒ ൌ 	௭,௜௡ݒ
௥ൌݒ	 0
ܶ ൌ ௜ܶ௡

݌ ൌ ௢௨௧݌

௥ݒ߲
ݎ߲

ൌ
௭ݒ߲
ݎ߲

ൌ
݌߲
ݎ߲

ൌ
߲ܶ
ݎ߲

ൌ 0

௥ൌݒ	 0

ܶ ൌ ௜ܶ௡
ሶݍ ൌ െ݇

߲ܶ
	ݎ߲

ൌ ሶ௜௡ݍ
ሶݍ 	ൌ 0

݇ ൌ ݇௜௡
߳ ൌ ߳௜௡
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Pre-Analysis: Forms the Basis for V&V

1. Mathematical model
2. Numerical solution procedure
3. Hand-calculations of expected results/trends

Numerical Solution Procedure: Finite Volume Method

• Divide the domain into multiple control volumes or “cells”
• Reduce the problem to determining ݒ௥, ,௭ݒ ,݌ ܶ, ,ߩ k, ߳ at 

selected points (cell centers)
– “Discretization”

• Use interpolation to determine variables away from cell 
centers

Cell or
control volume 
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How to Find Velocity, Pressure etc. at Cell Centers?

Mathematical Model 
(Boundary Value 

Problem)

System of 
algebraic 

equations in cell-
center values

Cell-center 
values 

of
,௥ݒ ,௭ݒ ,݌ ܶ, ,ߩ k, ߳

Invert

Control volume 
balance for each cell

݌ ,ݎ ݖ , ௭ݒ ,ݎ ݖ ,
Wall shear etc.

Each algebraic 
equation will relate a 
cell-center value to 
its neighbors

Post
processing

Discretization and Linearization: Overview

Differential form 
of governing 
equations + 

BCs

Integral form 
of governing 
equations + 

BCs

Linearized 
algebraic 

equations relating 
cell-center values 

Solve iteratively 
updating guess 

after each 
iteration

Stop iterations 
when imbalances 

are below 
tolerance

Discretization 
error

Linearization 
error

Algebraic 
equations 

relating cell-
center values 



11

Verification Steps

1. Mathematical model
2. Numerical solution 

procedure
3. Hand-calculations of 

expected 
results/trends

1. Results consistent with 
mathematical model?

2. Numerical errors 
acceptable?

3. Results compare well 
with hand calcs?

Pre-Analysis Steps Verification Steps

Verification Checklist

1. Are the CFD results consistent with the 
math model?
– Check BCs
– Check material properties
– Check coordinate system
– Check mass, momentum & energy 

conservation
– Check density-temperature coupling
– Check sensitivity to turbulence model

2. Are numerical errors acceptable?
– Check linearization error by monitoring 

imbalances and drag coefficient
– Check discretization error by refining mesh

3. Do the CFD results compare reasonably 
well with hand calculations?
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Reynolds-Averaged Governing Eqs. with ݇ െ ߳ Model   

1. Conservation of mass 
 ߘ	 ⋅ ሺߩ	ܸ	ሻ ൌ 0	

2. Conservation of momentum (ܨԦ ൌ ݉ Ԧܽ in axial and radial directions)
 ߩ ܸ ⋅ ߘ ܸ 		ൌ െ݌ߘ ൅ ߘ	ߤ ⋅ ܸ	ߘ ൅ ்ܸ	ߘ െ ଶ

ଷ
ߘሺߘ	ߤ ⋅ ܸሻ +  Turbulent  

terms
3. Conservation of energy (First law of thermodynamics)

 ߩ ܸ ⋅ ߘ ௏ܶܥ ൌ ଶܶߘ݇ െ 	݌ ߘ ⋅ ܸ ൅ Φߤ + Turbulent terms
4. Ideal gas law

 ߩ ൌ ௣

ோ்
≃

௣ೌೡ೐ೝೌ೒೐	
ோ்

	

5. ݇ conservation eq.
6. ϵ conservation eq.

7 unknown functions: 
,௥ݒ ,௭ݒ ,݌ ܶ, ,ߩ k, ߳

6 differential eqs. 
+ 1 algebraic eq.

Validation Steps

1. Comparison with measurements from current experiment
2. Comparison with correlations from classical experiments


