Swanson Engineering Simulation Program

Rajesh Bhaskaran

Swanson Director of Engineering Simulation & Lecturer Sibley School of Mechanical & Aerospace Engineering Cornell University

Swanson Program: Goals

- Original:
 - To facilitate the introduction and routine use of computer simulation in the undergraduate and graduate MAE curriculum at Cornell
- Added with input from Advisory Committee:
 - To provide support and leadership to the community on the integration of simulation into engineering curricula

Swanson Program Activities

- 1. Support for use of computation in the curriculum
 - Six MAE courses at Cornell
 - Various projects
- 2. Administrative support
 - Swanson Lab
 - Engineering software use: Licensing, installation and technical support

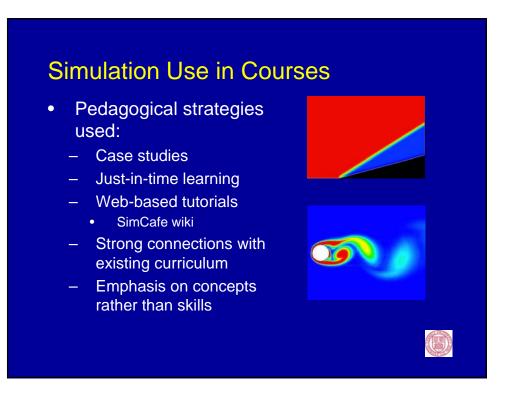
Software and Labs

- Ten engineering packages:
 - ANSYS+FLUENT, COMSOL, MATLAB, Pro/E, SolidWorks, etc
- Enabled broad availability of software across College

Computer Lab	Overseen by
Swanson Lab	Swanson Program
Design Studio	M&AE
471 Rhodes Classroom	M&AE, ORIE
ACCEL Lab	College
CIT Upson Lab	University
CIT Phillips Lab	University

Swanson Lab

- 16 high-end workstations
 - Extensive software suite
 - Specifications chosen in consultation with major software vendors
 - Augments other teaching labs
- SGI f1200 Linux server
 - 24 cores total
 - 96GB RAM (Shared memory architecture)


Three Levels of Simulation

- 1. Simulation use in courses: Students solve pre-defined problems
 - Industry analog: Engineers doing design modifications
- 2. Simulation use in projects and research: Students solve new problems
 - Industry analog: Analysis specialists
- 3. Software development
 - Basic applications in courses
 - Advanced applications in graduate research

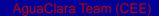
Simulation Use in Courses

Swanson program has helped incorporate simulation into six M&AE courses

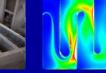
	Course	Туре	Enroll- ment	Software
1.	M&AE 2120 Mechanical properties & materials selection	Req.	120	MATLAB, CES
2.	M&AE 3250 Analysis of mechanical structures	Req.	100	MATLAB
3.	M&AE 3272 Mechanical property & performance lab	Req.	120	ANSYS
4.	M&AE 4272 Fluids/heat transfer lab	Req.	120	FLUENT, MATLAB
5.	M&AE 4700/5700 Finite element analysis	Elec.	40	MATLAB, ANSYS
6.	M&AE 4230/5230 Intermediate fluid dynamics	Elec.	50	FLUENT

SimCafe Wiki

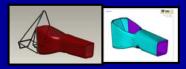
- Wiki-based online resource for teaching and learning simulation
- Open-source
- Enables community collaboration
- Users can
 - Use content as is
 - Adapt content
 - Create new content using templates

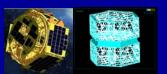


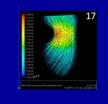
SimCafe Wiki: Tutorial Structure


- Each set of tutorials has the same high-level organizational structure
- Required steps:
 - Verification and Validation
 - Pre-Analysis
- Helps students become discerning users

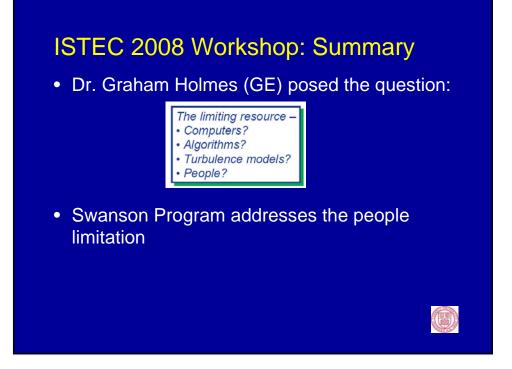
Problem Specification	-		A			-		A		
1. Pre-Analysis & Start-Up	1	0	Fluid Flow (FLUENT)			1		Static Structural (ANSYS)		C
Geometry	2	60	Geometry	~		2	۲	Engineering Data	4	7
Mesh	3	۵	Mesh	~		3	۲	Geometry	?	
	4	(ta)	Setup	1		4	۲	Model	2	
Setup (Physics)				÷.,	1	5	¢),	Setup	2	
Solution	5	-	Solution	~		6	6	Solution	2	7
Results	6	9	Results	~	4	7	۲	Results	2	2
Verification & Validation			HT2 simulation					Static Structural (ANSYS)		


Simulation Use in Projects and Research





USat Team (MAE)


Blood Flow (Butcher group, BME

<section-header><code-block><list-item><code-block><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></code></code>

ISTEC 2008 Workshop: Summary

- Two learning modes in simulation:
 - 1. Learning how to use software
 - 2. Learning fundamental concepts using software
- Broad consensus among attendees
- Important Corollary: Simulation can augment rather than detract from teaching fundamental concepts

Conclusion (1/3)

- Developed effective strategies for integrating simulation into curricula
 - Distilled from cross-curriculum efforts
- Scale-up has been the major stumbling block
 - How to go from 1-2 courses to the entire educational experience?
- Developed scale-up mechanisms
 - SimCafe: Wiki-based open platform
 - ISTEC workshops

Conclusion (2/3)

- Technology and approach are applicable to most physics-based engineering disciplines
- Benefits:
 - Prepare students better for their professional careers
 - Improve the teaching of engineering fundamentals
 - Support projects and research
 - Excite students about engineering

Conclusion (3/3)

- Simulation is a key technology that can greatly contribute to the college's teaching and research missions
- We have made important strides relative to peers due to the uniqueness of the Swanson Program
- Exciting opportunity for Cornell to take leadership

