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strates are processed in mFAS by individual full
sets of active sites, according to the path of ACP
described above. However, these studies have
also shown that a minority of substrates can be
shuttled between the two sets of active sites,
either by ACP serving both MAT domains or by
direct interaction of ACP with both KS domains
(6, 60–62). In light of the large 135 Å distance
between the ACP anchor point located in one
catalytic cleft and the MAT in the other, the most
plausible explanation for the minor mode-of-
domain interaction is a large-scale rotation of the
upper portion of mFAS, relative to the lower
portion (fig. S4).

The molecular description of active sites in
mFAS should stimulate the development of
improved inhibitors as anticancer drug candi-
dates. As demonstrated by structural homology,
this structure is also a good template for the
organization of PKS modules; it agrees with and
extends present theoretical models of PKS
architecture (19, 22). Furthermore, the structure
of mFAS paves the way for structure-based ex-
periments to answer remaining questions on the
dynamics and substrate shuttling mechanism in
megasynthases.
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Internally Generated Cell Assembly
Sequences in the Rat Hippocampus
Eva Pastalkova, Vladimir Itskov,* Asohan Amarasingham, György Buzsáki†

A long-standing conjecture in neuroscience is that aspects of cognition depend on the brain’s ability
to self-generate sequential neuronal activity. We found that reliably and continually changing cell
assemblies in the rat hippocampus appeared not only during spatial navigation but also in the
absence of changing environmental or body-derived inputs. During the delay period of a memory
task, each moment in time was characterized by the activity of a particular assembly of neurons.
Identical initial conditions triggered a similar assembly sequence, whereas different conditions
gave rise to different sequences, thereby predicting behavioral choices, including errors. Such
sequences were not formed in control (nonmemory) tasks. We hypothesize that neuronal
representations, evolved for encoding distance in spatial navigation, also support episodic recall
and the planning of action sequences.

Aprominent theory states that the hippo-
campal system primarily serves spatial
navigation (1, 2); a component of this

theory is that the place-dependent activity of
neurons [place cells (1, 2)] in the hippocampus
arises from external serially ordered environ-
mental stimuli (3–7). Place cells are thought to
embody the representation of a cognitive map,
enabling flexible navigation. However, neural
theories of other cognitive processes that may
depend on the hippocampus, such as episodic

memory and action planning, draw on the activ-
ity of hypothetical internally organized cell as-
semblies (8–13).
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Several observations have refined the navi-
gation theory. Hippocampal neurons can predict
where the animal is coming from, or its desti-
nation (14–17); the sequential activity of place
cells during locomotion is replicated within
single cycles of the theta oscillation (8 to 12 Hz)
(18–20); furthermore, the temporal recruitment of
active neurons in the population bursts of rest and
sleep also reflects, again on a faster time scale,
their sequential activity as place cells during
locomotion (21–23). Thus, the sequential activa-
tion of hippocampal neurons can be disengaged
from external landmarks (24, 25). However, in-
ternally generated assembly sequences operat-

ing at the time scale of behavior have not yet
been reported.

The frameworks of environment-controlled
versus internally generated assembly sequences
give rise to distinct predictions. Imagine that a rat
is frozen in position during its travel (and yet the
theta oscillation is maintained). According to the
navigation theory, a subset of landmark-controlled
place cells should then display sustained activity,
and other neuronswould remain suppressed (2–6).
In contrast, if assembly sequences were gener-
ated by internal mechanisms, neurons might
rather display continually changing activity. We
tested these predictions by examining the activity

of hippocampal neurons while a rat was running
in a wheel at a relatively constant speed (26, 27)
during the delay of a hippocampus-dependent
alternation memory task.

Internally generated cell-assembly sequences.
Rats were trained to alternate between the left
and right arms of a figure-eight maze [Fig. 1A
and supporting online material (SOM) text].
During the delay period between maze runs (10 s
for rat 1; 20 s each for rats 2 and 3), the animals
were trained to run steadily in the same direction
in a wheel (Fig. 1A). To confront the predictions
of the navigation theory with those of the internal
sequence-generation hypothesis, we compared

Fig. 1. Episode fields in
the wheel and place
fields in the maze are
similar. (A) Color-coded
spikes (dots) of simulta-
neously recorded hippo-
campal CA1 pyramidal
neurons. The rat was re-
quired to run in the
wheel facing to the left
during the delay be-
tween the runs in the
maze. (B) Percent of
neurons firing >0.2 Hz
within each pixel. The
highest percentage of
neurons was active when
rats were running in the
wheel. (C) Relationship
between firing rate of
neurons active in rats
running the wheel and
the maze (rs = –0.3, P <
0.0001, 681 neurons,
three rats, 17 sessions).
(D) Normalized firing
rate of six simultane-
ously recorded neurons
during wheel running
(each line shows the
color-coded activity on
single trials turning to
the left arm). The epi-
sode fields occurred at
specific segments of the
run. (E) Normalized fir-
ing rate of 30 simulta-
neously recorded neurons
during wheel running,
ordered by the latency
of their peak firing rate.
(F) Width (top) and peak
firing rate (bottom) of
episode and place fields
(wheel, n = 135 neurons;
maze, n = 162 neurons).
Arrows indicate medians.
(G) Population vector
cross-correlation matrix
(SOM text). The width of the diagonal stripe indicates the rate at which neuronal assemblies transition. (Lower left) The decay of the population vector correlation
during wheel running and maze traversal. Thin lines, individual sessions; thick lines, group means.
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the firing patterns of CA1 hippocampal neurons
in rats running the wheel and the maze.

We analyzed the activity of ~500 pyramidal
cells recorded in the wheel and ~600 neurons in
the maze (mean firing rate >0.5 Hz) (Fig. 1A).
Pyramidal neurons were transiently active in rats
running both the maze [place cells (1)] and the
wheel. Although the position and direction of the
rat’s head were stationary during wheel running
(fig. S1), the percentage of neurons active in the
pixels occupied by the head during wheel run-
ning was three to four times greater than in any
area of comparable size in the maze (Wilcoxon
rank sum test, P < 0.0001) (Fig. 1B). Thus, if
pyramidal neurons were solely activated by
environmental cues (2–6), this finding would
reflect several-fold–stronger neuronal representa-
tion of the animal’s position within the wheel.
Many individual pyramidal cells were active both
in rats running the wheel and rats running the
maze, but the sequential order of their activation
in rats in the wheel was unrelated to that of rats
in the maze, and their firing rates in these two
areas were inversely correlated [Spearman corre-
lation coefficient (rs) = –0.3, P < 0.0001, n = 681
neurons (Figs. 1C and 4B); contrast this with the
population of interneurons, rs = 0.85, P < 0.0001,
n = 125 interneurons (fig. S2)]. The average
proportion of pyramidal neurons simultaneously

active [firing at least a single spike in 100-ms
windows (averaging over 100-ms windows)]
was similar in the wheel (10.75 T 3.97%) and
the maze (12.56 T 4.32%) (fig. S3).

Pyramidal neurons typically fired transiently,
and reliably in successive trials, at specific times
of wheel running (episode fields), and most cells
had multiple peaks of varying sizes (Fig. 1D).
Typically, and reminiscent of a synfire chain (11),
at least one episode cell was active at every
moment of a wheel run (Fig. 1E).

Were episode cells in rats in the wheel
generated by the same mechanism as place cells
in rats in the maze? We looked for evidence of
differingmechanisms by comparing several mea-
sures of the firing of episode and place cells.
First, we calculated the duration of activity (field
width) (Fig. 1F) of single cells [including only
fields with a peak firing rate of ≥6.0 Hz and ≥4.5
SD above the mean firing rate (SOM text)]. The
temporal and spatial extent of the field was
determined as those times and positions at which
firing rates were at least 10% that of the peak
firing rate (in the wheel or maze) (19, 28). By
these criteria, 32% of the neurons recorded in the
wheel and 22% in the maze had at least one field.
Neither the distribution of field widths (medians
were 0.94 and 1.0 s, respectively; Wilcoxon test,
P = 0.44) nor peak firing rates (medians were

13.08 and 12.8 Hz, respectively; P = 0.61)
differed significantly between the episode and
place fields (Fig. 1F). Second, to measure the
average lifetime of assembly activity for a pop-
ulation, we determined the maximal time lag at
which the autocorrelation of the population’s ac-
tivity was above 0.5 (29) and again found no
significant difference, with respect to the median,
between the populations of episode and place
cells (medians were 0.83 and 0.75 s, respectively;
P = 0.32) (Fig. 1G). Third, we compared the
relationship between spikes and the local field
potential in episode and place cells. On linear
tracks, sequentially generated spikes of a place
cell gradually shift to earlier and earlier phases of
the theta oscillation as the rat passes through the
place field (phase precession), and there is a sys-
tematic relationship between the phase of spikes
and the animal’s position (3, 18–20, 28, 30, 31).
The navigation theory predicts that the phase of
spikes will remain fixed if environmental inputs
do not change (3, 26, 27). In contrast, episode
cells displayed phase precession during wheel
running (Fig. 2A). Similarly to place cells, the
theta frequency oscillation of episode cells was
higher than that of the field theta rhythm (Fig.
2B), and the slope of the phase precession was
inversely related to the length of the episode
field (Fig. 2, A and D) (3, 19, 20, 28, 30, 31).

Fig. 2. Episode neurons
in the wheel display
theta phase precession
and temporal compres-
sion. (A) (Top) Unfiltered
(light gray) and filtered
(4 to 10 Hz) (dark gray)
traces of LFP and phase
advancement of action
potentials (dots). (Bottom)
Activity of six example
neurons from the same
session. Each dot is an
action potential, displayed
as a function of theta
phase and time from the
beginning of wheel run-
ning from all trials. One
and a half theta cycles
are shown (y axis). Red
line, smoothed firing
rate. (B) Power spectra
of spike trains generated
during wheel running
(n = 283 pyramidal neu-
rons) and the simulta-
neously recorded LFP.
Faster oscillation of neu-
rons occurs relative to
LFP. (C) Slope of theta
phase precession within
episode fields in the
wheel and within place fields in the maze. (D) Relationship between phase
precession slope and episode length (left, rs = 0.46, P < 0.0001) and
episode field width (right, rs = 0.52, P < 0.0001), respectively. (E)
Temporal compression of spikes sequences. Correlation of the distance

between the peaks of episode fields of neuron pairs in the wheel with
the temporal offset of the pair's cross-correlogram peaks is shown.
Each dot represents a neuron pair (n = 105 eligible pairs; three rats; rs =
0.59; P < 0.0001).
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Furthermore, the slopes correlated more strongly
with the length of the episode field (rs = 0.52, P <
0.0001) than with the time it took the rat to run
through the same field (rs = 0.46, P < 0.0001)
(Figs. 2D and 3) because of the variability of the
rat’s running speed (28). The distributions of
phase precession slopes for the episode and place
fields were also similar (medians were –0.6°/s
and –0.6°/s, respectively; P = 0.6) (Fig. 2C).
Finally, we compared the spike timing relation-
ships among neurons. During maze traversals,
the distance between the place-field peaks of a
neuronal pair was correlated with the temporal
offset between its spikes within the theta cycle, a
phenomenon known as distance-time compres-

sion (SOM text) (18, 19). Analogously, the
distance between peaks of the episode fields of
neuron pairs (episode fields with peak firing rate
>5Hz and >3 SD above themean firing rate were
included in this analysis; n = 105 pairs) was
correlated with the temporal offsets between the
spikes at the theta time scale (rs = 0.59, P <
0.0001) (Fig. 2E). These findings indicate that
the mechanisms generating place and episode
fields are similar.

Body cues are not sufficient to generate
assembly sequences. It has been suggested that
in addition to generating a cognitive map of the
environment (2), the hippocampus and its asso-
ciated structures integrate self-motion–induced

information (7, 32, 33). Were the episode cell
sequences generated by idiothetic self-motion
cues? We examined population firing patterns in
two control (nonmemory) tasks. In the first task
(control 1), the animals (rats 3 and 4) were
required to run in the wheel for a water reward
available in an adjacent box (26). In the second
task (control 2), the animals (rats 2 and 3) had
continuous access to a wheel adjacent to their
home cage, and recordings were made during
spontaneous wheel-running episodes. Transient
firing patterns, consistent across trials, were
rarely observed during the control tasks. Rather,
the majority of active neurons exhibited relative-
ly sustained firing throughout the wheel-running

Fig. 3. Firing patterns
during wheel running
depend on the context
of the task. (A) (Top)
Activity of representative
single neurons (color-
coded) during wheel run-
ning in control tasks 1 and
2 (compare with Fig. 1D).
(Bottom) Unit discharges
(dots) from all trials with-
in a session as a function
of theta phase, plotted
against time from the be-
ginning of a wheel run.
Red line, smoothedmean
firing rate. Relatively
steady firing rates and a
steady theta phase occur
in both control tasks. (B)
Cross-correlation matrices
in three different tasks
(memory and control 2
are from the same rat). In
the memory task, trials
with the same future
choices [left (L)–trialsn
versus L-trialsn+1 and
right (R)–trialsn versus
R-trialsn+1) were cross-
correlated, whereas in
control tasks trialsn and
trialsn+1 were cross-
correlated. Only pixel
values significantly dif-
ferent from chance are
shown (Spearman rank
correlation, P < 0.01).
(C) Population-vector cor-
relation coefficient values
in the memory task (n =
17 sessions) and control
tasks (n = 8 sessions)
(mean T SD). (D) Power spectrum of spike trains of an episode neuron (unit)
and simultaneously recorded LFP during wheel running in the memory task
(30). The frequency of unit firing oscillation is higher than the frequency of
LFP. (E) Difference between unit and LFP oscillation frequency in the
memory (left) and control (right) tasks. Each line is a color-coded normalized
cross-correlogram between power spectra of a pyramidal neuron and
simultaneously recorded LFP. A shift of the maximal correlation values to the
right indicates that unit theta oscillation is faster than LFP theta oscillation

(black dots, maxima of the cross-correlograms; white line, sum of all
neurons). There is a significant frequency shift in the memory task (0.44 T
0.6 Hz) and a lack of frequency shift in control tasks (combined control 1 and
2, 0.07 T 0.3 Hz). (F) Ratio of spikes in the center and tail of temporal auto-
correlograms (SOM text). High values indicate compact episode fields; low
values indicate spikes scattered throughout the time of wheel running
(memory task, n = 287 neurons; control tasks, n = 85 neurons; rank sum test,
P < 0.0001). Arrows indicate medians.
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periods (Fig. 3A and fig. S4) (5, 26–27). During
runs of opposite direction in the wheel, different
populations of neurons were active (fig. S5)
(26), arguing for the importance of distant cues
(2, 20) and against a critical role of idiothetic
inputs (26). In addition, the temporal organiza-
tion of cell assemblies in control tasks was less
precise, as reflected by much weaker correla-
tions between temporally adjacent populations
during the control tasks than during the memory
task (Fig. 3, B and C), despite the similarity in
firing rates during all tasks (fig. S6). As another
contrast to the memory task, neurons recorded
during the control tasks fired throughout the
trial, with spikes locked to a similar phase of the
theta cycle (Fig. 3A). Consistent with these
observations, neurons in the rats performing the
memory task oscillated faster than the local field
potential (LFP) [difference (∆) = 0.44 T 0.6 Hz]
(Figs. 2B and 3, D and E), an indication of
phase precession (19, 20, 29, 30), whereas dur-
ing the control tasks, the power spectra of the
units and LFP were similar (∆ = 0.07 T 0.3 Hz)
(Fig. 3E). Finally, to quantify differences in
temporal clustering of spikes, we examined an
autocorrelogram of each neuron. We applied
(after filtering, 0.2 to 2 Hz) the same definition
for the peak region boundaries that we used for
the episode field detection boundary of the epi-
sode field (the 10% boundary) and then com-
pared, for each neuron, the ratio of the number
of spikes that fell within the peak region bound-
ary to those that fell outside. These ratios were
significantly larger during the memory task and
reflected the temporal compactness of firing
during the memory task as opposed to the con-
trol tasks (Fig. 3F). Thus, the indicators of tem-
porally precise sequential activity in neuronal
populations were absent during the control
tasks, despite indistinguishable motor character-
istics across all tasks.

Assembly sequences depend on memory
load. What is the behavioral function of in-
ternally generated cell-assembly sequences?
Temporarily inactivating neuronal circuits in the
dorsal hippocampus, we found that performance
in the delayed alternation task depends on the
integrity of the hippocampus (fig. S7) (17). Thus,
we hypothesized that information about choice
behavior is reflected in assembly sequences (34).
All correctly performed trials were sorted accord-
ing to the rat’s future choice of arm (left or right),
and choice-specific firing effects were identified
by comparing the firing patterns of single neu-
rons with those of surrogate spike trains created
by shuffling the left and right labels (Fig. 4, A
and B, and SOM text) (34). Some neurons were
active exclusively before either the left or right
choice, whereas others showed differential firing
rates and/or fired at different times after the
beginning of wheel running (Fig. 4A, figs. S8 to
S10, and movie S1). The largest proportion of
neurons exhibiting choice-predictive activity was
at the beginning of the run; this proportion de-
creased as a function of time during the delay and

in the stem of the maze (Fig. 4B), suggesting a
critical role for initial conditions in specifying the
sequences (fig. S11). In addition, we designed a
probabilistic model of the relationship between
neuronal firing patterns and the animal’s choices
(SOM text). Using this model, the accuracy of
single-trial prediction, under cross-validation,
varied from low (near 50%) and not significant
to 100% and significant across many sessions
(fig. S9).

Because the rat was performing an alternation
task, past and future choices were deterministi-
cally related on correctly performed trials, and it

was not possible to disambiguate their influence
on neuronal activity. To distinguish such retro-
spective and prospective factors (14–17), we
examined cell-assembly sequences during error
trials. Neurons that reliably predicted the behav-
ioral choice of the rat on correct trials continued
to predict the choice behavior on error trials (Fig.
5A, fig. S12, and movie S1) (15, 24). Similarly,
population sequences that differentiated correct
behavioral choices continued to predict behav-
ioral choice errors (Fig. 5, B and C, and fig. S13).
Although there were only a few error trials, a
majority of them could be predicted from the
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Fig. 4. Cell-assembly activity in the wheel predicts the future choice of the rat in the maze. (A)
Examples of three neurons that strongly differentiated between wheel-running trials preceding
right and left choices (fig. S7 and movie S1). (B) Normalized firing rate profiles of neurons during
wheel running and in the stem of the maze, ordered by the latency of their peak firing rates during
left trials (each line is a single cell; cells are combined from all sessions). White line, time gap
between the end of wheel running and the initiation of maze stem traversal. (Middle) Normalized
firing rates of the same neurons during right trials. (Right) Time periods of significant differences
(P < 0.05) in firing rates between left and right trials for respective neurons (red line, R > L; blue
line, L > R). Gray line, number of neurons discriminating between left and right trials as a function
of wheel-running time.
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firing patterns of neurons during wheel running
(Fig. 5D). Altogether, these observations demon-
strate that a particular sequence of neurons was
activated in a reliable temporal order from the
moment the rat entered the wheel to the time it
reached the reward.

Because running speed, head position, and head
direction during wheel running before left and right
choices were apparently indistinguishable (fig. S1),
the above findings indicate that trial differences
in hippocampal assembly configurations cannot
solely arise from instantaneous environmental
inputs or the integration of motion signals.

Behavioral function of internally gener-
ated cell-assembly sequences. These findings
demonstrate that the rat brain can generate con-
tinually changing assembly sequences. The pat-
terns of the self-evolving neuronal assembly
sequences depend on the initial conditions, and
the particular sequences of cell assemblies are
predictive of behavioral outcome.

Our results offer new insights into the rela-
tionship between hippocampal activity and
navigation (2–7, 14–20, 26–30, 33). Hippocam-
pal firing patterns during maze navigation were
similar to those during wheel running in the
delayed alternation memory task with stationary
environmental and body cues. Therefore, we
suggest that hippocampal networks can produce
sequential firing patterns in two possibly interact-
ing ways: under the influence of environmental/
idiothetic cues or by self-organized internal mech-
anisms. The high-dimensional and largely ran-
dom (nontopographical) connectivity of the CA3
axonal system (35) and its inputs makes the
hippocampus an ideal candidate for internal se-
quence generation (13, 33, 36, 37). The parame-
ters of cell-assembly dynamics (including their
trajectory and lifetimes) are probably affected by
a number of factors, including experience-
dependent and short-term synaptic plasticity
(34, 38); asymmetric inhibition (39); brain state;

and, fundamentally, the character and context of
the input. The evolving trajectory can be ef-
fectively perturbed, or updated, by external inputs
in every theta cycle (40). Because of this
flexibility in the sources of cell-assembly control,
we hypothesize that neuronal algorithms, having
evolved for the computation of distances, can also
support the episodic recall of events and the
planning of action sequences and goals (19).
During learning, the temporal order of external
events is instrumental in specifying and securing
the appropriate neuronal representations, whereas
during recall, imagination (35), or action plan-
ning, the sequence identity is determined by the
intrinsic dynamics of the network.
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)Fig. 5. Cell-assembly activity during the wheel predicts behavioral errors
during the maze. (A) Two example neurons from a session with seven left
error trials (err). Correct trials are separated into left- and right-turn trials.
(B) Normalized firing rates of 43 neurons simultaneously recorded during
wheel running, ordered by the latency of peak firing rates during correct
left trials (left). (Right) Firing sequence of the same neurons on correct
right trials. (C) Firing sequence of neurons in a single error (left) trial.
Neuronal order is the same as in (B). The firing sequence during the error
trial is similar to that of the correct left trials. The correlation coefficient
between correct and error trial sequences is 0.45 (fig. S13). (D) Percent of
correctly predicted errors from the neuronal population activity.
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