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Review
Recent discoveries on the organisation of the cortical
connectome together with novel data on the dynamics
of neuronal interactions require an extension of classical
concepts on information processing in the cerebral cor-
tex. These new insights justify considering the brain as a
complex, self-organised system with nonlinear dynam-
ics in which principles of distributed, parallel processing
coexist with serial operations within highly intercon-
nected networks. The observed dynamics suggest that
cortical networks are capable of providing an extremely
high-dimensional state space in which a large amount of
evolutionary and ontogenetically acquired information
can coexist and be accessible to rapid parallel search.

Extending classical views of information processing in
the brain
The research strategy for analysing the connectivity of
brains and the transformation of response properties of
individual neurons along processing streams extending
from sensory organs to executive structures has been
extremely successful and has provided support for the
notion of serial processing across hierarchically organised
cortical areas [1]. However, advances in the analysis of the
cortical connectome, the introduction of multisite record-
ing techniques, and the development of imaging methods
assessing whole-brain activity have generated data that
necessitate extension of classical views, raise novel ques-
tions, and are likely to provide new solutions to old pro-
blems.

Here I review anatomical and functional data suggest-
ing that, as the prevailing organisational principle, distrib-
uted processing in densely coupled, recurrent networks
with nonlinear dynamics is capable of supporting high-
dimensional states. I argue that this organisation requires
precise temporal coordination of distributed processes and
that special mechanisms are implemented to dynamically
bind local processes into coherent global states. The puta-
tive computational power of such dynamical systems
is illustrated by referring to the concept of ‘reservoir
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computing’. Finally, I review data from studies on devel-
opmental plasticity, resting state activity, stimulus–re-
sponse functions, and attention and examine their
compatibility with concepts that emphasise the high-di-
mensional state space provided by complex systems with
nonlinear dynamics as the basis for neuronal computations
in highly evolved brains.

Evidence requiring extension of concepts
Anatomical evidence
(i) Within processing streams, including thalamic

relays, feedback projections are in general more
numerous than feedforward projections, emphasising
the importance of top-down control.

(ii) Intracortical tangential connections cross the bound-
aries between areas [2]. Thus, at least the supra-
granular and to some extent the infragranular layers
of the cerebral cortex appear as continuously coupled
sheets, the different cortical areas being distin-
guished mainly by their input and output connec-
tions.

(iii) From primary sensory areas onwards, processing
streams diverge into numerous parallel pathways
whose nodes are linked by massive reciprocal
connections both within and across modalities [3,4].

(iv) The rule that feedforward connections originate in
supragranular and feedback projections in infragra-
nular layers does not hold for nearby cortical areas
[3,4]. Together with electrophysiological evidence
[5], this questions the strict distinction between
feedforward driving and feedback modulatory con-
nections.

(v) Finally, statistical analysis of interareal connectivity
suggests an organisation resembling small-world,
rich-club networks (see [6]) that minimises path
length between nodes (areas) [7,8]. However, analysis
of projections with cellular resolution suggests as one
reason for short path length the surprisingly high
degree of connectedness among cortical areas. Statis-
tical analysis suggests that more than 60% of possible
links are realised [3].

Functional evidence
(i) Even in early sensory areas, neurons lose their simple

feature-specific responses when challenged with com-
plex stimuli [9,10]. Moreover, responses are influenced
by stimuli in other modalities, by attention, reward
expectation, and contents in working memory, sug-
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Glossary

Assembly: introduced by Donald Hebb in the context of his seminal proposal

that neuronal representations of composite cognitive objects should comprise

coherent assemblies (ensembles) of neurons whereby the responses of the

individual neurons represent only subcomponents (one of many features) of

the object. By introducing this notion of a combinatorial code, Hebb intended

to overcome the ‘combinatorial explosion’ that would be the consequence of

representing complex contents by individual, highly specific neurons because

individual neurons can participate at different times in different assemblies

representing different objects that have certain features in common. An

important property of assemblies is their cohesion, because they need to

remain identifiable as a coherent whole within the network of distributed

neurones. Hebb’s initial concept was that assemblies are distinguished by the

simultaneity of their responses and that cohesion is assured by selective

strengthening of connections between simultaneously active neurons via

Hebbian synapses that increase their gain when pre- and postsynaptic

responses are positively correlated in time. Thus, assemblies require reciprocal

interactions between the constituting neurons to stabilise and to remain

coherent. This feature distinguishes them from other distributed codes such as

population codes that can be realised in purely feedforward architectures. Here

the principle is to encode information about a stimulus or a motion trajectory

in the joint but graded responses of a population of neurons with overlapping

receptive or motion fields. This joint activity is termed a population vector.

Hopfield net: a one-layered artificial neuronal network in which all neurons

(usually of the McCulloch–Pitts type) are reciprocally coupled with one another

but not with themselves through connections with symmetrical weight

distribution. The synaptic weights of the coupling connections are modified

as a function of activity according to the standard Hebb rule und updated in an

unsupervised way either simultaneously or sequentially. For a particular

activation pattern (conveyed by inputs to the units), the network reaches a

stable state after numerous repeated adjustments of the synaptic weights.

Depending on the number of units and the statistical similarity of patterns, the

network can, after such learning trials, store a certain number of patterns and

complete (recognise) them even if fed only with partial or noised patterns.

Thus, the nets have autoassociative properties and resemble in this aspect

certain layered structures in nervous systems (olfactory bulb, area CA1 of

hippocampus, layers of neocortex).

Laminar organisation: aggregations of neurons take the form of either densely

packed clusters, in which case they are referred to as ganglia or nuclei, or

sheets that usually assemble into multilayered structures (neocortex, hippo-

campus, olfactory bulb, tectum, retina). In multilayered structures, cells within

the same layers tend to share functional properties and to have similar input–

output connectivity. In general, cells are coupled more tightly within than

across layers. Structures with laminar organisation are well suited to form

maps for the representation of concrete (e.g., space, sensory features) or

abstract (e.g., categories) contents.

Oscillations: processes that repeat periodically or aperiodically, ranging from

perfectly regular (e.g., sinusoidal) oscillations to highly irregular, chaotic

oscillations. Neuronal oscillations tend to lie between these extremes and

typically comprise discharge sequences characterised by rather regular

alternations between epochs of enhanced and reduced firing probability that

lead to autocorrelograms with satellite peaks. These oscillations tend to occur

in characteristic frequency bands that cover a wide range (from <1 Hz to

>200 Hz: delta <2 Hz; theta 4–7 Hz; alpha 8–12 Hz; beta 15–30 Hz; low gamma

30–60 Hz; high gamma 60 to �90 Hz; ripples �200 Hz). The frequency, power,

duration, and regularity of these oscillations strongly depend on brain states

(arousal, attention, sleep, expectancy) and stimulation conditions and can vary

from long stretches of frequency-stable oscillations to highly non-stationary,

brief bouts of a few cycles. In most (analysable) conditions oscillations are a

population phenomenon because adjacent coupled neurons tend to oscillate in

synchrony. In this case the currents produced by synchronous inward and

outward membrane currents summate sufficiently to be detectable as

oscillatory fluctuations of so called local field potentials (LFPs). If these

summate sufficiently (i.e., if the groups of synchronised neurons are large

enough and synchronisation is sufficiently precise), oscillating currents can be

detected with remote sensors (epicortical electrodes, EEG, or MEG). In

individual neurons the autostructure of the discharge sequences often does

not exhibit oscillatory signatures even if the cells participate in an oscillatory

population, because cells tend to not discharge at every cycle (cycle skipping).

In this case participation in an oscillatory process can be disclosed only by

correlating the cell’s discharges with the LFP and calculating spike field

coherence.

Synchronisation: to determine whether the discharges of neurons are

synchronised, one computes cross-correlograms between the activities of

simultaneously recorded neurons. If these correlograms show a significant

peak, the responses are synchronised and the temporal offset of the peak from

the midpoint of the correlogram indicates the time lag between the correlated

discharges. If the cross-correlogram shows additional satellite peaks, this

indicates synchronisation of oscillatory spike trains, and the offset of the centre

peak from the midpoint reflects the phase offset of the respective oscillations.

Synchronisation can have several reasons and it is critical for functional

interpretations to distinguish between them. (i) Discharges of different neurons

can be synchronous because the respective neurons receive common input

from bifurcating fibres or because one neuron drives the other. This type of

synchrony is little influenced by states or stimuli and can be used for the

analysis of anatomical connectivity. (ii) The timing of discharges of distributed

neurons can become coordinated by temporally structured stimuli. In this case

the correlations are manifest not only among the simultaneously recorded

responses but also among responses evoked by successive stimuli because the

timing of spikes is locked to the stimulus. One refers to this synchrony as

evoked synchrony. The synchronous currents associated with this type of

evoked synchronisation are the substrate of evoked potentials. (iii) Discharges

become synchronised because neurons are embedded in a reciprocally

coupled network and when activated entrain one another into synchronous

firing. In this case the synchrony is called induced. This type of synchrony

depends on cooperative network dynamics and hence is self-organising. It is

greatly facilitated if the embedding networks oscillate and, like the oscillations,

depends strongly on central states. It is this type of synchrony that is thought

to assure the cohesion of Hebbian assemblies and dynamically formed

functional networks. Oscillations concentrate discharges to a narrow window

of the oscillation cycle and this temporal parsing of discharge sequences has

many putative functions in neuronal processing.

Review Trends in Cognitive Sciences December 2013, Vol. 17, No. 12
gesting contextual modulation not only by intrinsic
connections but also top-down projections [11–15].

(ii) The notion of strictly serial processing from input
layer 4 via layers 3 and 2 to the output layers 5 and 6
needs to be revised because of the evidence that
vigorous infragranular responses can be elicited by
direct thalamic input in the absence of supragranular
activity [16]. The possibility that supra- and infra-
granular compartments can operate in parallel is
further supported by the evidence that the two
subdivisions engage in oscillatory activity (see
Glossary) in different frequency bands (gamma in
supragranular and alpha or beta in infragranular
layers [17,18]).

(iii) Multisite recordings indicate that ‘spontaneous’
fluctuations in the responsiveness of individual
neurons are often the reflection of coordinated, highly
structured spatiotemporal activity patterns rather
than the result of noise [19,20].

(iv) Widely distributed cortical areas exhibit coherent
fluctuations of their spontaneous activity, forming
functionally coupled networks that change in their
composition in a state-dependent way [21–24]. Thus,
cortex and, in a wider sense, the brain appears as a
highly active, pattern-generating system rather than
just a stimulus-driven device.

(v) Analysis of whole-brain activity with functional MRI
(fMRI), electroencephalography (EEG), and magne-
toencephalography (MEG) measurements indicates
that virtually all cognitive and executive functions
are associated with activation of networks of often
widely distributed cortical areas [25–29]. This sug-
gests distributed networks as the substrate of
functions rather than individual specialised struc-
tures.

(vi) Finally, analysis of the brain’s dynamic signatures
indicates that neuronal populations can engage in
oscillatory activity in characteristic frequency bands
and synchronise their discharges, whereby the
respective frequency bands and the composition of
coherently active cell groups depends on central
states, attention, cognitive tasks, and goals of action
[30].
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Dynamic coordination of distributed activity
The dense connectome allows for virtually unconstrained
interactions among any pair of neurons in the cortical
mantel, either through direct connections or via a few
switching nodes. This necessitates dynamic coordination
of interactions at all scales, global to configure functional
networks on the fixed backbone of anatomical connections
and local to flexibly associate object attributes in distrib-
uted representations (assemblies in the Hebbian sense). In
both cases mechanisms are required to dynamically gate
signal flow between selected nodes [31]. The concept of
assembly (distributed) coding posits that the attributes of a
composite object and the relations among them are
encoded by the distributed responses of cells tuned to
the respective attributes and temporarily associated into
a coherent representation [32]. Hence, neurons constitut-
ing the assembly need to interact selectively with one
another to assure cohesion of the assembly and identify
themselves as members of that assembly. Thus, both the
configuration of functional networks and the formation of
assemblies have in common that relations between neuro-
nal responses have to be established fully reversibly and on
the fly, requiring gating of coupling on a very fast time-
scale. Task switching, shifts of attention, and changes of
stimulus configurations (e.g., by saccadic eye movements)
occur at intervals of a few hundred milliseconds, implying
that the configuration of functional networks and assem-
blies has to be accomplished at a similar pace.

An obvious mechanism capable of opening and closing
transmission links at fast timescales is inhibition. Den-
drites cannot effectively summate incoming excitatory
postsynaptic potentials (EPSPs) when they are shunted
by inhibition and cells cannot transmit signals when soma
and axon hillock are inhibited. However, to exploit inhibi-
tion for the selective routing of signals and the dynamic
configuration of functional networks, it is required that the
windows of opportunity for communication be temporally
coordinated between sender and receiver, so that the part-
ners that are to be functionally coupled discharge at times
at which the respective other is susceptible. As proposed by
Fries [33] and supported by multisite recordings in the
visual system [34,35] and hippocampus [36], such coordi-
nation can be realised by synchronising oscillating cell
clusters at the appropriate phase because cells embedded
in oscillating circuits are exposed to precisely timed, peri-
odically repeating volleys of inhibition [37,38]. As revealed
by numerous in vitro [39–41] and in vivo studies [42–44]
the networks of reciprocally coupled inhibitory interneur-
ons and here especially the fast-spiking, parvalbumincon-
taining basket cells play a crucial role as pacemakers for
oscillatory activity and its synchronisation. This principle
also holds for the hippocampus, which shares numerous
features with the neocortex and whose dynamics have been
thoroughly investigated (for reviews, see [30,45]).

One of the first demonstrations of a task-dependent
association of cortical areas into a functional network by
synchronisation was obtained in cats trained to respond to
the change of a visual stimulus. Following an auditory
stimulus announcing a new trial, cortical areas required
for the task (visual, parietal, somatosensory, and motor)
engaged in precisely synchronised beta oscillations before
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the appearance of the visual stimulus, probably in antici-
pation of the need to ensure effective communication
among processing stages [46]. Since then, numerous stud-
ies have used measures of temporal coherence for the
identification of functional networks and provided ample
evidence for the notion that cortical areas become dynami-
cally bound into functional networks by synchronisation in
a task- and state-dependent way [21,25,34,47–51].

Increases in coherence (synchrony) among distributed
responses have also been observed in conditions likely to be
associated with the formation of Hebbian assemblies
[49,52–54]. Here synchronisation of oscillatory responses
has several functionally relevant consequences. (i) It selec-
tively enhances the interactions between the assembly
members (see above and [35]), thereby increasing the
cohesion of the assembly. (ii) It focuses spikes to a narrow
window of the oscillation cycle and this enhanced synchro-
nicity of firing facilitates propagation of signals from as-
sembly members, increasing the likelihood of their further
joint processing. The reason is that synchronised EPSPs
summate more effectively in target neurons than tempo-
rally dispersed inputs [55,56]. (iii) It facilitates selective
readout of responses originating from the same assembly
and segregation from responses of other assemblies be-
cause synchronised responses arrive within the same win-
dow of opportunity in downstream structures. If these also
oscillate, selection can be achieved by phase adjustment.
(iv) It favours selective consolidation of connections among
the assembly members and thereby their long-term cohe-
sion, because use-dependent synaptic modifications follow
a correlation rule [57–59].

In conclusion, there is evidence that selective gating of
signal transmission, configuration of functional networks,
and the binding of the different attributes of composite
objects in distributed representations (temporary as well
as lasting formation of assemblies) is achieved through
temporal coordination of activity that often involves syn-
chronisation of oscillatory activity. Interestingly, inhibito-
ry processes play a major role in this dynamic coordination,
both in the generation of oscillations and in the vetoing of
transmission, suggesting that the function of inhibitory
interneurons extends well beyond gain control, shaping of
receptive fields, and improvement of signal-to-noise ratios.
This notion agrees well with the increasing evidence that
interneurons constitute an extremely heterogeneous pop-
ulation and form highly specific networks [45,60].

When discussing mechanisms of network and assembly
formation, it is worth emphasising that all of the functions
attributed to dynamic coordination are also attributed to
attentional mechanisms [61]. Because attention and ex-
pectancy have been shown to enhance synchronised oscil-
latory activity in the gamma and beta frequency band
[34,49,50,62,63], it is likely that temporal coordination of
discharge sequences is used as a mechanism to implement
attentional control.

The importance of temporal coordination for brain
functions is further underlined by the increasing evidence
that disturbances of cognitive functions are associated
with abnormal dynamics. Diseases such as schizophrenia
and autism go along with deficits in functions requiring
flexible association of distributed processes such as
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feature binding, attention, polymodal integration, task
switching, and working memory. In patients suffering
from these diseases, task-related gamma oscillations
are reduced, phase locking of beta oscillations between
cortical areas is impaired, and the patterns of resting-
state dynamics are altered (for reviews, see [64,65]).

The nature and role of resting-state activity
The evidence that the resting-state activity of the brain is
highly structured raises the question of whether this ac-
tivity contains information and, if so, what this informa-
tion represents and how it is encoded. The dynamics of
resting-state activity must somehow reflect the functional
architecture of cortical networks. Because this architecture
is determined by genetic factors and modified by experi-
ence, spontaneous activity patterns should contain infor-
mation about evolutionary and epigenetically acquired
knowledge about the world and serve as a covert internal
model for perception and action (see [66] for a review on
predictive coding). This then raises the question of how the
immense amount of knowledge accumulated throughout
evolution and by experience throughout life can be mapped
into the networks and – even more challenging – how it can
be read out on the fly within a couple of hundred milli-
seconds. This question is closely related to the conundrum
that memories are retrievable irrespective of their storage
date within comparably short search times. It seems as if
all of these memories (inborn and acquired knowledge
about the world) are coexisting in the functional architec-
ture of networks and equidistant for the search mecha-
nism. A space in which such coexistence is possible must
have an exceedingly high dimensionality and allow for
very rapid readout (i.e., convergence towards the state
Box 1. Computational strategies to create high-dimensional cod

Artificial networks of the Hopfield type are capable of simultaneously

representing different relational constructs (objects defined by

relations) due to reciprocal coupling and make them accessible to

parallel search. However, such systems with symmetric connections

cannot cope easily with the representation of large numbers of

superimposed relational constructs, particularly if temporal relations

also need to be stored. One reason is their restricted temporal

dynamics, which limits the dimensionality of states [111,112]. Another

class of models capable of dealing with relational constructs and

providing high-dimensional spaces for coding is derived from

concepts of reservoir computing, also termed echo-state or liquid

computing. These networks comprise self-active, nonlinear units with

random recurrent coupling that maintain their own dynamics and are

engaged in active processing [113–117] (Figure I).

In this computational framework, the reservoir comprises a network

of self-active, randomly coupled neurons (nodes). If a specific input

constellation is driving a subset of these nodes, a complex, transient,

high-dimensional and stimulus-specific activity pattern emerges in this

recurrently coupled network, the liquid, and is then further propagated

by waves of recurrent interactions among neurons. Such reverberation

provides the liquid with a fading memory of recent inputs that allows it

to integrate input sequences (e.g., several frames of visual input) while

keeping track of sequence order. The readout of the relational code is

achieved with a linear or nonlinear classifier (e.g., support-vector

machines with linear or nonlinear kernels). This readout function can

again be implemented by neuron-like elements that sample activity

from the nodes in the liquid and adjust the coupling strength of the

sampling lines through supervised learning until they become

optimally activated by a particular state of the liquid [118]. In these

simple cases, the readout cells act like ‘grandmother cells’ [119].
representing the result of the search process) (see Box 1
for putative computational solutions and [67] for a concrete
implementation).

Analysis of cortical dynamics indicates that resting-
state activity exhibits characteristic correlations at widely
differing timescales and reflects the coupling among neu-
rons [22] (for a review, see [68]). Ultra-slow covariations of
activity in the range of seconds have been found for areas
belonging to the so-called default network [23] and diffu-
sion tensor imaging (DTI) studies confirm strong anatomi-
cal connections between the respective areas [7,8]. In the
visual cortex, Grinvald and colleagues [19] have shown
with optical recording correlated activity fluctuations in
the system of orientation columns and Fries et al. [20]
found with field-potential and single-cell recordings that
cells in orientation columns with the same orientation
preference oscillate in synchrony in the gamma frequency
range. These correlation patterns agree well with the
functional architecture; in this case, the selectivity of
tangential intracortical connections that preferentially
link columns with similar response properties [69–71].
The study of Fries et al. [20] further revealed that the
resting-state oscillations are responsible for the substan-
tial intertrial variability of cortical response latencies.
Neurons respond early (late) when retinal signals arrive
during the peak (trough) of the oscillations. Because col-
umns sharing the same orientation preference oscillate in
synchrony before stimulation, cells sharing the same ori-
entation preference discharge at the same time (i.e., in
synchrony if activated by contours of the same orientation).
This and the evidence that cells sharing the same orienta-
tion preference also synchronise their tonic responses
when activated with coherent stimuli [52,72] led to the
ing space

However, the readout stage could also comprise cell assemblies that

are in turn ignited by specific states of the liquid after appropriate

adjustment of the synaptic weights of the connections between the

liquid and the readout stage. This strategy increases the robustness of

decoding and at the same time generates low-dimensional readout

patterns that can directly be used to control effectors (e.g., orchestrate

the population vector for a composite movement). The principle of this

computing strategy is simple and powerful: a low-dimensional input

configuration is transformed into a high-dimensional dynamic repre-

sentation. In this high-dimensional state space, stimulus-evoked

vectors remain compact, cluster in well-segregated subspaces, and

can be more easily discriminated based on their spatiotemporal

signatures. The segregation of clusters can be improved further if the

network is endowed with Hebbian synapses and given the opportunity

to ‘learn’ in an unsupervised fashion about the features of the stimulus

sample by repeated presentation of the stimuli [120]. As a matter of

principle, the performance of the liquid increases with the dimension-

ality of the space it is able to explore. Thus, if the nodes are configured

as oscillators (e.g., relaxation oscillators or damped harmonic oscilla-

tors), phase also comes into play, which allows further expansion of the

dimensionality of the liquid (see also [88]). However, at the same time

the amount of training data has to be increased to fill the high-

dimensional space. Because of their high dimensionality, such liquids

are in principle capable of storing and superimposing very large

numbers of ‘memories’ and learnt associations that can be accessed

and readout nearly instantaneously. The astounding ability of our

brains to solve with such ease problems that are still computationally

intractable (e.g., the segmentation of complex scenes) suggests that the

brain indeed capitalises on computational algorithms that permit

parallel storage and fast readout of complex relational constructs.
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Figure I. Computation in recurrent networks, theory, and experiment. Upper row: A sequence of low-dimensional stimuli (A, B, C) is encoded in parallel spike trains by

an artificial retina. Signals are then distributed to a subset of nodes in a recurrent network in which they are transformed into stimulus-specific, high-dimensional

dynamic states. These states are then classified by a linear or nonlinear classifier. Middle row: A sequence of stimuli (A, B, C) is presented over the receptive fields of

many simultaneously recorded neurons, randomly sampled from cat primary visual cortex. The recorded spike trains, displayed as raster plots (second panel), are then

convolved with a sawtooth function to generate continuous signals (third panel). Shaded columns indicate time and duration of stimulus presentation. The activity

vector sampled from a short time window placed over the responses to stimulus B (red bars) is used to train a linear classifier by adjusting the weights of inputs from

individual neurons to recognise the signatures of the stimuli. Bottom panel: Experimental results. A sequence of three stimuli was presented. The first was either A or C,

the second either B or D, and the third always E. Data were split into a training set and a test set and the classifier was trained at the different time bins (5 ms duration) to

identify stimuli A–D. The black and green curves show classification performance (% correct on ordinate) in the test set for the distinction between A/C (black) and B/D

(green), respectively. Identification of the first stimulus is significantly above chance (green-shaded region) as soon as responses to the first stimulus appear, remains

high (�80% correct) during the responses to the second stimulus, and slowly drops to chance level during the responses to the third stimulus. Identification of the

second stimulus rises above chance (�70% correct) during the responses to the second stimulus, drops slowly to nearly chance level before the third stimulus, and rises

again during the responses to the third stimulus. Thus, the responses to the second stimulus contain information about the identity of both the first and the second

stimulus and the increase of discharge rate caused by the third stimulus facilitates retrieval of information about the second stimulus. Jittering of the spike sequences

revealed that the classifier evaluated both the actual discharge rates and the precise timing of individual spikes (data not shown). If only a single stimulus is shown,

information about stimulus identity can persist for up to 1 s (fading memory). For more details see [118]. By courtesy of D. Nikolic and A. Lazar.
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suggestion that the rules for perceptual grouping, in this
case the gestalt criteria of continuity and colinearity,
reside in the architecture of corticocortical connections
and are translated into synchronisation probabilities
[11,20,53]. These data indicate that the most prevalent
features of the cortical architecture are already detectable
in resting-state activity [73]. Ample evidence for the strong
impact of ongoing synchronised oscillations on sensory
responses is also available from studies in the primate
auditory cortex [74,75].

Developmental studies indicate that the statistics of
feature conjunctions in the outer world are translated into
the strength of coupling between cells tuned to the respec-
tive features. Early evidence for such internalisation of
620
contingencies has been obtained in kittens that had exclu-
sive experience with vertically oriented, unidirectionally
moving gratings that had a constant stripe separation of
108 visual angle [76]. As expected, this selective rearing
biased the numerical distribution of orientation- and di-
rection-selective neurons towards the experienced stimu-
lus (see also [77]). However, most importantly, a
substantial fraction (�30%) of the neurons in supragranu-
lar layers of area 17 developed multiple, well-segregated
receptive fields whose spacing frequently corresponded to
the spacing of the experienced stripes (Figure 1). Because
intercolumnar connections are shaped by experience
according to a Hebbian mechanism [70], the ectopic recep-
tive fields are most likely due to selective strengthening of
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Figure 1. Imprinting environmental statistics in cortical architecture. (A) Selective exposure of dark-reared kittens to unidirectionally moving vertical gratings of constant

spatial frequency (108 interstripe distance). (B) Simplified sketch of tangential intracortical connections linking columns whose response properties match the stimulus and

whose spacing in the retinotopic map corresponds to the spatial frequency of the grating. It is hypothesised that tangential connections linking neurons that are activated

synchronously by the grating patterns increase their gain (see + at respective synapses). (C) Peristimulus time histograms (PSTHs) of responses of a neuron in

supragranular layers to stationary flashed light bars at positions in the visual field indicated in the graph to the right. The neuron has two well-segregated receptive fields;

one is ectopic (positions 7–10), the other is located at the position corresponding to the retinotopic location of the recording site close to the area centralis (positions 1–4).

(D) Response of the same neuron to a vertically oriented light bar moving from the periphery towards the area centralis as indicated in the graph above. Note the clear

separation of the two response regions, the more vigorous response being elicited from the medial (the normal) receptive field, which has complex response properties.

Modified from [76].
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intrinsic cortical connections linking those columns that
were activated synchronously by the grating. Whether
these modifications of functional architecture had also
affected resting-state correlation patterns has not been
explored, but there is recent evidence that learning can
indeed modify the covariance structure of spontaneous
activity [78,79].

In conclusion, the weight distributions of the connec-
tions among cortical neurons are likely to reflect not only
evolutionary adaptation to regularities but also the im-
mensely complex statistics of the feature relations experi-
enced throughout life [73]. Somehow, these countless,
content-specific weight distributions must coexist in a very
high-dimensional space to remain flexibly addressable as
contextual priors [80,81]. As discussed in the following
section, certain properties of resting-state activity suggest
that the dynamics emerging from cortical networks are
indeed high dimensional, allowing for the coexistence of a
large number of potentially realisable states [82].

The fingerprints of network dynamics
The dynamics of complex systems can vary between two
extremes. All elements of the system could be active inde-
pendently and exhibit stochastic activity (high dimension-
ality) or all elements could be synchronised (low
dimensionality). Both extreme states have low computa-
tional potential. However, under normal conditions the
cerebral cortex operates in an intermediate regime where
621
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the emergent dynamics are complex and computational
power is high (see below). Interestingly, this is also true for
the architecture of the connectome. The connectivity graph
constitutes a compromise between randomness and regu-
larity where complexity and dimensionality are high
[83,84].

Analysis of the resting-state dynamics of cortical net-
works suggests that they operate close to a self-organised
critical (SOC) state [68,85–88]. The SOC state provides
favourable conditions for computations: its memory capac-
ity is maximal [89]; the information transfer is most reli-
able [90,91]; it can optimally separate between different
inputs [89]; and it shows the largest dynamical range
[90,92]. This intermediate regime and the associated spa-
tiotemporally scale-free avalanche dynamics is maintained
in states characterised by a broad-frequency spectrum of
oscillatory activity that leads to the typical 1/f distribution
of spectral power (i.e., the power of the respective oscilla-
tions is inversely related to their frequency). However, the
system can also operate in SOC states when oscillating in
narrower frequency bands [93,94].

Sensory stimulation or top-down mechanisms related to
attention, expectancy, or action preparation tend to cause a
widespread reduction in the variability of the dynamic
state. Often this reduction is associated with an increase
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of oscillations, synchrony, and coherence in distinct fre-
quency bands that leads to deviations from the 1/f power
distribution (see above and [62,95]). This change in the
dynamics is equivalent to the reduction of the dimension-
ality of the dynamic state and a signature of an increas-
ingly constrained dynamical space in which the maximally
informative assemblies come to dominate the dynamics. It
appears as if there is a relation between the complexity of
stimuli and the degree of dimensionality reduction, the
latter being more pronounced for simple than for complex
stimuli. In the case of vision, simple, low-dimensional
stimuli such as single moving contours or gratings induce
sustained narrow-band oscillations that can synchronise
over large distances [52]. One likely reason is that such
simple stimuli represent feature constellations that are
particularly frequent in real-world objects such as colin-
earity, continuity, and coherent motion and therefore
match well with the prevalent architecture of intracortical
connections whose layout does reflect the statistics of
contingencies in the outer world (see above and [70]). By
contrast, complex stimuli such as natural scenes induce
much more complex and time-varying patterns that are
difficult to analyse with conventional methods of time-
series analysis based on stationarity assumptions [96–
98] (for an extreme example, see Figure 2). However, this
0
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does not imply that the more complex dynamics no longer
contain information about the stimulus. Moreover, there is
experimental evidence from monkeys freely exploring nat-
ural scenes that gamma oscillations are still robustly
elicited when the animals direct their gaze to individual
objects in a cluttered scene [99]. The analogy with a ‘liquid’
is obvious. A single stone thrown in a pond will produce
propagating coherent waves the frequency of which is
determined by the properties of the liquid (in the case of
networks, e.g., the time constants of interacting elements)
whereas a sequence of temporally and spatially distributed
impacts, even if well structured, will evoke a much more
complex interference pattern. However, in both cases the
emerging patterns contain comprehensive information
about the stimuli. The response properties of individual
neurons undergo similar changes. When exposed to simple
stimuli, neurons exhibit well-defined receptive fields (RFs),
as described by Hubel and Wiesel [100] half a century ago.
However, when presented with complex stimuli, it often
becomes impossible to retrieve the original RF structure
[9]. The reasons are intracortical interactions that render
local responses dependent on global context.

Epiphenomenal or computationally relevant signatures
The observations on dimensionality reduction bear on the
question of whether system properties disclosed with sim-
ple stimuli are computationally relevant or only epiphe-
nomena. The canonical RFs resulting from selective
recombination of input connections and oscillations are
an emergent property of recurrent networks. The function-
al roles of input recombination and recurrency are undis-
puted but oscillations are often considered maladaptive
epiphenomena because they create instabilities and, by
Box 2. Hypotheses suggested by novel findings on cortical organ

(i) Cortical networks potentially provide an extremely high-dimen-

sional space for coding due to the complex dynamics emerging

from the recurrent coupling of nodes.

(ii) The propensity of nodes to oscillate and to engage in synchrony

has numerous computational advantages. It increases the

dimensionality of states, introduces phase for coding, can be

used to selectively gate communication among nodes, facil-

itates through phase locking the formation, identification, and

stabilisation of functional networks and assemblies, endows the

networks with hysteresis and the capacity to resonate, facilitates

long-term stabilisation of assemblies by Hebbian plasticity, and

last but not least provides the option for cross-frequency

coupling to encode nested relations in the concatenation of

rhythms.

(iii) An internal model of the world stored in the networks by

both genetic specification and experience is implemented in

the architecture and weights of corticocortical connections

and generates an immense repertoire of coexisting potential

states.

(iv) The complex spatiotemporal dynamics of resting-state activity

reflects to some extent the superposition of the prior expecta-

tions generated by this internal model.

(v) Low-dimensional input signals are transformed into high-

dimensional internal states due to their interaction with the

network’s dynamics.

(vi) Input signals cause selective stabilisation of substates that are

often distinguished by enhanced coherence and reduced

dimensionality, suggesting that an initially unconstrained

dynamic state of coexisting solutions (the internal model) is
favouring synchrony, may reduce coding capacity. Howev-
er, in dynamic systems oscillating nodes may be advanta-
geous. In addition to increasing the dimensionality of state
space (Box 1), they are essential for the implementation of
‘central pattern generators’ [101–105], extend coding space
by introducing phase as a variable [106,107], and permit
exploitation of resonance for matching operations
[108,109]. These could be the reasons why nature has
endowed most of the neurons in the simple nervous sys-
tems of invertebrates with pacemaker currents that make
these neurons function as autonomous oscillators. When
coupled, these oscillating neurons generate complex, well-
coordinated, and metastable spatiotemporal activity pat-
terns. Because of their nonlinear dynamics, such systems
can undergo rapid state transitions (bifurcations) and
generate different stable patterns on the backbone of fixed
anatomical connections depending on changing cognitive
or executive demands [102,105] (for a review of pattern
generation in cortex, see [110]).

Concluding remarks
The novel data on the structural and functional organisa-
tion of the cerebral cortex support concepts that emphasise
distributed coding and information processing in self-orga-
nised complex systems with nonlinear dynamics. As out-
lined above, there is now sufficient empirical evidence to
warrant targeted experimental testing of a set of hypothe-
ses derived from these concepts (Box 2).

To test the hypotheses listed in Box 2 will require in-
depth analysis of dynamic states across scales and the
establishment of close – and ideally causal – relations
between dynamic signatures and cognitive as well as exec-
utive functions. This calls for massive parallel recordings
isation and dynamics

forced towards the most likely substate, given the structure of

the internal model and the specific input constellation.

(vii) These stimulus-constrained, low dimensional substates consti-

tute the solution to the respective computational problem.

(viii) The reduced dimensionality of these substates, in particular

their increased coherence (synchrony), increases their saliency,

thereby enhancing their impact on downstream processes, and

promotes their long-term stabilisation by facilitating Hebbian

modifications of synaptic connections.

(ix) A selection of substates is also caused by attention, expectancy,

and behavioural goals because these reduce the dimensionality of

resting-state activity patterns by increasing coherence in subnet-

works.

(x) These modifications of dynamics are facilitated by SOC states

because these facilitate the rapid emergence and dissolution of

neuronal assemblies (synchronised oscillatory populations),

requiring minimal ‘effort’ because of the intermediate level of

existing correlations.

(xi) The advantages of performing computations in a high-dimen-

sional space are: the option to superimpose many information

priors simultaneously, which allows for parallel search and fast

matching with input signals; and the option to generate multiple

selected substates in parallel and to keep them segregated,

which facilitates classification.

(xii) Numerous mental diseases are associated with characteristic

alterations of brain dynamics, suggesting the possibility of

using these dynamic signatures as endophenotypes for further

disease classification and the exploration of pathophysiological

mechanisms.
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from large domains of the cortical mantle and for the devel-
opment of novel mathematical tools that permit the analysis
of high-dimensional, non-stationary time series and the
detection of behaviourally relevant patterns (trajectories).
Currently there is a rapid development of electrode technol-
ogy permitting long-term recordings of large numbers of
neurons in awake, behaviourally trained animals. These
approaches are complemented with optical recording meth-
ods based on fluorescent calcium- or voltage-sensitive sen-
sors that are either supplied by incubation or expressed in
selected cell populations by genetic-engineering tools. These
powerful techniques will soon provide the high-dimensional
time series required for the analysis of trajectories. Howev-
er, in parallel mathematical tools will have to be adopted
that can cope with the non-stationarity and nonlinear dy-
namics of neuronal processes. The currently applied meth-
ods are capable only of disclosing rather stationary and
regular patterns of long duration (sustained oscillations of
constant frequency and low-order correlations). It is there-
fore likely that we presently see only selected, low-dimen-
sional substates of the system. The methodological and
intellectual challenges ahead are enormous as we seem to
enter a new era in systems neuroscience.
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30 Buzsáki, G. (2006) Rhythms of the Brain, Oxford University Press
31 Singer, W. (2010) Neocortical rhythms. An overview. In Dynamic

Coordination in the Brain From Neurons to Mind (Von der
Malsburg, C. et al., eds), pp. 159–168, MIT Press and FIAS

32 Hebb, D.O. (1949) The Organization of Behavior, John Wiley & Sons
33 Fries, P. (2005) A mechanism for cognitive dynamics: neuronal

communication through neuronal coherence. Trends Cogn. Sci. 9,
474–480

34 Bosman, C. et al. (2012) Attentional stimulus selection through
selective synchronization between monkey visual areas. Neuron 75,
875–888

35 Womelsdorf, T. et al. (2007) Modulation of neuronal interactions
through neuronal synchronization. Science 316, 1609–1612

36 Lee Colgin, L. et al. (2009) Frequency of gamma oscillations routes
flow of information in the hippocampus. Nature 462, 353–357

37 Fries, P. et al. (2007) The gamma cycle. Trends Neurosci. 30,
309–316

38 Kopell, N. et al. (2000) Gamma rhythms and beta rhythms have
different synchronization properties. Proc. Natl. Acad. Sci. U.S.A.
97, 1867–1872

39 Traub, R.D. et al. (2001) Gap junctions between interneuron dendrites
can enhance synchrony of gamma oscillations in distributed
networks. J. Neurosci. 21, 9478–9486

40 Traub, R.D. et al. (1996) A mechanism for generation of long-range
synchronous fast oscillations in the cortex. Nature 383, 621–624

41 Whittington, M.A. et al. (1995) Synchronized oscillations in
interneuron networks driven by metabotropic glutamate receptor
activation. Nature 373, 612–615

42 Cardin, J.A. et al. (2009) Driving fast-spiking cells induces gamma
rhythm and controls sensory responses. Nature 459, 663–667

43 Sohal, V.S. et al. (2009) Parvalbumin neurons and gamma rhythms
synergistically enhance cortical circuit performance. Nature 459,
698–702

44 Buzsaki, G. and Chrobak, J.J. (1995) Temporal structure in spatially
organized neuronal ensembles: a role for interneuronal networks.
Curr. Opin. Neurobiol. 5, 504–510

45 Klausberger, T. and Somogyi, P. (2008) Neuronal diversity and
temporal dynamics: the unity of hippocampal circuit operations.
Science 321, 53–57

46 Roelfsema, P.R. et al. (1997) Visuomotor integration is associated
with zero time-lag synchronization among cortical areas. Nature 385,
157–161

http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0005
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0005
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0010
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0010
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0010
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0015
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0015
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0020
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0020
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0020
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0025
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0025
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0025
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0030
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0030
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0035
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0035
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0040
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0040
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0045
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0045
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0050
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0050
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0050
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0055
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0055
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0060
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0060
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0065
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0065
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0070
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0070
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0075
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0075
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0080
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0080
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0085
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0085
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0085
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0090
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0090
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0095
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0095
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0100
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0100
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0105
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0110
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0110
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0115
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0115
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0120
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0120
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0120
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0125
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0125
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0130
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0130
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0135
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0135
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0140
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0140
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0145
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0145
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0150
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0155
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0155
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0155
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0160
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0165
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0165
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0165
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0170
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0170
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0170
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0175
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0175
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0180
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0180
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0185
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0185
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0190
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0190
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0190
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0195
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0195
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0195
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0200
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0200
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0205
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0205
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0205
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0210
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0210
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0215
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0215
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0215
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0220
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0220
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0220
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0225
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0225
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0225
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0230
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0230
http://refhub.elsevier.com/S1364-6613(13)00210-6/sbref0230


Review Trends in Cognitive Sciences December 2013, Vol. 17, No. 12
47 Buschman, T.J. and Miller, E.K. (2007) Top-down versus bottom-up
control of attention in the prefrontal and posterior parietal cortices.
Science 315, 1860–1862

48 Buschman, T.J. et al. (2012) Synchronous oscillatory neural
ensembles for rules in the prefrontal cortex. Neuron 76, 838–846

49 Gregoriou, G.G. et al. (2012) Cell-type-specific synchronization
of neural activity in FEF with V4 during attention. Neuron 73,
581–594

50 Gregoriou, G.G. et al. (2009) High-frequency, long-range coupling
between prefrontal and visual cortex during attention. Science 324,
1207–1210

51 Bressler, S.L. et al. (2008) Top-down control of human visual cortex by
frontal and parietal cortex in anticipatory visual spatial attention. J.
Neurosci. 28, 10056–10061

52 Gray, C.M. et al. (1989) Oscillatory responses in cat visual cortex
exhibit inter-columnar synchronization which reflects global stimulus
properties. Nature 338, 334–337

53 Singer, W. (1999) Neuronal synchrony: a versatile code for the
definition of relations? Neuron 24, 49–65

54 Salazar, R.F. et al. (2012) Content-specific fronto-parietal
synchronization during visual working memory. Science 338,
1097–1100

55 Bruno, R.M. and Sakmann, B. (2006) Cortex is driven by weak
but synchronously active thalamocortical synapses. Science 312,
1622–1627

56 Polsky, A. et al. (2009) Encoding and decoding bursts by NMDA spikes
in basal dendrites of layer 5 pyramidal neurons. J. Neurosci. 29,
11891–11903

57 Markram, H. et al. (1997) Regulation of synaptic efficacy by
coincidence of postsynaptic APs and EPSPs. Science 275, 213–215

58 Bi, G.Q. and Poo, M.M. (1998) Synaptic modifications in cultured
hippocampal neurons: dependence on spike timing, synaptic strength,
and postsynaptic cell type. J. Neurosci. 18, 10464–10472

59 Singer, W. (1995) Development and plasticity of cortical processing
architectures. Science 270, 758–764

60 Tamás, G. et al. (1998) Differentially interconnected networks of
GABAergic interneurons in the visual cortex of the cat. J.
Neurosci. 18, 4255–4270

61 Treisman, A. (1999) Solutions to the binding problem: progress
through controversy and convergence. Neuron 24, 105–110

62 Lima, B. et al. (2011) Gamma responses correlate with temporal
expectation in monkey primary visual cortex. J. Neurosci. 31,
15919–15931

63 Fries, P. et al. (2001) Modulation of oscillatory neuronal
synchronization by selective visual attention. Science 291, 1560–1563

64 Uhlhaas, P.J. and Singer, W. (2012) Neuronal dynamics and
neuropsychiatric disorders: toward a translational paradigm for
dysfunctional large-scale networks. Neuron 75, 963–980

65 Uhlhaas, P.J. et al. (2006) Dysfunctional long-range coordination of
neural activity during gestalt perception in schizophrenia. J.
Neurosci. 26, 8168–8175

66 Clark, A. (2013) Whatever next? Predictive brains, situated
agents, and the future of cognitive science. Behav. Brain Sci. 36,
181–204

67 Habenschuss, S. et al. (2013) Stochastic computations in cortical
microcircuit models. PLoS Comput. Biol. (in press)

68 Deco, G. and Jirsa, V.K. (2012) Ongoing cortical activity at rest:
criticality, multistability, and ghost attractors. J. Neurosci. 32,
3366–3375

69 Bosking, W.H. et al. (1997) Orientation selectivity and the
arrangement of horizontal connections in tree shrew striate cortex.
J. Neurosci. 17, 2112–2127
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