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Abstract
Deep brain stimulation (DBS) is an established therapy for Parkinson’s Disease and is being
investigated as a treatment for chronic depression, obsessive compulsive disorder and for facilitating
functional recovery of patients in minimally conscious states following brain injury. For all of these
applications, quantitative assessments of the behavioral effects of DBS are crucial to determine
whether the therapy is effective and, if so, how stimulation parameters can be optimized. Behavioral
analyses for DBS are challenging because subject performance is typically assessed from only a
small set of discrete measurements made on a discrete rating scale, the time course of DBS effects
is unknown, and between-subject differences are often large. We demonstrate how Bayesian state-
space methods can be used to characterize the relationship between DBS and behavior comparing
our approach with logistic regression in two experiments: the effects of DBS on attention of a
macaque monkey performing a reaction-time task, and the effects of DBS on motor behavior of a
human patient in a minimally conscious state. The state-space analysis can assess the magnitude of
DBS behavioral facilitation (positive or negative) at specific time points and has important
implications for developing principled strategies to optimize DBS paradigms.
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Introduction
Deep brain stimulation (DBS) with macroelectrodes is now an accepted treatment for
Parkinson’s Disease and is currently being evaluated as a treatment for several neuropsychiatric
disorders (Perlmutter and Mink, 2006). Objective measures of effectiveness are important in
both the routine and investigational uses of DBS–to determine whether DBS is effective at all,
and, if so, to optimize stimulation parameters (Volkmann et al., 2006). Developing such
measures is challenging, because behavior is usually quantified by a relatively small number
of irregularly-spaced observations along a discrete rating scale, the time course of DBS effects
is typically unknown, and individual differences may preclude averaging across subjects.
Moreover, different behavioral effects may evolve with different time courses and in some
cases, these time courses may even be bi-phasic or multi-phasic (Greenberg et al., 2006;
Mayberg et al., 2005; Schiff et al., 2007).

Behavioral analyses of DBS responses generally rely upon classical neuropsychological tests
or assessments of percentage of correct performances and reaction times using standard
statistical methods (e.g. (Frank et al., 2007; Page and Jahanshahi, 2007)). Similarly, behavioral
analysis of the effects of microstimulation experiments in subcortical structures or cortical
regions typically do not assess dynamic effects (Nakamura and Hikosaka, 2006) or collapse
dynamic effects over multiple trials (Williams and Eskandar, 2006). More recently, Schiff et
al. (Schiff et al., 2007) have applied a logistic regression approach to determine the effect of
DBS on performance. While their approach, which is applicable to animal studies and clinical
trials, suffices to identify the presence or absence of DBS effects, it is limited in that it postulates
a specific form for the dynamics.

Here, we extend the method of Schiff et al. (Schiff et al., 2007) by introducing models that can
assess the temporal dynamics of the behavioral response to DBS. Our strategy is to consider
four models of increasing complexity and increasingly weaker assumptions concerning the
dynamics. Three of these models are logistic regression models (Fahrmeir and Tutz, 2001;
Nelder and Wedderburn, 1972); the fourth is a state-space autoregressive model (Kitagawa
and Gersch, 1996). The first two were considered by Schiff et al. (Schiff et al., 2007) and
identify a stimulation effect by including stimulation history as a covariate. The third model
captures some detail about the response dynamics by allowing each stimulation bout to have
a different effect size. The fourth model avoids assuming a parametric form for the response
dynamics, and instead uses a state-space approach. The state-space approach is an extension
of earlier models (Smith et al., 2004; Smith et al., 2005; Smith et al., 2007; Wirth et al.,
2003) designed to estimate learning in behavioral experiments.

For internal consistency and ease of programming, we implement the four models under a
Bayesian framework and estimate the data likelihood using a Monte Carlo Markov chain
(MCMC) approach. While this method can be computationally expensive, being able to use
existing software (WinBugs; (Lunn et al., 2000)) reduces the programming burden. In addition,
the final results, in the form of samples from the estimated marginal distributions, can be easily
used to make statistical comparisons between different experimental time points. For model
selection purposes, the software automatically estimates the deviance information criterion
(DIC; (Spiegelhalter et al., 2002)).
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We illustrate our methods by analyzing responses from data sets arising from two different
studies aimed at facilitating behavioral responsiveness in the context of the injured brain. The
first study involves the responses of normal monkeys undergoing DBS performing a
visuomotor reaction time task. The second study involves analysis of behavioral metrics
recorded from the crossover phase of a DBS pilot clinical trial involving a severely brain-
injured human subject (Schiff et al., 2007). In both cases, the state-space method and the logistic
regression method reveal the presence of a behavioral effect of DBS, but the state-space
approach identifies a more detailed picture of its dynamics.

Materials and Methods
Experimental Protocols

We describe in this section the two experimental protocols we study.

Central thalamic deep brain stimulation in a macaque monkey to induce sustained attention
This protocol represents an animal model for the effects of DBS on attention. As part of an
IACUC approved (Weill Cornell Medical College), NIH sponsored study (NS20712; PI, N.
Schiff) and subsequent industry sponsored study (IntElect Medical, Inc), two rhesus monkeys
(Macaca mulatta) were trained to perform a behavioral paradigm requiring sustained visual
attention (forewarned visuomotor reaction time task). The task consisted of making a saccade
to a visual target (a red square at one of nine preselected locations chosen at random) followed
by a variable period of fixation on the target and detection of a change in target color followed
by a bar release. This standard task, which takes approximately 4 seconds, requires sustained
attention because in order to receive a reward, the animal must release the bar within a brief
time window cued by the change in target color. The change in target color occurs after a
variable delay time chosen at random from a normal distribution (Parasuraman and D.R.,
2005). The variable time interval begins after the monkey maintains a stable fixation of the
initial red square. Typically, performance is maintained at a high level at the start of the
recording session and diminishes over the 2 hour session. Breaks of fixation and, more rarely,
inappropriately timed bar releases or failures to release the bar on time, all lead to termination
of a trial and failure to receive a reward. Thus our behavioral data sets for this experiment are
composed of time series of binary observations with a 1 corresponding to reward being
delivered and a 0 corresponding to reward not being delivered at each trial, respectively. The
goal of the experiment is to determine whether, once performance has diminished as a result
of spontaneous fatigue, DBS allows the animal to recover its pre-fatigue level of performance.

Recordings of extracellular potentials and local field potentials from sharp electrodes placed
in the central thalamus were used to localize sites for electrical stimulation (Schiff et al.,
2002; Schiff et al., 2001). Central thalamic sites were first identified utilizing a 3-dimensional
MRI reconstruction and construction of a customized computer-designed chamber attachment
to guide the electrodes. Recording sites were referenced to the animal’s MRI images and in
comparison with standard rhesus monkey atlas coordinates (Paxinos et al., 2000). The central
thalamus, including the anterior intralaminar nuclei (central lateral, paracentralis) and related
paralaminar regions of the median dorsalis nucleus were targeted for investigation (Schiff and
Purpura, 2002). At some recording sites in the central thalamus, the local field potential had
an increase in power in the 30–70 Hz band during the delay period of successful trials. These
sites were used for electrical stimulation (Schiff et al., 2002). Bouts of electrical stimulation
were repeatedly administered to the central thalamus across blocks of trials during the ongoing
task performance (see results) delivered through a bipolar recording/stimulating microsyringe
(Crist Instruments Co.) using constant current stimulation (FHC Co. Model Pulsar 6bp) in the
intensity range 200–500 μA (M1) or a customized model bipolar stimulation electrode (M2).
Stimulation was applied as a brief train of 5 biphasic stimulation pulses (50 μsec/phase) at a

Smith et al. Page 3

J Neurosci Methods. Author manuscript; available in PMC 2010 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stimulation frequency of 50Hz (chosen to reflect the average range of elevated firing rates seen
in neuronal populations with increasing firing rates during the delay period, and corresponding
to the middle range of high frequencies identified in local field potential recordings in the
characterization experiments). The choice of the train of 5 pulses was further inspired by
recordings in intralaminar central lateral nucleus (CL) of alert cats that demonstrated bursts of
~5 spikes at ~800–1000 Hz at a rate of approximately 40 Hz (Steriade et al., 1993).

Central thalamic deep brain stimulation in a human clinical trial
A 38 year-old right-handed man who sustained a closed head injury following an assault 6
years prior to the study was enrolled in a clinical trial designed to determine if central thalamic
deep brain stimulation can improve arousal regulation and facilitate behavioral responsiveness
(Schiff et al., 2007). It was hypothesized that stimulation in this region may allow recruitment
of a wider array of networks in the brain and thereby improve the patient’s responsiveness. We
summarize the key features of this patient and the clinical trial here; further details can be found
in Schiff et al. (Schiff et al., 2007). The patient remained in a minimally conscious state (MCS)
defined by (Giacino et al., 2002) as a “condition of severely altered consciousness in which
minimal but definite behavioral evidence of self or environmental awareness is demonstrated.”
Quantitative behavioral assessments in MCS patients capture a range of behaviors from small
movements in response to environmental stimuli to inconsistent communication through
verbalization or gesture. Pre-surgical assessments were conducted to enable pre-selection of
the three primary outcome variables. Subsequent to completion of the pre-surgical baseline,
the patient underwent implantation of bilateral DBS electrodes. The electrodes remained off
until initiation of a DBS titration period which began 50 days after implantation, except for a
2-day period of stimulation testing in the immediate post-operative period. Different
combinations of frequency, intensity, electrode contact activation and periods of ON and OFF
times were tested in order to optimize behavioral outcome responses. The primary outcome
measures were subscales of the JFK Coma Recovery Scale (Revised). In addition, three
secondary outcome measures were used (object naming, limb control and oral feeding). Further
details of these measures can be found in the Supplementary information to Schiff et al. (Schiff
et al., 2007).

At the end of the titration phase, a 6-month double-blinded alternating ON/OFF cross-over
trial began using optimal parameters selected during the titration phase. We analyze in detail
one of the secondary outcome measures during this period, oral feeding index, assessed by a
speech pathologist during scheduled feeding sessions. These indices lie on a scale from 1 to 5,
ranging from normal manipulation of food (chewing and swallowing) to oral feeding not
attempted due to underarousal or failure to open mouth. Previously, Schiff et al. (Schiff et al.,
2007) analyzed this data as binary data having converted indices 2 or higher to zero and index
1 to one. Here we consider the full data set as binomial observations. The index values are
transformed to a scale from 0 to 4 for consistency so that a 0 indicates poor performance and
a 4 indicates normal (good) performance.

We also analyze limb movement and arousal data during the same 6-month period. The limb
movement data was collected weekly and consisted of between 21 and 24 binary observations
of the patient’s ability to demonstrate common tasks (as assessed by team of therapists). In
total, there were 25 count observations across the 6 month cross-over period. The arousal data
consists of between 3 and 4 binary measurements per day.

Models
A state-space model to characterize arousal and attention state dynamics: We construct
a state-space model to characterize arousal and attention state dynamics in a subject receiving
thalamic stimulation. To define the state-space model we require observation and state
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equations. The state equation is defined by the following discrete first order autoregressive
(AR(1)) process

(1)

where xk is the arousal state of the patient at time k = 1,..., K, εk is zero-mean, Gaussian noise
with variance  and ρ, is the correlation between successive observations. The initial state,
x0, is assumed to be unknown.

We consider two possible formats for the observations: data in the form of binary responses
(i.e. the monkey behavioral datasets described above) and data in the form of proportions (i.e.
the human datasets described above). For the binary response data the observation model is
assumed to be Bernoulli where

(2)

where,  and where nk = 0 if the response is incorrect at time k and nk = 1 if the response
is correct for k = 1,..., K. Here, pk is the probability of a correct response and is related the state
using the logistic transform

(3)

For the proportion response data the observation model is assumed to be binomial where

(4)

where nk and Nk are slightly different for each of the human data sets and are described as
follows. The human oral feeding data indices range from 0 (unarousable) to 4 (chewing,
swallowing, and completing a meal). In this case, nk is the observed index on day k and Nk =
4 on all days k = 1,..., K. For the human limb control data, nk is the sum of the binary observations
in week k and Nk varies between 21 and 24 total observations in that week. For the arousal
data, nk is the sum of observed binary indices per day and Nk is the total number of observations
(3 or 4) on that day. We compute a smoothed estimate of this normalized performance data
pk as a function therefore of day k for the oral feeding and arousal data and as a function of
week k for the limb control data.

For the latter two data sets (limb control and arousal) the use of a binomial model is the
principled choice for independent binary observations. For the oral feeding data, the value of
nk is based on an observed index between 0 and 4, and there is no a priori expectation for the
distribution. We also chose to implement a binomial link for this data for simplicity and
consistency with the other types of data and models. (We also considered a Poisson link, and
found that, according to the DIC, it provided a worse fit.)

A logistic regression approach to characterize arousal and attention state dynamics: For
comparison we also fitted a logistic regression model (LR) to the data using a similar structure
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to the likelihood-based model used in Schiff et al. (Schiff et al., 2007). The proposed model
for the cognitive state is

(5)

where A, B and C are parameters to be estimated. The final term in Eq 5 determines how much
stimulation history affects the cognitive state. Indicator Sk takes values +1 and 0 depending on
whether stimulation is on or off, respectively. The parameter, R, in Eq 5 determines how fast
the electrical stimulation affects the cognitive state, and has units of 1/(sampling interval).
Schiff et al. (Schiff et al., 2007) found that model fits were equally adequate over a broad range
of values of R, and chose R = 1; we do the same here. We assume Bernoulli/binomial
observation models as in the state-space model above (Eqs. 2 and 4). The estimated
performance is linked to the data with the logistic transformation (Eq. 3).

As in Schiff et al. (Schiff et al., 2007) we fitted the models without stimulation effect (i.e. with
parameters A and B, but not C) and with stimulation effect (i.e. with parameters A, B and C).
We refer to these two models as LR AB and LR ABC1, respectively. In addition, we also
considered a third version of the model that allowed for different values of C for each
stimulation period. To implement this, we define multiple stimulation vectors  for i = 1,..,S
where S is the total number of stimulation ON periods. Each vector  takes values zero except
during the i th stimulation ON period where it is +1. The cognitive state equation (5) becomes

(6)

We refer to this model as LR ABC2.

Bayesian model fitting: state-space model: Previously we have computed estimates of the
unknown state and parameters using maximum likelihood approaches and the EM algorithm
(Dempster et al., 1977; Smith and Brown, 2003; Smith et al., 2004). We make use here of a
Bayesian approach and Monte Carlo Markov chain estimation methods (e.g. (Congdon and
John Wiley & Sons., 2003; Robert and Casella, 2004; Smith et al., 2007)). We let n =
{n1,...,nK} for the binary data or n = {n1,...,nK, N1,..., NK} for the binomial data and x = {x1,...,
xK}. Defining the prior distribution for the parameters as p(θ), the posterior distribution of the
parameters and the state, x, given the data is

(7)

where

(8)
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for the Bernoulli model

(9)

for the binomial model

(10)

and

(11)

Under the Bayesian framework, it is required that we specify priors on the components of
 in addition to a prior distribution on the initial state, x0. For the autoregressive decay

parameter ρ we assumed a uniform prior on the interval [−1, 1]. For the inverse variance
(=precision), τ, we used a broad gamma prior with location and shape parameters 0.1 and 0.01
respectively corresponding to a mean of 1 and variance of 100 for both models. The distribution
of the initial state is assumed to be Gaussian with zero mean and variance . The
Bayesian analysis provides an estimate of the posterior probability density of all the unknown
parameters of the model. From these sample estimates it is possible to directly estimate the
mean and median as well as 100%(1 − α) Bayesian credible intervals.

We can evaluate Eq. 7 using standard Monte Carlo Markov Chain methods in WinBUGS
(Lunn et al., 2000). Implementation in this software merely requires specifying the model
equations (Eqs. 1, 2, 3 or 1, 2, 4) as well as priors for the unknown parameters p(θ). The
Bayesian approach treats the missing observations as another parameter to be estimated. For
the problems considered in the Results we found that satisfactory convergence of each
parameter’s posterior probability density was achieved using 10,000 iterations of 3 chains after
5,000 burn-in iterations. Convergence was confirmed by visual analysis of the mixing of the
3 chains for a subset of the parameters as well as a requirement that the Brooks-Gelman-Rubin
(BGR) statistic be <1.2 for all parameters (Brooks and Gelman, 1998; Gelman and Rubin,
1992). Our choice of number of chains and iterations was made based recommendations made
in (Kass et al., 1998). For a binary data set of length 1350 trials (as in our first example) run
time ranges from 1 minute (LR AB) to 40 minutes (state-space) on a 2.39 GHz desktop
computer with 2 GB RAM. We implemented the models using the software package WinBUGS
because of its user-friendly model declaration language. WinBUGS is not designed to handle
extremely large models and data sets (e.g. >2000 trials). Other software (or a filtering approach)
may be preferable in these situations. For the models here we provide the WinBUGs code and
a Matlab script (The MathWorks, Natick, MA) to drive it using Matbugs (Murphy and
Mahdaviani, 2005) at the following web address:
http://www.neurostat.mit.edu/behaviorallearning.

Bayesian model fitting: logistic regression models: For comparison with the state-space
results we chose to implement the logistic regression models under the same Bayesian
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framework instead of the maximum-likelihood approach used previously (Schiff et al., 2007).
Priors on the parameters A, B and C were zero-mean Gaussian with very large variance
(100,000), ensuring that the prior did not materially influence the behavioral state in any
particular direction.

Model selection: Previously Schiff et al.(Schiff et al., 2007) used the likelihood ratio test to
compare their non-Bayesian (nested) regression models and used this method to demonstrate
the significance of the stimulation effect in the data. Since we now have 4 (non-nested)
Bayesian models to compare, we make use of the estimated mean of the posterior deviance
and the deviance information criterion (Spiegelhalter et al., 2002). The estimated mean of the
posterior deviance (D ̄) is the Monte Carlo estimate of the deviance ( − 2 log(likelihood) ). The
DIC is an approximate Bayesian analogue of the Akaike Information Criterion (AIC) used in
model selection and is a technique for penalizing the deviance when a large number of model
parameters is employed. Since in the Bayesian framework, the number of parameters is not
necessarily clear, the DIC estimates the number of effective parameters from the Monte Carlo
simulation. The values of D ̄ and DIC are computed as part of the MC simulation in WinBUGS.
Typically, one model can be regarded as superior to a second model if its DIC value is lower
by more than 5–7 (Spiegelhalter et al., 2002).

Comparing performance across trials: For both the state-space model and the logistic
regression models, comparison between estimated probabilities of the cognitive state at any
given trial is straightforward using the Monte Carlo samples computed by the algorithm. Since
these samples are drawn from the full posterior joint distribution of cognitive state across all
trials, they automatically account for potential covariance between trials and therefore a
correction for multiple comparisons is not required. That is, correction for multiple
comparisons is typically performed when many independent observations are made. In this
situation the covariance between the cognitive states at all trials is estimated, the states are not
assumed to be independent, and for each pairwise comparison we are able to ask the simple
question: given two covarying states from the full distribution of states, how likely are their
distributions to be different? The probability that the distribution of the state at trial xi is larger
than the distribution of the state at trial xj is then computed by pairing the Monte Carlo samples
of xi and xj drawn from their joint distribution and making a count, Sij, of how many times xi
> xj. Assuming we have S samples from the distribution of each state, the required probability,
Pr(xi > xj), is computed from Sij/S. Performing this calculation for all pairs (i, j) enables us to
plot a probability surface that allows comparison of performance across the entire length of
the clinical trial/experiment.

Global comparison of stimulation ON performance with stimulation OFF performance:
In addition to comparing estimated cognitive state on a trial by trial basis, it is also possible to
compare stimulation ON performance with stimulation OFF performance under the Bayesian
framework, again, avoiding the issue of multiple comparisons. To do this, we identify two
states, xON and xOFF, defined as the mean of all the cognitive states when stimulation is ON
and OFF, respectively. The probability that the two state distributions are different is computed
using the sampling procedure described in the paragraph above.

Results
Analysis of central thalamic deep brain stimulation in a macaque monkey to induce
sustained attention

To illustrate the technique applied to binary performance measures, we consider responses
from a monkey performing the attention paradigm described in the Methods (Figs 1 and 2). In
this experiment, the monkey performed 1250 trials. Stimulation was applied during 4 periods

Smith et al. Page 8

J Neurosci Methods. Author manuscript; available in PMC 2010 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



across trials 300–364, 498–598, 700–799 and 1000–1099, indicated by shaded gray regions in
Figs 1A, B and 2A, B. The raw data is summarized by the blue lines with error bars, representing
the 50-trial block average and its standard error. Dividing the results into periods when
stimulation is applied (“ON”) and not applied (“OFF”), there are 240 correct responses out of
367 trials during the ON periods and 501 correct responses from 883 trials during OFF periods.
According to the standard binomial proportion test the responses during ON periods are more
often correct than during OFF periods with high statistical significance (p<0.005).

Figures 1A and B show response curves and 95% credible intervals computed using the models
LR AB and LR ABC1 described in the methods. In Figure 1A (LR AB), no DBS effect is
assumed; in Figure 1B (LR ABC1) stimulation is assumed to have an effect (which can be
either positive or negative,) that abates with an exponential time course. For the LR AB model
the parameter estimates (and standard errors) for A and B were 1.502 (0.132) and − 0.001742
(1.77e-4), respectively. To test the accuracy of the MCMC-based results we also implemented
more standard maximum likelihood methods (glmfit. m: Matlab, The Mathworks) which
yielded values for A and B of 1.495 (0.1312) and − 0.001733 (1.78e-4), respectively, indicating
that the two approaches give similar results. For LR ABC1 the estimated stimulation effect
parameter, C, has mean value of approximately 0.37, with 95% credible interval [0.2048,
0.5405]. Since the estimated credible interval of C does not include zero, we may conclude
that the stimulation has a significant effect on the fitted response curve. Figure 2A shows the
response curve estimates computed using model LR ABC2. In this model, we computed four
values C1,C2,C3 and C4 corresponding to the stimulation effect on the state during each of the
four stimulation-ON periods (Figure 2A: gray-shaded areas). Under this formulation, the
response curve decreases during the first stimulation period (as does the raw data) and increases
more in the third stimulation-ON period than the surrounding stimulation periods. The
estimated mean values for C1,C2,C3 and C4 were approximately − 0.27, 0.41, 0.80 and 0.36
with corresponding 95% credible intervals [− 0.60, 0.07], [0.12, 0.72], [0.50, 1.12] and [0.07,
0.66]. From these results we conclude that at the 95% confidence level the first stimulation-
ON period has a performance that is not significantly different from baseline, while the three
later stimulation-ON periods are associated with a significant increase in performance.

In Figure 2B, we plot the estimated probability of a correct response computed using the state-
space formulation. We show both the median (wide red curves) and the 95% credible intervals
(lighter red curves). In this case the estimated probability is less constrained and tracks the data
independent of the stimulation-ON/OFF information. On average the response curve lies
around the 0.75 level but decreases are observed at the end of the first stimulation-ON period
around trial 375, at the end of the 4th OFF period around trial 950 and for the remainder of the
experiment from trial 1100 onwards.

The several models allow for different levels of detail in assessing the dynamics of behavior.
Model LR AB cannot even address whether there is a stimulation effect, since it attempts to
fit the data without a stimulation-related covariate. Model LR ABC1 can address whether there
is a stimulation effect, but not whether it differs across bouts, since it fits all stimulation effects
with a single parameter. Model LR ABC2 can address whether there is a difference in
stimulation effect across bouts (since each bout is associated with a different model parameter),
but cannot assess the dynamics at the level of individual trial. Of the models considered, only
the state-space approach can do the latter.

To see this in more detail, we construct surface plots that compare performance between pairs
of trials (Figures 1C,D and 2C,D) using the algorithm described in the Methods. Figures 1C,D
and 2C,D show a surface representing these probability values where dark (light) indicates that
the performance on the x-axis is lower (higher) than the performance at the trial on the y-axis.
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Dark (light) regions where the probability extends beyond the 95% credible interval levels are
highlighted in red (blue).

Comparison across bouts can be performed for the two models that allow for different dynamic
effects for each bout, namely, model LR ABC2 (Fig 2A) and the state-space model (Fig 2B).
For example, Figure 2C indicates that the performance in the third ON period is significantly
greater than (p>0.95) the performance in the first ON period. The results of state-space
modeling are somewhat consistent with this: they indicate that the third ON period is greater
than the end of the first ON period but that also the second OFF, second ON and third OFF are
greater than the end of the first ON period.

Thus, the state-space model provides for an even more detailed analysis – trial-by-trial
comparisons – and reveals that the dynamics are quite complex. In Figure 2D, there are two
strong vertical blue blocks from trials 950 to 1050 and from around trial 1100 to the end of the
experiment. These correspond to significant drops in performance in the last 2 stimulation OFF
periods. Another important effect in the data is highlighted by the red block around the last
half of the final ON period (around [x, y] coordinates [1050, 1000]). This shows that the
performance during the final stimulation ON period is significantly higher than the
performance at the end of the OFF period before and at the beginning of this final ON period.
The most surprising feature of the analysis is that the performance around trial 350 at the end
of the ON stimulation period is lower than the performance of the surrounding trials, as
indicated by the red horizontal stripe along y = 350. Thus, the binomial test indicates that while
stimulation ON produces an overall improvement in performance, this does not preclude the
presence of periods when performance during stimulation ON is significantly lower than during
stimulation OFF. This is an important point and may turn out to yield insight into the dynamics
of the behavioral changes produced by DBS and the underlying physiological mechanisms
which may include effects on synaptic efficacy and gene expression (Shirvalkar et al., 2006).

We next consider model selection by examining measures of model fit. Table 1 shows the
Monte Carlo derived estimates of posterior mean of the deviance (D ̄), point estimate of the
deviance (D ̂), estimated effective parameters (pD) and deviance information criterion for the
four models. Based on the likelihood (D ̄) and DIC, we may conclude that the state-space model
provides a better model fit, i.e., a better description of the effects of stimulation, than the LR
approaches. We also note that the model fit improves as the stimulation is added (LR AB to
LR ABC1) and as the model allows for differential effects of the stimulation on the performance
(LR ABC1 to LR ABC2).

As a final test of the state-space model, we compared by Monte Carlo the (multivariate)
distribution of the states when the stimulation was ON against the distribution when the
stimulation was OFF. Using the pairwise Monte Carlo comparison method described above
for Figures 1C, D and 2 C,D, we computed the state during stimulation ON to be significantly
greater than the state during stimulation OFF with p<0.002 (based on 6,000 Monte Carlo
samples).

In conclusion, the state-space model provides a better model fit and is able to address more
detailed questions than the regression-based models. It is worth noting that, while the state-
space model allows more flexibility in tracking the data, the results it yields are largely
consistent with the simpler regression models. For example, all the models able to account for
stimulation effect (LR ABC1, LR ABC2 and the state-space model) indicate that the
stimulation has a positive influence on the performance, consistent with the standard binomial
test result. Likewise, both LR ABC2 and the state-space model show that the performance does
not improve during the first stimulation ON period. Overall, however, the state-space model
results highlight an abrupt step-like decline in performance towards the end of the experiment,
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around trial 950, which undergoes a significant increase during the final stimulation period
before a final significant drop to zero.

Analysis of central thalamic deep brain stimulation in a human clinical trial
In the second example, the state-space model is applied to a dataset in which behavior is
described by a five-level rating scale. The raw data obtained on a daily basis during the
crossover period of the clinical trial and described in the Methods is shown as blue dots in
Figures 3A,B and 4A,B. Note that on some days observations were not made and we treat these
data as missing at random. Stimulation was applied during three periods across trials 1–29,
60–87 and 117–151 (shaded regions in Figures 2A–C). As before, we first divide the data into
observations when stimulation was ON (n=55) and observations when stimulation was OFF
(n=52). Comparison of the two data sets using the distribution-independent Kolmogorov-
Smirnov (KS) test indicates that they are highly significantly different (p<0.0007). We also
compare individual ON/OFF periods using the KS test. Of the 15 possible pairwise
comparisons, only data from periods 1 and 2 yielded a significant effect (p<0.00003, judged
at a level of 0.003, the Bonferroni-corrected criterion corresponding to 0.05).

As for the previous example, the data was initially fitted with generalized linear models:
without stimulation (LR AB; Fig. 3A), assuming uniform stimulation effect (LR ABC1; Fig
3B) and assuming possibly different stimulation effects (LR ABC2; Fig 4A). For these data
there is no evident overall trend. However, the estimate of variable, C, which reflects the effect
of the stimulation on the regression curve in LR ABC1, is significantly larger than zero, with
mean 0.6352 and 95% credible interval [0.3576, 0.9045]. For LR ABC2, the three parameters
C1,C2 and C3 have mean values 0.6804, 0.4170 and 0.8547 with 95% credible intervals greater
than zero, indicating a significant effect of the stimulation on the cognitive state during all the
stimulation ON periods.

Day to day comparison for LR AB (Fig 3C) indicates no significant trend in the data. For the
model with a uniform stimulation effect (LR ABC1), the computed probability surface (Fig
3D) has a checkerboard-type pattern indicating ON and OFF periods are significantly different
from one another. Analysis with the LR ABC2 model suggests that the stimulation effects in
the three stimulation bouts are not equally strong. For example, the performance at the
beginning of the second ON period is greater than the performance during most of the first
OFF period. However, at the end of the second ON period the performance is not significantly
greater than the performance in the first OFF period.

The state-space model performance plot (Fig 4B and D) shows that the dynamics of the process
are more complex. The performance during the ON periods tends to be higher than during OFF
periods but with some exceptions. For example, performance in the 2nd ON period is variable:
initially slightly higher than the previous OFF period and, towards the end, lower than the 1st
ON period (Figure 4D, red block at (65,45) and blue block at (80, 5), respectively). As the third
ON period progresses performance dramatically improves (Figure 4D, long vertical red block)
and drops off again significantly during the final OFF period (Figure 4D, blue vertical blocks
on right hand side).

As for the monkey example, we examine model fit using the estimated deviance and DIC (Table
2). We conclude from both the mean deviance D ̄ and the DIC that the logistic regression model
fit is improved by the addition of the stimulation parameter, C, and that the state-space model
is a better fit than both. In this case there is little difference between the fits for LR ABC1 and
LR ABC2.

This example demonstrates that, while the logistic regression approach and the state-space
approach both identify a positive effect of stimulation, the state-space approach is able to detail
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its dynamics. This detail demonstrates that the actual dynamics are more complex than
postulated in the logistic regression models, and that there are differences in the effect of
stimulation in the several ON/OFF periods. Additionally, the state-space analysis reveals that
functional oral feeding declines during the second and third OFF periods, beginning
approximately two weeks after offset of stimulation. The logistic regression-based analyses
could not identify these changes, since they did not conform to the functional form of the DBS
effects that were incorporated into the model.

As with the monkey data set, we performed a final test of the state-space model by comparing
by Monte Carlo the (multivariate) distribution of the states when the stimulation was ON
against the distribution when the stimulation was OFF. The state during the stimulation ON
was significantly greater than the state when the stimulation was OFF with p<0.0002 based on
30,000 Monte Carlo sample comparisons.

Application of LR ABC1, LR ABC2, and the state-space models all indicate that overall the
stimulation has a positive effect on oral feeding performance, consistent with the K-S test
applied to the raw data. The state-space model, which provides the best model fit, indicates
significant dynamic effects occur within both ON and OFF bouts of stimulation.

Additional analyses
To test the generality of our methods we fit the four models to an additional seven data sets
(two additional data sets from the same human subject and five from a new monkey)
summarized in Table 3 along with the two data sets presented above. The human data sets span
the same cross-over period as the oral feeding data presented and therefore contain three bouts
of stimulation. The monkey data sets range from 800 to 1700 trials with between two and eight
bouts of stimulation. As assessed by the DIC the state-space model fit the data best in eight
out of the nine total cases. For the data set (4), where the state-space model was not the best
fit, the model LR ABC2 was superior, indicating that the almost linear-step-like structure
imposed by that model was better able to describe the data. In addition to DIC in Table 3, we
also show whether the two models LR ABC1 and SS indicate that stimulation has a positive
or negative effect on the observed response in eight of the nine examples. (In the example 6,
we did not consider this question because stimulation intensity was varied between stimulation
bouts resulting in a dose dependent performance effect.) There is general agreement between
LR ABC1 and SS model conclusions in six cases. In two of these cases stimulation had a
significantly negative effect on the responses. In the two remaining cases where one model
indicated an effect and the other did not (3 and 4), the model selected based on lowest DIC
indicates a significant positive effect of stimulation.

Discussion
We have presented four Bayesian models for the analysis of behavioral data from two DBS
experiments. Our first model was a simple Bayesian generalized linear (logistic regression)
model. The second two models included effects of the stimulation, assuming, respectively, that
the stimulation effects were static and varied between stimulation periods. The fourth model
was a state-space model. Overall, our results indicated that the final state-space model was a
best fit to 8 out of 9 data sets considered even when the larger number of parameters used in
the state-space formulation is taken into consideration.

We implemented all four models using the same Markov chain Monte Carlo software package
(WinBugs; (Lunn et al., 2000)). This allowed for ease of implementation and model
comparison, since the software automatically computes the DIC. These models could also be
estimated using maximum likelihood approaches with varying levels of computational
complexity. Models LR AB, ABC1 and ABC2 can easily be computed using available
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generalized linear model (logistic regression) estimation software which computes the
maximum likelihood solution. Estimation of the state-space model can be made using the
Expectation-Maximization algorithm (Dempster et al., 1977; Smith and Brown, 2003). This
approach requires estimation of the expectation of the posterior distribution which can be done
using the Kalman filter and smoothing algorithms (Dempster et al., 1977; Nalatore et al.,
2009; Smith and Brown, 2003; Smith et al., 2004; Smith et al., 2005). Even though these
methods may rely on different model assumptions (e.g. Gaussian posterior) we have found
they yield comparable results (Smith et al., 2007).

For each model we compared the estimated performance between respective experimental data
points on a trial-by-trial (day-by-day) basis for the monkey (human) data sets. This is
straightforward to do using Monte Carlo Markov chain methods and is theoretically justified
since the comparisons take into account covariance in the model between the trials (or days)
being compared. In addition to allowing comparison between trials (or days), it is also possible
to compare blocks of time, such as all the OFF periods against all the ON periods. In contrast
these computations would require lengthy calculation of the covariance matrix in the typical
non-Bayesian logistic regression framework. This approach allowed us to ask both global
questions (e.g. did the stimulation have an overall effect on performance?) often answered by
off-the-shelf statistical techniques and more detailed questions about local time effects.

It is instructive at this point to consider the implications of the model selection (DIC) results.
For the majority of data sets, the state-space model (which had very few assumptions about
the structure of the data) was assessed to be the best fit. Because of this generality, the estimated
95% credible intervals are broader than those for the LR models, resulting in more conservative
estimates of the overall effect of stimulation. Nevertheless, within their common domain of
applicability (i.e., whether there was an effect of stimulation), the two approaches lead to
similar conclusions.

An important advantage of the LR ABC2 and state-space models is that these models do not
make the assumption that all the stimulation effects are the same. This makes it possible to
assess effects on behavior produced by varying stimulation duration or changing electrode
placement and current intensity over the course of the experiment.

As reviewed below, current knowledge of the effects of DBS suggests that the behavioral
response will have complex dynamics. We emphasize that the goal of the state-space approach
is to measure the behavioral response with unknown dynamics; it is not intended to be
interpreted as a mechanistic account of them. Specifically, the state-space approach rigorously
distinguishes between chance fluctuations in performance that occur even when the
probabilities of the behavioral outcomes are constant, and fluctuations in performance that are
due to changes in the underlying probabilities of the behaviors.

There are many reasons that these underlying probabilities in our application may have
complex dynamics. At the level of physiologic mechanism, the central lateral nucleus of the
thalamus is positioned to play a key role in arousal regulation (reviewed in (Schiff, 2008)).
Arousal regulation during behavioral performance depends importantly on descending inputs
to both the central thalamus and the brainstem/basal forebrain arousal systems originating from
medial frontal cortical systems (Nagai et al., 2004; Paus et al., 1997). These medial frontal
cortical regions and the striatum are the among the primary targets for activation with central
thalamic DBS (Schiff and Purpura, 2002) and effective stimulation contacts show activation
of medial frontal regions with central thalamic DBS in human studies (Schiff et al., 2007). We
anticipate that continuous DBS in the central lateral nucleus may maintain a level of
depolarization of neurons in cortical and striatal targets that resists a variety of sources of
reduction of excitation within these structures as performance wears on (for example increasing
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satiety reducing motivational signals, or boredom reducing attentional effort). We interpret the
observed effects of DBS in both the monkey and human datasets analyzed above under the
same physiological model. The additional depolarization of cortical and striatal neurons may
assist weak signaling as performance degrades (or remain poor due to underlying brain
injuries), shifting the internal arousal state to a level which has a higher probability for the
completion of the behaviors. As this signal is not informative for the tasks and its effect is
expected to be limited to adjustment of the background state, a variety of complex internal
dynamics will continue to impact the likelihood of correct performance.

Electrical stimulation of the central thalamus is among the most recent applications of DBS
for the treatment of human brain disorders (reviewed in (Schiff and Fins, 2007)). DBS has a
long antecedent history beginning with experimental studies of the ‘ascending reticular
activating system’(Moruzzi and Magoun, 1949) and earlier experimental demonstrations of
behavioral facilitation in monkeys (Fuster, 1958; Fuster and Uyeda, 1962; Stamm and Rosen,
1972). Quantization of effects in earlier studies relied on measurement of reaction times and
percentages of correct trial performance using parametric explorations of current intensity at
different sites of stimulation. In these studies, the loss of facilitatory effects on performance
correlated with visible behavioral changes (twitches, head turning, etc.) that likely reflected
spreading of electrical current into adjacent neuronal populations. The methods presented here
would allow on-line, continuous and detailed assessment of the impact of current stimulation
parameters on performance. For the 6-month human trial data, real-time (i.e. daily) assessment
of performance is possible since the model estimation takes less than 10 minutes on 2.39 GHz
desktop computer. For the longer binary data sets, CPU time is close to 40 minutes, precluding
continuous analysis during a typical two hour session, but still allowing analysis on a day to
day basis. For continuous real-time analysis, one might in future consider using faster methods
such as the Expectation-Maximization algorithm (Smith and Brown, 2003), particle filtering
(Ergun et al., 2007) or stochastic point process filters (Ergun et al., 2007). These methods offer
a powerful strategy to select periods of behavioral facilitation for evaluation of physiological
data obtained during effective stimulation for comparison against periods of either ineffective
stimulation or when the stimulator is OFF.

The effects produced by DBS will change as stimulation parameters are varied. However, as
demonstrated in both clinical and experimental studies the same set of stimulation parameters
may produce different behavioral effects over time adding another important dynamical
component that must tracked over the course of DBS application. The initial design of the
human clinical trial of central thalamic DBS anticipated that the effects of DBS would be
rapidly reversible, making a cross-over design ideal (Schiff et al. 2007). But, cross-over studies
made over the course of days and months may be influenced by long and short-term carry-over
effects. In the human trial, if the effects of DBS had been completely irreversible, achieving
maximum effect after just a short period of stimulation without decay, the crossover design
would have been completely misleading and falsely negative due to long and short-term carry-
over effects. The intermediate result obtained with evidence of decay recommends further use
of cross-over designs but with the added caution that statistical tools be available to identify
and quantify carry-over effects that may endure. Rodent studies of central thalamic DBS also
show both acute dynamic effects and slower carry-over effects, with a persistence of DBS
effects after discontinuation of stimulation (Shirvalkar et al., 2006). For central thalamic
stimulation which demonstrates these effects, and acts on a main route of neocortical activation
associated with attention, learning and memory, it is anticipated that a mix of time courses of
response to DBS will be typical and will require new methodologies as presented here to
quantitatively assess the causal relationships of DBS and behavioral changes over multiple
timescales. Similarly, human trials of DBS in neuropsychiatric disorders such as depression
and obsessive compulsive disorder have also identified multiple acute and subacute effects of
DBS (Mayberg et al., 2005). Having the ability to precisely measure the evolving dynamics of
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treatment may provide important further insight into mechanisms underlying treatment with
DBS.

In animal experiments, state changes may also effect brief periods of DBS testing as an
anticipated decline in performance may mix effects of DBS with waning vigilance, motivation,
increasing boredom and fatigue (as seen above). The methods shown here can be used to model
these conditions. Moreover, if behavioral facilitation is observed acutely in animal experiments
it may presage a shifting of baseline performance over days, weeks, and, in the case of non-
human primate experiments, months, of continued exposure to stimulation in effective sites.
The methods described here would allow for carefully assessing these possibilities and
incorporating this important information into the interpretation of DBS results. Precise tracking
of the dynamics of quantitative measurements of behavior of will be of particular importance
in linking these observations to quantitative physiological measurements in experimental
studies of the underlying mechanisms of DBS effects.

More generally, it may be possible to develop improved generalized linear (or other) models
by incorporating covariates that represent additional features revealed by state-space analyses.
Such covariates (e.g., a ramp up of performance during simulation, or an interaction of DBS
effects and waning vigilance) may give a better model fit and more precise credible intervals.
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Figure 1.
Models applied to monkey visuomotor reaction time task. Raw data is shown with blue error
bars in Panels A and B representing the average response over 50 trials and its standard error.
Stimulus ON periods are indicated by gray shading. A, B. Performance curves (median and
95% credible intervals) for the LR AB and LR ABC1, respectively. C, D. Trial by trial within
experiment comparisons for the performance curves shown in A and B, respectively. Each
panel shows a probability surface computed, by comparing by Monte Carlo, the performance
curve at a value on the x-axis with a value on the y-axis. Dark (light) areas indicate that the
performance at the trial on the x-axis is lower (higher) than the performance at the trial on the
y-axis. Dark (light) regions were the probability extends beyond the 95% credible interval
levels are highlighted in red (blue).
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Figure 2.
Models applied to monkey visuomotor reaction time task. Raw data is shown with blue error
bars in Panels A and B representing the average response over 50 trials and its standard error.
Stimulus ON periods are indicated by gray shading. A, B. Performance curves (median and
95% credible intervals) for the LR ABC2 and state-space models, respectively. C, D. Trial by
trial within experiment comparisons for the performance curves shown in A and B,
respectively. Each panel shows a probability surface computed, by comparing by Monte Carlo,
the performance curve at a value on the x-axis with a value on the y-axis. Dark (light) areas
indicate that the performance at the trial on the x-axis is lower (higher) than the performance
at the trial on the y-axis. Dark (light) regions were the probability extends beyond the 95%
credible interval levels are highlighted in red (blue).
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Figure 3.
Models applied to human oral feeding data. Raw data is shown as blue filled circles in Panels
A and B. Stimulus ON periods are indicated by gray shading. A, B. Performance curves (median
and 95% credible intervals) for the LR AB and LR ABC1 models respectively. C, D. Day by
day within experiment comparisons for the feeding performance curves shown in A, B and C,
respectively. Each panel shows a probability surface computed, by comparing by Monte Carlo,
the performance curve at a value on the x-axis with a value on the y-axis. Dark (light) areas
indicate that the performance at the trial on the x-axis is lower (higher) than the performance
at the trial on the y-axis. Dark (light) regions were the probability extends beyond the 95%
credible interval levels are highlighted in red (blue).
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Figure 4.
Models applied to human oral feeding data. Raw data is shown as blue filled circles in Panels
A and B. Stimulus ON periods are indicated by gray shading. A, B. Performance curves (median
and 95% credible intervals) for the LR ABC2 and the state-space models, respectively. C,
D. Day by day within experiment comparisons for the feeding performance curves shown in
A, B and C, respectively. Each panel shows a probability surface computed, by comparing by
Monte Carlo, the performance curve at a value on the x-axis with a value on the y-axis. Dark
(light) areas indicate that the performance at the trial on the x-axis is lower (higher) than the
performance at the trial on the y-axis. Dark (light) regions were the probability extends beyond
the 95% credible interval levels are highlighted in red (blue).
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Table 1
Computed values of posterior mean of deviance (D ̄), point estimate of the deviance (D ̂), estimated effective parameters
(pD) and deviance information criterion for the 4 models applied to the monkey performance data. Numbers are rounded
to the nearest integer. pD is computed from D ̄ − D̂.

D ̄ D ̂ pD DIC

LR AB 1583 1581 2 1585

LR ABC1 1565 1562 3 1569

LR ABC2 1546 1540 6 1552

State-space 1340 1237 102 1443
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Table 2
Computed values of posterior mean of deviance (D ̄), point estimate of the deviance (D ̂), estimated effective parameters
(pD) and deviance information criterion for the 4 models applied to the human oral feeding data. Numbers are rounded
to the nearest integer.

D ̄ D ̂ pD DIC

LR AB 327 325 2 329

LR ABC1 307 304 3 310

LR ABC2 306 301 5 311

Binomial state-space 263 232 31 294
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