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Synaptic efficacies can increase (facilitate) or decrease (depress) sev-
eral-fold in strength on the time scale of single interspike intervals1–3. 
This short-term plasticity (STP), which is well captured by simple, 
but powerful, mechanistic models1,3,4, is of a regularity and magni-
tude that argues against it being treated only as wanton variability5. 
There have thus been various suggestions for the function of STP, 
including low, high or band-pass filtering of inputs3,6 (but see ref. 7), 
rendering postsynaptic responses insensitive to the absolute intensity 
of presynaptic activity8,9 decorrelating input spike sequences10, and 
maintaining working memories in the prefrontal cortex11.

However, despite the ubiquity of STP in cortical circuits2, these 
suggestions are restricted to select neural subsystems9,11 or forms 
of STP5,8–10 and are often limited to feedforward networks8–10 or 
to a firing rate–based description of presynaptic activities8, thereby 
ignoring the fundamentally fast fluctuations in synaptic efficacies 
as a result of STP. Worse, the vast bulk of models of neural circuit 
information processing require synaptic efficacies to be constant 
over the short term of a single computation, changing at most very 
slowly to average across the statistics of input or changing only in the 
light of a gating mechanism12,13. These would seem to be incompa-
tible with substantial STP. Here, we argue that, far from hindering 
such circuit computations, STP is in fact a near-optimal solution to 
a central problem neural circuits face that is associated with spike-
based communication.

Although, as digital quantities, spikes have the mechanistic advan-
tage of allowing regenerative error correction, they are a substantially 
impoverished representation of the fast-evolving, analog membrane 
potentials of the neurons concerned14–16. These analog quantities are 
normally considered to lie at the heart of computations17,18 and it is 
common to appeal to averages over space (that is, multiple identical 
neurons) and/or time (that is, slow currents) to allow them to be rep-
resented by spike trains18. However, both sorts of averages are neuro-
biologically questionable. In many circumstances, computations 

need to be executed in the matter of a few interspike intervals19–21, 
 precluding extensive averaging over time; and, in many circuits, 
 neurons represent independent analog quantities, as in recurrent net-
work models of autoassociative memories22,23, or partially independ-
ent quantities, as in surface attractor models of population codes24. 
We make the alternative suggestion that the analog membrane 
potential of a neuron is being estimated in a statistically appropriate 
 manner by its efferent synapses on the basis of the spike trains that 
the neuron emits and that STP is a signature of this solution.

In particular, the informativeness of an incoming spike about the 
membrane potential varies greatly depending on the uncertainty left 
by the preceding spike train. This makes the spike’s effect very con-
text dependent. We found that important elements of this context 
 dependency are realized by synaptic depression and facilitation. 
Furthermore, as incoming spikes are sparse, the behavior of the 
 optimal estimator critically depends on prior assumptions about 
presynaptic membrane potential dynamics. Thus, our approach 
allowed us to make detailed predictions about how the properties of 
STP, implementing the optimal estimator, should be matched to the 
statistics of presynaptic membrane potential fluctuations.

RESULTS
Postsynaptic potentials and the optimal estimator
We first defined the optimal estimator of the continuously varying 
membrane potential u of a presynaptic cell from its past spikes. We 
found that it depends on these spikes in the same way as a particular 
measure of its efferent synapses’ contributions to their postsynaptic 
membrane potentials. Because spikes are discrete, they cannot sup-
port recovery of u with absolute certainty and the full solution to the 
estimation task is a posterior probability distribution20,25–29 P(ut | S0:t)  
over the possible values that the presynaptic membrane potential at 
time t, ut, might take on the basis of all of the spikes observed so far, s0:t.  
The mean of this posterior is then the estimator ût that minimizes 
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estimators of presynaptic membrane potentials
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The trajectory of the somatic membrane potential of a cortical neuron exactly reflects the computations performed on its afferent 
inputs. However, the spikes of such a neuron are a very low-dimensional and discrete projection of this continually evolving signal. 
We explored the possibility that the neuron′s efferent synapses perform the critical computational step of estimating the membrane 
potential trajectory from the spikes. We found that short-term changes in synaptic efficacy can be interpreted as implementing an 
optimal estimator of this trajectory. Short-term depression arose when presynaptic spiking was sufficiently intense as to reduce the 
uncertainty associated with the estimate; short-term facilitation reflected structural features of the statistics of the presynaptic 
neuron such as up and down states. Our analysis provides a unifying account of a powerful, but puzzling, form of plasticity.
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the squared error25. We interpret the local postsynaptic potential at 
an excitatory synapse vt as representing this optimal estimate. This 
local potential is loosely defined as the sum of all excitatory post-
synaptic potentials (EPSPs) at this synapse (Supplementary Note and 
Supplementary Fig. 1); a filtered version of it is recorded in standard 
experiments into STP.

To be correct, the estimator must implicitly incorporate a statisti-
cally appropriate model of membrane potential fluctuations and spike 
generation in the presynaptic neuron25. For the latter, we adopted 
the common characterization that a spike is created stochastically 
whenever ût exceeds a (soft) threshold30,31 (Fig. 1 and Supplementary 
Fig. 2). In this case, the occurrence of a spike implies that the 
 membrane potential is likely to be high and the absence of spikes 
implies that the membrane potential is likely to be low. Thus, ût should 
increase following a spike and decrease during interspike intervals 
(Fig. 1a and Online Methods). The decrease should be gradual, as 
the firing rate of a neuron is limited even at high membrane potential 
values, and thus the absence of a spike is relatively weak evidence that 
the membrane potential is low. As required by our interpretation, the 
local postsynaptic potential, vt, at an excitatory synapse shows the 
same qualitative characteristics: it increases suddenly at the times 
of presynaptic spikes and decays gradually toward a lower baseline 
between transmission events (Fig. 1a).

However, this observation is only approximate. As we have 
 mentioned, under STP, the actual size of an EPSP depends on the 
past history of spiking. Such history dependence is also a hallmark 
of optimal estimation, as the evidence supplied by a spike needs to 
be evaluated in the context of the current state of the estimator, that 
is, the current posterior25. The posterior is computed on-line in a 
recursive manner, according to standard Bayesian filtering. In this, 
likelihood information from the current presence or absence of a 
spike, st, P(st | ut), is combined with the posterior computed in the 
previous time step, P(ut–δt | s0:t–δt) (Online Methods): 

P P P P( ) ( ) ( ) ( ): :u s s u u u u s dut t t t t t t t t t t t t0 0∝ − − − −−∞
∞

∫ d d d d  

Thus, the effect of an incoming spike on the mean of the posterior, 
ût, will be context dependent and vary as a function of the posterior 
propagated from the past.

The precise nature of the context dependence of the changes in ût will 
depend on the particular statistical model assumed for the dynamics of 
ut, P(ut | ut–δt). Below, we consider two increasingly complex, models: 
one in which ut performs a random walk around a fixed ‘resting’ (or 
baseline) membrane potential, urest (Fig. 1), and one in which ut

rest 
itself also changes in time (Fig. 2). This allowed us to explore two 
fundamental factors contributing to the context dependence of ût that 
correspond to the effects of synaptic depression and facilitation on vt.

(1)(1)

Synaptic depression and uncertainty
After eliminating the influence of spikes themselves, the simplest 
approximation to the statistics of the membrane potential ut of the 
presynaptic neuron is as an Ornstein-Uhlenbeck process32,33. For 
this, the total input to the presynaptic cell is assumed to be Gaussian 
white noise33 and is subject to leaky integration, decaying toward 
its resting value, urest (Fig. 1a and Supplementary Fig. 2; Online 
Methods). In this case, the posterior distribution P(ut | s0:t) can 
be well characterized as a Gaussian with mean ût and variance st

2, 
which expresses the estimator’s current uncertainty about ût. Given 
the assumption about the way it is generated, observation of a spike 
provides evidence that ut is high. However, the quantitative effect on 
raising ût depends on the uncertainty σt. The less the uncertainty, that 
is, the better known is ut, the less the estimate should be influenced 
by a spike (Fig. 1b) and the lower the synapse’s apparent efficacy. 
The uncertainty is determined by the evidence from past spikes and 
we should therefore expect the magnitude of the EPSPs to fluctuate 
according to this history.

Uncertainty in the optimal estimate increases during interspike 
intervals (Fig. 1c), as the absence of a spike is only weak evidence for 
a low membrane potential. Therefore, spikes that arrive after a longer 
period of silence should increase ût by more than spikes arriving in 
quick succession. This closely resembles, all the way down to fine 
quantitative details, the effect of synaptic depression in a biophysically 
motivated canonical STP model5,34 (Fig. 1). In such a model, depres-
sion is mediated by the depletion of a synaptic resource variable xt, 
which behaves as the biophysical analog of estimator uncertainty, st

2.
In fact, for a paired-pulse protocol, the dynamical equations 

describing the time evolution of the optimal estimator and its uncer-
tainty, ût and st

2, are formally equivalent to those of the biophysical 
STP model describing the time evolution of the postsynaptic mem-
brane potential and synaptic resource variable, vt and xt, respectively 
(Online Methods). As a result, higher presynaptic firing rates lead to 
diminishing postsynaptic responses in both the optimal estimator 
and the STP model (Fig. 3a).

Synaptic facilitation and ‘up’ state probability
The assumption that the presynaptic membrane potential follows an 
Ornstein-Uhlenbeck process is often too simplistic35. Fortunately, it 
is straightforward in our framework to incorporate other statistical 
properties of membrane potential fluctuations and to study their 
effects on the features of STP. For example, many cortical cells show 
 phasic activation patterns in which their membrane potential alternates 
between a resting and a depolarized state, such as ‘up’ and ‘down’ states 
in the cortex36,37, or out-of-place field and within-place field activity for 
hippocampal place cells38. This can be captured by extending the model 
for the dynamics of ut to allow the resting membrane potential ut

rest  

Figure 1 Estimating the presynaptic membrane 
potential from spiking information. (a) Sample 
trace (black) of the presynaptic membrane 
potential generated by an Ornstein-Uhlenbeck 
process. When the membrane potential exceeds 
a soft threshold, action potentials (vertical  
black lines) are generated. The optimal 
estimator of the presynaptic membrane 
potential (red line, mean estimate ût; red 
shading, one s.d. σt) closely matches an optimally tuned canonical model of short-term plasticity11 (blue). Inset shows a magnified section.  
(b) EPSP amplitude of the optimal estimator (red, mean ± s.d.) and of the canonical model of short-term plasticity (blue, mean ± s.d.) as a function 
of the estimator uncertainty σ2. Note that EPSP amplitudes in the biophysical model tend to be smaller than those in the optimal estimator, which is 
compensating for a somewhat slower decay in the biophysical model (see inset in a). (c) The dynamics of the scaled uncertainty s s2 2/ max  (red) closely 
match the resource variable x of the canonical model of STP (blue), σ2.
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to switch between two possible values, corresponding to an up and a 
down state (Fig. 2, Supplementary Note and Supplementary Fig. 2).

In this extended model, the true current value of ut
rest is unknown to 

the postsynaptic cell, as with ut. Thus, the full solution to the estima-
tion problem is a posterior distribution expressing joint uncertainty 
about these two quantities (Supplementary Note). In this case, the 
estimated probability that ut

rest is in its up state also reflects recent 
spikes and influences ût (ρt; Fig. 2a–c). Observing a spike when the 
current estimate of the membrane potential is compatible with the 
presynaptic neuron being in its down state increases this probability 
somewhat. Observing a second spike in a short time window, pro-
viding substantial extra evidence for this up state, will thus cause a 
larger increment in ût (Fig. 2a and Supplementary Fig. 3). EPSPs 
in the facilitating biophysical STP model and in actual facilitating 
synapses in a paired-pulse protocol39 (Figs. 2d and 3b) showed the 
same effect.

Match between STP and the dynamics of the presynaptic cell
Our theory requires the synaptic estimator to be matched to the sta-
tistical properties of the presynaptic membrane potential fluctuations 
that it needs to estimate. Thus, fitting the optimal estimator to experi-
mentally measured STP data (Fig. 3a,b) allowed us to predict, with-
out further parameter fitting, properties of the membrane potential 
dynamics that the corresponding presynaptic cell type should exhibit. 
Testing these predictions is challenging because they are about the 
natural statistics of membrane potential fluctuations and thus require 
in vivo intracellular recordings, preferably from behaving rather than 
anaesthetized animals.

Nevertheless, starting from our fits to data about synaptic depres-
sion and facilitation for cerebellar climbing fibers (Fig. 3a) and hippo-
campal Schäffer collateral inputs (Fig. 3b), we predicted membrane 
potential fluctuations in inferior olive neurons (Fig. 3c) and hippo-
campal pyramidal cells (Fig. 3d), respectively, that were in broad 
qualitative agreement with those found in vivo in these cell types38,40 
(Fig. 3e,f). Note that the absence and presence of marked up and 
down states in these two cell types, respectively, is predicted by our 
theory directly from the absence and presence of facilitation in their 
corresponding efferent synapses.

The advantage of STP
To quantify the advantage that STP brings to synapses for tracking the 
presynaptic membrane potential, we measured how well ût or its bio-
physical analog vt performed on the estimation task in terms of the time-
averaged squared error between ut and its estimate (Online Methods). 
We compared the optimal estimator of the presynaptic membrane poten-
tial (Fig. 4a) with the postsynaptic membrane potential occasioned by 
a synapse undergoing STP. These two traces were very close. Notably, 
a static synapse without STP, whose fixed efficacy is still optimized for 
the same estimation task, performed substantially less well.

Our account of synaptic dynamics assumes no transmission failure 
or, equivalently, a large number of release sites between the pre- and 
postsynaptic cells. Therefore, we also ran simulations with stochastic 

c

�

0
0

1

200 400 600
Time (ms)

800 1,000

d

0 2
Dynamical synapse

EPSP amplitude (mV)

4 6
0

O
pt

im
al

 e
st

im
at

or

2

4

6
–30

–40

–50

–60

–70

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

0 200 400

0

1

600
Time (ms)

800 1,000

a

�

0

2

E
P

S
P

 a
m

pl
itu

de
 (

m
V

)

4

6

8
b

2 4
Estimator uncertainty �2(mV2)

6 8
0

0.1

0.2

0.3

0.4

0.5

∆�

Figure 2 Estimating the presynaptic membrane potential when the resting membrane potential randomly switches between two different values.  
(a) Presynaptic subthreshold membrane potential with action potentials (black), its optimal mean estimate (û, red line) with the associated s.d.  
(σ, red shading) and the postsynaptic membrane potential in a model synapse11 with optimally tuned short-term plasticity (blue line). Inset, the (scaled) 
optimal estimator (red solid line) strongly depends on the estimated probability ρ of being in the up state (red dashed line). (b) EPSP amplitude in the 
optimal estimator depends on its uncertainty (horizontal axis, σ2) and the change in the estimated probability that the presynaptic cell is in its up state 
(color code, Δρ). (c) The estimated probability that the presynaptic cell is in its up state ρ (red) tracks the state of the presynaptic neuron (black) as it 
randomly switches between its up and down states. (d) EPSP magnitudes in the optimal estimator against EPSP magnitudes in the model synapse.
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Figure 3 The optimal estimator reproduces experimentally observed 
patterns of synaptic depression and facilitation. (a) Synaptic depression 
in cerebellar climbing fibers (circles: mean ± s.e.m.; redrawn from ref. 6) 
and in the model (solid line), measured as the ratio of the amplitude of 
the eighth and first EPSP as a function of the stimulation rate during a 
train of eight presynaptic spikes. (b) Synaptic facilitation in hippocampal 
Schäffer collaterals (circles, mean ± s.e.m.; redrawn from ref. 39) and in 
the model (solid line), measured as the ratio of the amplitude of the second 
and first EPSP as a function of the interval between a pair of presynaptic 
spikes. Shading in a and b shows the robustness of the fits (Online 
Methods): model predictions when best-fit parameters are perturbed by 
5% (dark gray) or 10% (light gray). (c,d) Predictions of the model for the 
dynamics of inferior olive neurons (c) and hippocampal pyramidal neurons (d). 
Sample traces were generated with parameters fitted to the data about STP 
in cerebellar climbing fibers (shown in a) and Schäffer collaterals (shown 
in b). (e,f) In vivo intracellular recordings from inferior olive neurons of the 
(anesthetized) rat (e, reproduced from ref. 40) and hippocampal pyramidal 
cells of the behaving rat (f, reproduced from ref. 38).
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synapses4 (Online Methods) to test a more realistic regime of synaptic 
communication (Fig. 4b). The advantage of a dynamic over a static 
synapse was maintained when the number of release sites was low, 
even in the face of transmission failures and the added variability of the 
dynamic synapse entailed by the stochastic restocking of vesicles.

DISCUSSION
We found that STP arranges for the local postsynaptic membrane 
potential at a synapse, vt, to behave as an optimal estimator of the 
presynaptic membrane potential ut. We argue that this is central 
for a wide swathe of feedforward and recurrent neural circuits. In 
particular, it allows network computations based on analog quanti-
ties encoded in the somatic membrane potentials of neurons to be 
realized, even though their spikes offer only a low-dimensional and 
discrete projection of those potentials.

As a first step, we concentrated on the interaction between a pair of 
cells and on reproducing as close an estimate as possible to the exact 
presynaptic membrane potential on the postsynaptic side. Of course, 
vt can be changed by many factors other than synaptic currents, such 
as voltage signals propagating from other dendritic compartments or 
backpropagating action potentials from the soma. However, under 
most experimental procedures that have been used to test STP41,42, 
the magnitudes of these other factors are minimized, such that the 
somatic membrane potential recorded reflects, perhaps with some 
dendritic filtering, the local EPSPs at the stimulated synapse. This 
allows our theory to be directly applied to data obtained under such 
conditions (Supplementary Note).

A substantial apparent challenge to our theory, as indeed to many 
previous functional accounts of STP8–11, is that different efferent 
 synapses of the same cell can express different forms of STP1. 
Two particular classes of factors that can affect vt may account for this. 
Both factors have to do with the overall computation performed by the 
neuron in the network, which need not strictly factorize into individual 

estimation of each presynaptic membrane potential and combination 
of these across multiple synapses (Supplementary Fig. 1).

First, computations might be based on estimates of different 
functions of the presynaptic membrane potentials rather than just 
their mean value; for example, their rates of change or higher order 
 temporal derivatives. In this case, the different efferent synapses of 
a single neuron might estimate different functions and therefore be 
different. It will be an interesting extension of our theory to study how 
synaptic estimation and single-neuron computation can be blended, 
rather than being performed as separate algorithmic steps.

Second, the long-run efficacies of synapses in a neural circuit are 
also important in the computations it performs18,43, suggesting that 
presynaptic membrane potentials scaled by these computational 
 factors should be reproduced instead. In this case, the optimal esti-
mator just scales as well. However, if the synapse suffers from satu-
ration or other similar nonlinear constraints, then the form of STP 
that minimizes the error in the estimate of the scaled presynaptic 
potential would have to reflect these nonlinearities and change as 
the long-run weight alters. These changes could take potentially 
quite complex forms. As different efferent synapses have different 
long-term weights, they could exhibit different forms of STP. Indeed, 
metaplasticity of STP as a result of long-term potentiation has been 
observed experimentally41,44.

We should also note that differences in STP across efferent synapses 
have been predominantly shown for inhibitory interneurons1,45,46. In 
our theory, estimation of the membrane potential comes in the service 
of network computations, which are typically posed in terms of the 
excitatory principal cells rather than inhibitory interneurons. Thus, 
the theory does not fully extend to cover inhibitory neurons.

Our theory employs a standard account of the relationship between 
ut and the presynaptic spikes and is thus a complement of the  
suggestion47 that generation is more complex so that estimation can 
be straightforward even with a static synapse. The latter account is 
not easy to reconcile with the fluctuations evident in STP. Others have 
pursued ideas similar to ours about adaptive gain control mecha-
nisms in neurons generally acting as optimal filters48 and dynamic  
synapses specifically acting as estimators of presynaptic firing rates15 
(B. Cronin, M. Sur and K. Koerding. Soc. Neurosci. Abstr. 663.6, 2007) 
or interspike intervals15. Some of these studies do not encompass  
STP, whereas others address depression, but not facilitation. Finally, 
these studies have primarily sought to predict a general advantage  
(if one exists at all7) of dynamic synapses over static ones.

Our approach is unique in suggesting that synaptic dynamics 
are matched to the statistics of presynaptic membrane potential 
 fluctuations that we were able to demonstrate at least qualitatively 
(Fig. 3c–f). Even such a qualitative match is noteworthy, given that 
the STP data that we fitted were not extensive, were recorded in vitro 
under potentially very different stimulation regimes and neuro-
modulatory milieux for synaptic dynamics than those relevant in vivo, 
and given our highly simplified statistical model of presynaptic mem-
brane potential dynamics. For example, a common dynamical motif 
shared by many neurons, including olivary neurons and hippocampal 
pyramids, and ignored by our model, is the presence of subthreshold 
membrane potential oscillations38,40.

The simplicity of our model of presynaptic membrane potential 
dynamics makes it hard to provide a direct biological interpretation  
of the optimal parameter values (Online Methods) from the fits to 
data. Further theoretical work would be necessary to incorporate 
higher-order statistical regularities of these dynamics into the model. 
Further empirical studies recording STP under more naturalistic con-
ditions and in vivo membrane potential recordings from the same 
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identified pair of neurons, or at least the same cell type, will also 
be required. These would jointly license more direct comparisons 
and interpretations. Such experiments would of course be technically 
challenging. However, the link to optimal estimation offered by our 
theory provides them with the potential to test directly an important 
facet of neural circuit computations.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
the optimal estimator. Our goal was to understand the factors contributing to 
the mean of the posterior or the estimate 

ˆ ( ):u u u s du
t t t t t=

−∞
∞

∫ P 0  
corresponding to the postsynaptic potential under our interpretation and, in 
particular, to the size of change in this estimate in response to an incoming spike, 
the analogue of the size of an EPSP.

the ornstein-uhlenbeck process. The generative model involves two simplify-
ing assumptions. First, we assume that presynaptic membrane potential dynamics 
are discrete time and Markovian (Supplementary Fig. 1) 

P P( ) ( ):u u u ut t t t t t0 − −=d d  
In particular, we assume that the presynaptic membrane potential evolves as 

an Ornstein-Uhlenbeck process, given (in discrete time steps of size δt and thus 
as a first-order autoregressive, AR(1), process) by 

P rest
Wu u u u u u t tt t t t t t t t| = ;

1
, 2

− − −( ) + −( )



d d dt

d s dN

 

where urest is the resting membrane potential of the presynaptic cell (assumed 
to be constant here), τ is its membrane time constant and σW is the step size for 
the random walk behavior of its membrane potential. Because both τ and σW 
are assumed to be constant, the marginal variance of the presynaptic membrane 
potential, s s t

OU W
2 2

2
= , is stationary.

The second assumption is that spiking activity at any time only depends on 
the membrane potential at that time 

P P( ) ( ):s u s ut t t t0 =
 

In particular, we assume that the spike-generating mechanism is an inhomo-
geneous Poisson process. Thus, at time t, the neuron emits a spike (st = 1) with 
probability g(ut)δt and the spiking probability given the membrane potential 
can be written as 

P ) ]( ) [ ( [ ( ) ]s u g u t g u tt t t
st

t
st= − −1 1d d  

We further assume that the transfer function is exponential (Supplementary 
Fig. 1) 

g u g et
ut( ) = 0

b
 

where g0 and β are the base rate and determinism of the spike generation  
process, respectively.

Because equations (3) and (5) define a hidden Markov model, the posterior 
distribution over ut can be written in a recursive form 

P P P P( ) ( ) ( ) ( ): :u s s u u u u s dut t t t t t t t t t t t t0 0∝ − − − −−∞
∞

∫ d d d d  

That is, the posterior at time t, P(ut |s0:t), can be computed by combining 
information from the current time step with the posterior obtained in the pre-
vious time step, P(ut–δt |s0:t–δt). Note that even though inference can be per-
formed recursively and the hidden dynamics is linear-Gaussian (equation (4)), 
the standard (extended) Kalman filter cannot be used for inference because the 
measurement does not involve additive Gaussian noise, but instead comes from 
the stochasticity of the spiking process (equations (6) and (7)).

Performing recursive inference (filtering), as described by equation (8), under 
the generative model described by equations (3–7) results in a posterior distri-
bution that is approximately Gaussian5 with a mean ût and a variance st
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Note that the smaller the bin size δt is, the closer this posterior distribution is to 
a Gaussian. The expected firing rate γt of the presynaptic cell at time t is obtained 
from the normalization condition P u st t ut s t

( ):
:

0
0

1=  

g b b s
t t ut s t t

tg u g u= = +








( ) exp

:0 0

2 2

2
 

The mean and variance of the posterior in equation (9) evolve (in continuous 
time, by taking the limit δt → 0) as5 

ˆ [ ˆ ] [ ]u u u St t t t t= − + −−
1 2

t
bs ge

rest

 

s
t

s s g b st t t t
2 2 2 42= − −[ ]OU
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where S
s

tt t
t= 0d d→lim  denotes the spike train of the presynaptic cell represented 

as a sum of Dirac delta functions, and ε is an arbitrary small positive constant 
that ensures that at the time of a spike t = tspike, the update of û is based on the 
variance just before the spike s

etspike −
2  (a similar, but not identical, derivation 

can be found in ref. 26).
Equation (11) indicates that each time a spike is observed, the estimated mem-

brane potential should increase proportionally to the uncertainty (variance) about 
the current estimate. In turn, this estimation uncertainty then decreases each time 
a spike is observed (equations (10) and (12)). Conversely, in the absence of spikes, 
the estimated membrane potential decreases while the variance increases back 
to its asymptotic value. It can be shown5 that the representation of uncertainty 
about the membrane potential by σ2 is self-consistent because it is predictive of 
the error of the mean estimator, û.

The dynamics of the membrane potential estimator in equation (11) and (12) 
is closely related to the dynamics of short-term depression. This can be shown  
formally by taking the limit when presynaptic spikes are rare. In this case,  
equation (11) and (12) can be rewritten5 as 

ˆ
ˆ ˆ
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where s s s2 2 2= / ∞ is the normalized variance of the estimator. The other 

constants involved are ˆ ˆv u0 = ∞, t̂ tm = , Ĵ =
∞ ∞

1
3 2tg b s

, Ŷ = ∞ ∞tg b s4 4 ,  

t̂

t
g b s

D =
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1
2 2 2

, û,  s∞
2  and γ are the stationary posterior mean,  

variance and expected firing rate in the optimal estimator (equations (9) and 
(10)) in the absence of presynaptic spikes. More precisely, from equations (11)  
and (12), we have 

0
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where the expected firing rate is g b b s
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2
exp . Although it is 

difficult to get an explicit expression for û as a function of the model parameters 
alone, from equations (15) and (16) we can still express it as a function of the  
stationary variance s∞
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Equations (13) and (14) directly map the posterior mean û and (normal-
ized) variance s2 onto the postsynaptic membrane potential v and the synaptic 
resource variable x in a canonical, biophysically motivated model of a synapse 
undergoing synaptic depression (see equations (20) and (21)).

the switching ornstein-uhlenbeck process. We modeled presynaptic mem-
brane potential fluctuations with an Ornstein-Uhlenbeck process around a con-
stant resting membrane potential. We then generalized this process by letting the 
resting potential itself change. In this switching Ornstein-Uhlenbeck process, the 
resting membrane potential ut

rest is not fixed, but randomly switches between two 
levels, u+ and u−, corresponding to up and down states (Supplementary Fig. 1) 
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where η– and η+ are the rates of switching to the down and up states, respec-
tively. Similarly to equation (4), the presynaptic membrane potential evolves as 
an Ornstein-Uhlenbeck process around the resting potential ut

rest which is now 
time dependent 

P rest rest
Wu u u u u u u t tt t t t t t t t t t| , = ;

1
, 2

− − −( ) + −( )



d d dt

d s dN 
 

Spike generation is described by the same rule as before (equations (6) and 
(7)). Although we were able to develop some analytical insight into the behavior 
of the optimal estimator in the case of a switching Ornstein-Uhlenbeck process 
(Supplementary Note), a full analytical treatment remains a challenging task. 
Thus, the results displayed in Figure 2 were obtained by using standard particle 
filtering techniques50 (see below).

biophysically motivated StP model. The model we used was taken directly from 
reference 11 as a canonical model of a synapse undergoing STP. It describes how 
the postsynaptic potential vt, the synaptic resource xt (responsible for depression) 
and the utilization factor yt (responsible for facilitation) co-vary in time 

v
v v

Jy x St
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t e e
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x

y x St
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t t t= − − − −
1

t e e
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y
Y y

Y y St
t

t t= − + − −t e
F
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where v0 is the postsynaptic resting membrane potential, τm is the postsynaptic 
membrane constant, J is (the static part of) synaptic efficacy, Y is the maximal 
synaptic utilization (and the rate of increase in y in response to a spike), τD is 
the time constant of synaptic depression and τF is the facilitation time constant. 
Note that if the facilitation time constant is very short (τF → 0), then yt can be 
replaced by Y in equations (20) and (21), resulting in pure depression. Also note 
that this standard model ignores the finite rise time of EPSPs. However, as rise 
times are usually about an order of magnitude faster than decay time constants, 
the effects of this approximation on the estimation performance of a synapse (as 
shown in Fig. 4) are expected to be negligible and, in any case, affect the static 
and the dynamic versions of the model equally.

measuring the performance of estimators. The performance of an estimator,  
P, was measured as its rescaled root mean squared error (Fig. 4) 

P
T

u u dt
T

t t= 1
1 1

0

2
1

2− −( )



∫sOU

ˆ
 

(18)(18)

(19)(19)

(20)(20)

(21)(21)

(22)(22)

(23)(23)

where ût can be substituted with vt to measure the performance of the biophysical 
models. Note that this provides a suitably normalized measure of performance 
as perfect estimation results in P = 1 and an estimator that outputs the expected 
mean presynaptic membrane potential, thereby completely ignoring presynaptic 
spikes, has P = 0.

Stochastic release. Figure 4 shows the performance of static and depressing 
synapses and the optimal estimator for the case of stochastic vesicle release. Here, 
we provide the details of the calculations involved following reference 4.

depressing synapses. Let N denote the total number of independent release 
sites. Each site can release at most one vesicle each time a presynaptic spike 
occurs. Each released vesicle gives rise to a quantum q=J/N postsynaptic 
response, where J is the maximal EPSP amplitude. The postsynaptic membrane 
potential evolves as 

v
v v

qn St
t

m
t t= 0− − +

t
r

 

where τm is the membrane time constant, v0 is the postsynaptic resting potential 
and St is the presynaptic (delta) spike train. The total number of vesicles released 
at time t in response to a presynaptic spike, nt

r, depends on the number of vesicles 
that are ready to fuse, Nt

r, and the utilization fraction Y. More precisely, at the 
time of a spike, nt

r is drawn from a binomial distribution 

n N Yt t
r r Binomial∼ ( , )  

The number of ready-to-fuse vesicles Nt
r decreases by nt

r each time there is a 
spike and increases stochastically back to N with a time constant τD in the absence 
of spikes. Formally, the dynamics of Nt

r is given by 

N R n St t t t
r r= −  

where Rt t t t
= stk stk∑ −

d  and tstk denote the stochastic restocking times  
produced by an inhomogeneous Poisson process with intensity ( )/N Nt D− r t .

It is easy to show that taking the expectation of equations (24) and (26) over the 
stochastic release and restocking events, and setting x N Nt t= /r , we get back 
the standard model of short-term depression (see equations (20) and (21)).

Static synapses. If we take the limit of a short time constant for depression, that 
is, τD → 0, the restocking of the vesicle described by equation (26) becomes 
instantaneous and we have N Nt

r → . As a consequence, the number of released 
vesicles at the time of a spike is given by 

n N Yt
r Binomial∼ ( , )

optimal estimator. In the case of stochastic vesicle release, the variables of the 
optimal estimator evolve as 

ˆ ˆu u u
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t
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bs grest
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where the number of released vesicles nt

r is given by equation (27). Note that if  
we replace nt

r by its expectation n NYt
r = , we get back the deterministic  

optimal estimator derived in equations (11) and (12).
The utilization parameter Y describes the probability of release for a  

presynaptic spike in all three models. For a fair comparison, it was cho-
sen to be Y = 0.39 for all models, which optimized the performance of the 
dynamic synapse in the deterministic case for β = 2 (the value we used for the  
stochastic simulations) and which is consistent with experimentally reported 
values for the probability of release in cortical pyramidal-to-pyramidal  
cell connections42.

Numerical simulations for the optimal estimator. We evaluated the mean posterior 
ût, the conditional means μ+, μ− and the conditional variances σ+, σ− numerically 
using a standard particle filtering technique50. In practice, we used Npart = 10,000  

(24)(24)

(25)(25)

(26)(26)

(27)(27)

(28)(28)

(29)(29)
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particles, each of which was two-dimensional ( , ), = 1, ,( ) ,( )u u i Nt
i

t
irest part… .  

They evolved according to 

u u ut
i

t
i

t t
irest rest restP,( ) ,( ) ,( )|∼ −( )d

u u u ut
i

t
i

t t
i

t
i( ) ( ) ( ) ,( )| ,∼ P rest

−( )d
 

where P rest restu ut t t| −( )d  is given by equation (18) and P restu u ut t t t| ,−( )d  by  
equation (19).

There was an (importance) weight, wt
i( ), assigned to each particle, which was 

updated according to 

w w s u i Nt
i

t t
i

t t
i( ) ( ) ( )| , = 1, ,∝ ( )− d P part…

 

In each step of the simulation, all weights were renormalized such that 

i
N

t
iw

=1
( ) = 1∑ . The particles were resampled when the weights became strongly 

uneven. Formally, if the number of effective particles at time t, defined as 

N wt
i

N

t
ieff =

= 1

( ) 2
1

∑ ( )












−

 

fell below a given threshold Nthresh = 9,000, then all particles were resampled and 
the weights were all set back to w Nt

i( ) = 1/ part.
The empirical mean and variance of the posterior membrane potential distri-

bution were determined as 

û u wt
i

N

t
i

t
i

= 1

( ) ( )∑
 

(30)(30)

(31)(31)

(32)(32)

(33)(33)
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The numerical evaluation of mt
+, st

+( )2, mt
− and st

−( )2 followed the same pro-
cedure except that the summation was restricted to the particles that were in the 
up (or down) state and the weights were renormalized accordingly.

model parameters for simulations. Unless otherwise noted, the presynap-
tic membrane time constant was set to τ = 20 ms. The spiking determinism 
parameter was β−1 = 3 mV, and g0 was set such that g(−60 mV) = 10 Hz. For 
Figure 1, the s.d. of the presynaptic membrane potential was σOU = 5 mV  
and the resting membrane potential was urest = −60 mV. For Figure 2, the 
resting values were u− = −65 mV and u+ = −55 mV. The transition rates were  
η+ = η− = 2 Hz and σOU = 2 mV. For Figure 3a, the fitted parameters were 
βσOU = 1.13, τ = 1000 ms and g(−60 mV) = 10 Hz. Each one of those three 
parameters were then sequentially perturbed by ±5% (resp. ±10%). For 
Figure 3b, the lower baseline potential was fixed at u− = −65 mV. The fitted  
parameters were σOU = 0.28 mV, τ = 85.7 ms, u+ = −53.9 mV, η− = 1.09 Hz, 
η+ = 1.13 Hz, β−1 = 3 mV, and g0 was set such that g(−60 mV) = 17.8 Hz. Each 
one of those seven parameters were sequentially perturbed by ±5% and by 
±10%. Note that in this figure, we did not display the experimental data point 
for the shortest interspike interval (5 ms) because our current spiking model 
does not include the effects of refractoriness and burstiness that may domi-
nate estimation at such short intervals. For Figure 4, we set urest = −60 mV,  
σOU = 1 mV and β−1 = 0.5 mV.

(35)(35)

50. Doucet, A., De Freitas, N. & Gordon, N. Sequential Monte Carlo Methods in Practice 
(Springer, New York, 2001).
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