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Activity Subspaces in Medial Prefrontal Cortex Distinguish
States of the World

Silvia Maggi and Mark D. Humphries
School of Psychology, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Medial prefrontal cortex (mPfC) activity represents information about the state of the world, including present behavior,
such as decisions, and the immediate past, such as short-term memory. Unknown is whether information about different
states of the world are represented in the same mPfC neural population and, if so, how they are kept distinct. To address
this, we analyze here mPfC population activity of male rats learning rules in a Y-maze, with self-initiated choice trials to an
arm end followed by a self-paced return during the intertrial interval (ITI). We find that trial and ITI population activity
from the same population fall into different low-dimensional subspaces. These subspaces encode different states of the world:
multiple features of the task can be decoded from both trial and ITI activity, but the decoding axes for the same feature are
roughly orthogonal between the two task phases, and the decodings are predominantly of features of the present during the
trial but features of the preceding trial during the ITI. These subspace distinctions are carried forward into sleep, where pop-
ulation activity is preferentially reactivated in post-training sleep but differently for activity from the trial and ITI subspaces.
Our results suggest that the problem of interference when representing different states of the world is solved in mPfC by
population activity occupying different subspaces for the world states, which can be independently decoded by downstream
targets and independently addressed by upstream inputs.
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Significance Statement

Activity in the medial prefrontal cortex plays a role in representing the current and past states of the world. We show that
during a maze task, the activity of a single population in medial prefrontal cortex represents at least two different states of the
world. These representations were sequential and sufficiently distinct that a downstream population could separately read out
either state from that activity. Moreover, the activity representing different states is differently reactivated in sleep. Different
world states can thus be represented in the same medial prefrontal cortex population but in such a way that prevents poten-
tially catastrophic interference between them.

Introduction
The medial prefrontal cortex (mPfC) plays key roles in adaptive
behavior, including reshaping behavior in response to changes in
a dynamic environment (Euston et al., 2012) and in response to
errors in performance (Narayanan and Laubach, 2008; Laubach

et al., 2015). Damage to mPfC prevents shifting behavioral strat-
egies when the environment changes (Laskowski et al., 2016;
Guise and Shapiro, 2017). Single neurons in mPfC shift the tim-
ing of spikes relative to hippocampal theta rhythms just before
acquiring a new action–outcome rule (Benchenane et al., 2010).
And multiple labs have reported that global shifts in mPfC popu-
lation activity precede switching between behavioral strategies
(Rich and Shapiro, 2009; Durstewitz et al., 2010; Karlsson et al.,
2012; Powell and Redish, 2016) and the extinction of learned
associations (Russo et al., 2021).

Adapting behavior depends on knowledge of both the past
and the present state of the world. Deep lines of research have
established that mPfC activity represents information about
both. The memory of the immediate past is maintained by mPfC
activity in tasks requiring explicit use of working memory (Baeg
et al., 2003; Fujisawa et al., 2008; Spellman et al., 2015). The use
of such memory is seen in both the impairment arising from
mPfC lesions (Rich and Shapiro, 2007; Young and Shapiro, 2009;
Laskowski et al., 2016) and the role of mPfC in error monitoring
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(Laubach et al., 2015). Representations of stimuli and features
happening in the present have been reported in a variety of deci-
sion-making tasks throughout PfC (Averbeck et al., 2006; Rigotti
et al., 2013; Hanks et al., 2015; Siegel et al., 2015) and specifically
within rodent mPfC (Sul et al., 2010; Ito et al., 2015; Guise and
Shapiro, 2017).

Little is known though about how mPfC activity represents
multiple states of the world. Prior studies have shown that past
and upcoming choices can both modulate activity of neurons in
the same mPfC population (Baeg et al., 2003; Ito et al., 2015), but
none have compared how different states of the world are repre-
sented. Thus important questions remain regarding if and how
different world states are encoded in the same mPfC population
and how those representations are kept distinct.

To address these questions, we reanalyze here mPfC popula-
tion activity from rats learning new rules on a Y-maze (Peyrache
et al., 2009). This task had distinct trial and intertrial interval
phases, and we have previously shown that task features of the
preceding trial can be decoded from the population activity in
the intertrial interval (Maggi et al., 2018), showing that mPfC ac-
tivity in this task depends on the state of the world. We can thus
address our key questions here by asking whether population ac-
tivity in the trials also represents the state of the same task fea-
tures and, if so, how that representation is kept distinct between
the trial and intertrial interval phases.

We find that the mPfC population activity occupies different
subspaces between trials and intertrial intervals, providing a basis
for separately representing at least these two distinct states of the
world. Consistent with representing world states, task features
could be decoded from activity in both the trial and intertrial
interval phases but were strongly distinct: decoding was of the
present features in the trial and predominately of features of the
preceding trial during the intertrial interval. Decoding axes were,
or close to, orthogonal between the trials and intertrial intervals,
showing that the subspaces supported distinct encodings. Further,
population activity of the trials and intertrial intervals preferen-
tially reactivated in post-training sleep in different ways: preferen-
tial reactivation of trial activity uniquely occurred after learning
and correlated with performance during training. Our results thus
suggest that representing different world states using independ-
ently decodable axes within a mPfC population could prevent in-
terference between them, allowing them to be separately accessed
by both downstream and upstream populations.

Materials and Methods
Task description and electrophysiological data. All data in this study

come from previously published data (Peyrache et al., 2009). Full details
of training, spike sorting, and histology can be found in Peyrache et al.
(2009). The experiments were conducted in accordance with institutional
(Centre National de la Recherche Scientific Comité Opérationnel d’Éthique
dans les Sciences de la Vie) and international (National Institutes of Health
guidelines) standards and legal regulations (Certificate no. 7186, French
Ministère de l’Agriculture et de la Pêche) regarding the use and care of
animals.

Four male Long-Evans rats were implanted with tetrodes in the
medial wall of prefrontal cortex, covering the prelimbic and infralimbic
regions, and trained on a Y-maze task (Fig. 1a). During each session,
neural activity was recorded for 20–30min of sleep or rest epoch before
the training epoch, in which rats worked at the task for 20–40min. After
that, another 20–30min of sleep or rest epoch recording followed.
During the sleep epochs, intervals of slow-wave sleep were identified off-
line from the local field potential (Peyrache et al., 2009; Benchenane et
al., 2010).

The Y-maze had symmetrical arms, 85 cm long, 8 cm wide, and sepa-
rated by 120°, connected to a central circular platform (denoted as the
choice point throughout). The two choice arms had a light at the end,
one of which was lit during each trial in a pseudorandom sequence. Rats
self-initiated a trial by leaving the beginning of the start arm. A trial fin-
ished when the rat reached the end of the chosen goal arm. If the chosen
arm was correct according to the current rule, the rat was rewarded with
drops of flavored milk. As soon as the animal reached the end of the cho-
sen arm, an intertrial interval started and lasted until the rat completed
its self-paced return to the beginning of the start arm. The central plat-
form was raised once the rat passed it to prevent backtracking along the
choice arms. The light was extinguished during the return journey;
unfortunately from the data available to us it is not clear exactly when
(F. Battaglia, personal communication).

Each rat was exposed to the task completely naive and had to learn
each rule by trial and error. The rules were presented in the following
sequence: Go to the right arm, go to the lit arm, go to the left arm, go to
the dark arm. A rule was switched to the next in the sequence when the
animal had achieved 10 correct trials in a row, or 11 of 12. Across the
four rats, there were eight rule switches in total.

The recording sessions taken from the study of Peyrache et al. (2009)
were 53 in total. Each of the four rats learned at least two rules, and they
respectively contributed to 14, 14, 11, and 14 sessions. We used 49 of
these sessions for our analysis, of between 7 and 51 trials each. One ses-
sion was omitted for missing position data, one for consistent choice of
the right arm (in a dark arm rule) preventing decoder analyses (see
below), and one for missing spike data in a few trials. An additional ses-
sion was excluded for having only two neurons firing in all trials.
Tetrode recordings were spike sorted within each recording session.
Spikes were recorded with a resolution of 0.1ms. Simultaneous tracking
of the position of the rat was recorded at 30Hz.

Testing for separable population activity.We evaluated the difference
between population activity in the trial and intertrial intervals of a ses-
sion by quantifying their separability in a low-dimensional space. For
consistency with our previous work, for each session we selected the N
active neurons that fired at least one spike on each trial (Fig. 1e), allow-
ing us to directly compare the decoding results obtained here (see below)
with those in Maggi et al. (2018); the populations thus ranged between 4
and 22 neurons (Fig. 1i).

We used principal component analysis (PCA) to project the
population vectors of a session onto a common set of dimensions.
For each session, we constructed an N-length vector of neuron fir-
ing rates in each trial rt , resulting in the set of population firing
rate vectors frtð1Þ; :::; rtðTÞg across the T trials of a session. We
similarly constructed the set of vectors of neuron firing in each
intertrial interval frIð1Þ; :::; rIðTÞg. We then constructed the data
matrix X from the firing rate vectors of the population, by concate-
nating trials and intertrial intervals in their temporal order
frtð1Þ; rIð1Þ; :::; rtðTÞ; rIðTÞg9 across the T trials of a session; the
resulting matrix thus had dimensions of 2T rows and N (neurons)
columns. Applying PCA to X, we projected the firing rate vectors
on to the top d principal axes (the eigenvectors of X9X) to create
the top d principal components. For each set of d components, we
quantified the separation between the projected trial and intertrial
interval population vectors using a linear classifier (support vector
machine), and report the proportion of misclassified vectors. We
repeated this for between d = 1 and d = 4 axes for each session.

Linear decoding of task features. To predict which task feature was
encoded in mPfC population activity, we trained and tested a range of lin-
ear decoders (Hastie et al., 2009). Here, we report the results obtained using
a logistic regression classifier, but for robustness we also tested three other
decoders—linear discriminant analysis, linear support vector machines,
and a nearest neighbors classifier—and found similar results. The full
details of the decoding analysis can be found in Maggi et al. (2018).

Task information of each trial was binary labeled for three features,
outcome (labels 0, 1), the direction of the chosen arm (labels left, right),
and the arm position of the light cue (labels left, right). We used leave-
one-out cross-validation to decode each feature from population activity,
holding out the vector of the ith trial, rtðiÞ, training the classifier on the
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N – 1 remaining trial vectors, and then using the resulting weight vector
to predict the label of the feature for the held-out trial. We quantified the
accuracy of the decoder as the proportion of correctly predicted labels
over all T held-out trials of a session. The same approach was used
for the intertrial intervals, using the set of firing rate vectors
frIð1Þ; :::; rIðTÞg across the T intertrial intervals.

For decoding at different positions in the maze, we first linear-
ized the maze, divided it into five equally sized sections, and then
computed the N-length firing rate vector of the population for each
position p, rpt in the trial. For each trial t = 1,...,T of a session and
each section of the maze p = 1,...,5, the set of population firing rate
vectors frptð1Þ; :::; rptðTÞg was used to train the cross-validated de-
coder. The same approach was used for the position-dependent vec-
tors frpIð1Þ; :::; rpIðTÞg in the intertrial intervals of a session.

For each rat and each session, the distribution of outcomes and arm
choices depended on the performance of the rats, which could differ
from 50%. Therefore, we trained and cross-validated the same classifier
on the same datasets but shuffling the labels of the task features across
trials. In this way we obtained the accuracy of detecting the correct labels
by chance. We repeated the shuffling and fitting 50 times, and we aver-
aged the accuracy across the 50 repetitions.

Testing for independent decoding. To compare the decoding axes
between the trials and intertrial intervals, we again trained the classifier
separately for each of the three task features but now using all the popu-
lation firing rate vectors of a session, first for the trials frtð1Þ; :::; rtðTÞg
and then for the intertrial intervals frIð1Þ; :::; rIðTÞg . For a given feature
f, we then computed the angle, u f, between the resulting vectors of
decoding weights for the trials, wt(f), and intertrial intervals, wI(f), as fol-

lows: u ¼ cos�1 wtðf Þ � wIðf Þ
jjwtðf ÞjjjjwIðf Þjj

� �
. Similarly, to assess how the differ-

ent features were simultaneously encoded during a task phase, we
computed the angles between the decoding vectors of two features f1 and
f2 within a trial, or within an intertrial interval.

We evaluated the degree of independence between the trial and inter-
trial interval decoding by attempting to cross-decode a task feature in
one phase from the activity in the other. For a given task feature, we
took the above classifier trained on all trials of a session and tested its
decoding on all intertrial intervals of the same session, with performance
reported as the percentage of correctly labeled intertrial intervals. We
also tested this in reverse, decoding the feature in the trials from the clas-
sifier trained to decode the same feature from all the intertrial intervals.
To check we were not overfitting when using a decoder trained on all T
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Figure 1. Rule learning and neural activity on the Y-maze task. a, Schematic of the Y-maze task, showing a rat at the start position. A trial is the period from the start position to the end
of the chosen arm; the intertrial interval is the return from the arm end to the start position. On each trial one arm end was lit, chosen in a pseudorandom order, regardless of whether it was
relevant to the currently enforced rule. Across sessions, animals were asked to learn one of the following four rules in the sequence: Go to the right arm, go to the lit arm, go to the left arm,
go to the dark arm. Rules switched after 10 correct choices (or 11 of 12). b, Example reward curve from a learning session, plotting the cumulative number of correct trials. Black dashed line
identifies the learning trial as the first of three consecutive correct trials followed by at least 80% correct trials. Inset, Reward rates before (light red) and after (dark red) the learning trial.
Reward rates were given by the slope of linear regressions fitted to the reward curve before and after the learning trial. c, Example reward curve from an Other session, one of eight in which
the rule switched; the black dashed line identifies the rule change trial. Inset, Reward rates before and after the rule change. d, Change in reward rate during all learning sessions (red) or
Other sessions (blue). e, Raster plots of spiking activity in the medial prefrontal cortex during a single trial and the following intertrial interval. f, Neuron firing rates in each trial and in the fol-
lowing intertrial interval. Left, An example session, black dots are the data in e. Right, All sessions. g, For the same example session, the distribution of Spearman’s rank coefficients between
the population vectors of firing rates in the trial and intertrial interval (left) and the corresponding p values (right); p = 0.05 is indicated by the dashed line. h, As in g for all sessions. i, The
number of neurons in populations analyzed here, by rat. Each symbol is a session. Boxes plot median and interquartile range (IQR); whiskers extend to 1.5 IQR.
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phases, we further tested cross-decoding using leave-one-out by leaving
out the ith trial interval pair, training on N – 1 trials, and predicting the
ith intertrial interval (and vice versa for training on intertrial intervals
and testing on trials). Performance for leave-one-out cross-decoding was
reported as the percentage of correctly labeled held-out trials (or inter-
trial intervals) over all trials of the session.

Behavioral analysis. To check whether our decoding results
depended on potentially different behaviors or task demands, we
divided the sessions in two different ways, by rule type and by
learning type. For the rule type, we grouped sessions by whether
the target rule was a direction-based rule (so putatively egocentric)
or a cue-based rule (so putatively allocentric).

To group by learning type, we identified learning sessions according
to the criteria of the original study (Peyrache et al., 2009) of a session
with three consecutive correct trials followed by a performance of at least
80% correct. The first of the three correct trials was the learning trial.
Only 10 sessions satisfied these criteria. All sessions that did not meet
these criteria were labeled Other.

We quantified performance in learning sessions by fitting a piecewise
linear regression model to the cumulative reward curve, using robust
regression to fit lines before and after the learning trial. The slopes of the
two lines gave us the rate of reward accumulation before (rbefore) and af-
ter (rafter) the learning trial (Fig. 1b). We quantified performance on all
other sessions in a similar way (Fig. 1c,d). For the eight rule-change ses-
sions, we considered the slopes of the regression lines before and after
the rule-switch trial. For all remaining sessions, we looked for any per-
formance change by fitting the piecewise linear regression model to each
trial in turn (allowing a minimum of five trials before and after each
tested trial). We then found the trial at which the increase in slope
(rafter � rbefore) was maximized, indicating the point of steepest inflection
in the cumulative reward curve.

Reactivation of task-feature representations in sleep. To quantify the
reactivation of waking activity in pre-training and post-training sleep,
we used the population firing rate vectors computed for the decoder
frð1Þ; :::; rðTÞg. We considered here the average population vector
for a feature in each session, computed across all the trials for each
feature. For example, we quantified the average population firing
rate vector for all the right-choice trials and separately for all the
left-choice trials. This vector thus represented the region in the ac-
tivity subspace (Fig. 2) occupied by that particular feature in the
trial or the intertrial interval.

We then compared this feature-specific activity vector with the
firing rate vector of each 1 s time bin of slow-wave sleep pre-train-
ing and post-training using Spearman’s correlation coefficient.
This gave us a distribution of correlations between the feature-spe-
cific vector and the population activity vectors during pre-training
slow-wave sleep and a distribution of correlations between the fea-
ture-specific vector and the population activity vectors during post-
training slow-wave sleep.

Spearman’s coefficient was chosen specifically to compare the rela-
tive activity of the neurons in the population between training and sleep
epochs, and so we call this “reactivation,” not “replay.” Replay implies
that specific patterns of firing from waking, such as sequences of place
cells (Skaggs and McNaughton, 1996; Lee and Wilson, 2002; O’Neill et
al., 2008; Denovellis et al., 2021) or sequences of neurons in an ensemble
(Euston et al., 2007; Peyrache et al., 2009, 2010), reappear during sleep
or quiescence. As we use it here, reactivation is assessing how well the
sleep activity aligns with the two subspaces of trial and intertrial interval
activity during training, and consequently suggests whether those two
are being revisited.

If a feature-specific activity vector was preferentially reactivated in
post-training sleep, then we would expect the distribution of the correla-
tion coefficients between a feature and post-training slow-wave sleep
to be right shifted compared with the distribution of the correlation coef-
ficients between the same feature and pre-training slow-wave sleep.
We quantified this shift by measuring the difference in the medians
ðMpost �MpreÞ between the two distributions of correlation coefficients.
If the difference was positive, then we had a higher correlation of the fea-
ture-specific vector with the activity in post-training slow-wave sleep

than with the activity in pre-training slow-wave sleep. If negative, then
the feature-specific vector was more similar to the pre-training slow-
wave sleep population activity.

To control for different time scales of reactivation in sleep we
repeated the same procedure, changing the time bin in the slow-wave
sleep pre-training and post-training. Bin sizes from 100ms to 10 s were
chosen to range below and above the mean length of a trial (;6.5 s).

Statistics. Quoted measurement values are mean �x and SEM.
Differences between two paired distributions were assessed using a
paired Wilcoxon signed-rank test; differences from zero were
assessed using a Wilcoxon signed-rank test. In Figures 3-7 we report
where p values for these tests exceeded three alpha levels (0.05, 0.01,
0.005). Differences between distributions were assessed using the
Kolomogorov–Smirnov test. Throughout, we have n = 49 sessions;
in some analyses we subdivide these into rule types (n = 15 direc-
tion-rule sessions and n = 34 cue-rule sessions) or learning types
(n = 10 learning sessions and n = 39 Other sessions). In Figure 3 we
break down the decoding results by each rat, giving n = 14, 14, 11,
14 sessions for rats 1–4, respectively.

Data availability. The spike-train and behavioral data that support
the findings of this study are available at http://crcns.org/data-sets/pfc/
pfc-6.

Results
We analyze here data from rats learning rules in a Y-maze that
had tetrodes implanted in mPfC before the first session of train-
ing. Across sessions, animals were asked to learn one of four
rules that were given in sequence (Go to the right arm, go to the
lit arm, go to the left arm, go to the dark arm). Rules were
switched after 10 correct choices (or 11 of 12). The animal self-
initiated each trial by running along the central stem of the
Y-maze and choosing one of the arms (Fig. 1a). The trial fin-
ished at the end of the arm, and a reward was delivered if the
chosen arm matched the current rule being acquired. During
the subsequent intertrial interval, the rat made a self-paced
return to the start of the central arm to initiate the next trial.
Trials were 6.5 6 0.5 s on average; intertrial intervals were
55.6 6 1.1 s. Throughout, population activity was recorded
in the prelimbic and infralimbic cortex (Fig. 1e), for which
we shall use the term mPfC here (Laubach et al., 2018, pro-
pose that these regions are equivalent to the anterior cingu-
late cortex in primates).

Neural activity statistics differed between trials and intertrial
intervals. Neurons that had the highest firing rates in a trial
tended to have lower firing rates in the following intertrial inter-
val (Fig. 1f). However, the vector of rates across the population
was not strongly correlated between the trial and following inter-
trial interval (Fig. 1g,h), meaning that changes in firing rates
between the two phases of the task were not systematically in one
direction. This low correlation of population activity between the
trial and intertrial interval is also consistent with a change in rep-
resentation as we now report.

Separable subspaces of population activity between trials and
intertrial intervals
We first asked whether population activity occupied different
subspaces between consecutive pairs of trials and intertrial inter-
vals as a basis for representing these as two different states of the
world in the same population. To do so, we projected all popula-
tion activity vectors of a session (Fig. 2a) into a low-dimensional
space (Fig. 2b) and then quantified how easily we could sepa-
rate them into trials and intertrial intervals. Using just one
dimension for the projection was sufficient for near-perfect
separation in many sessions; using two was sufficient for
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as a function of the number of dimensions. Each gray dot is the error for one session at that number of projecting dimensions. Dashed line gives chance performance. Box plots show
medians (red line), interquartile ranges (blue box), and outliers (red pluses). d–f, Same as a–c but comparing population activity vectors for maze sections 4 and 5 in the intertrial inter-
val. g, Schematic of maze sections. h, The average classification error in the separation of population activity vectors between each pair of maze sections within trials. Classification error
is for projections of the population activity vectors in a two-dimensional space. i, As for h, within intertrial intervals. j, As for h, for the separability of the trial and intertrial interval popu-
lation activity across maze sections. The white square indicates the arm-end position, where the transition from trial to intertrial interval occurs. k, Distribution of the delay between the
start of the intertrial interval and the start of the outbound phase, with a median delay of 1 s (dashed line) and a mean of 1.14 s. l, Same session as a but divided by inbound and out-
bound phases. m, As for b, classifying vectors by inbound and outbound phases. n, As for c, for inbound and outbound vectors. o, Comparing the classification error for the population
vectors divided by trial-ITI or by inbound-outbound phases. Each line is a session; black lines show medians. The p values are from paired Wilcoxon signed-rank tests.
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above-chance performance in all sessions (Fig. 2c). Population
activity thus occupied a different low-dimensional subspace
between the trials and the intertrial intervals.

This was not true within each phase (Fig. 2d–f): when we di-
vided the maze into sections (Fig. 2g), the population activity at
nearby maze positions was not easily separable within trials (Fig.
2h) or within intertrial intervals (Fig. 2i), with the notable excep-
tion of position 1—the return to the starting position—in the
intertrial intervals. By contrast, population activity vectors at one
position in the trial and another in the intertrial interval were
easily separable between every pair of positions (Fig. 2j). Thus,
although of course population activity changed across maze posi-
tions (Fig. 2h,i), those changes were smaller and continuous
within each phase of the task but larger and discontinuous
between them as they moved into a different subspace of activity.

A detailed examination of what might be driving this move
into a different subspace of population activity is beyond our
scope here, but we can show there are at least two plausible

causes. Aligning population activity to the trial and intertrial
interval implies this change is caused by reaching the arm end.
But a range of other salient events may be causing this shift in
population activity. To begin examining possible events, we
instead divided the task into inbound and outbound phases,
where the start of the outbound phase was defined from the
point where the heading direction of the animal had turned to-
ward the start of the maze for at least 400ms, which happened
on average 1.14 s later than the start of the intertrial interval (Fig.
2k). Dividing the population activity accordingly (Fig. 2l), we
found the separability of inbound and outbound phase popula-
tion vectors was excellent even in only a few dimensions (Fig.
2m,n).

Indeed, population separability was equally good for both the
trial-ITI and inbound-outbound separations (Fig. 2o). It is thus
equally plausible that the shift of subspace occupied by popula-
tion activity is driven by a change in heading direction as by
reaching the arm end. As these events occur close together in
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Figure 3. Decoding of different task states in the trials and intertrial intervals. a, Accuracy of decoding task features from population activity during trials. In black we plot the accuracy of
decoding the choice of arm direction (Dir), light position (Lig), and outcome (Out) for the current trial (left) and the previous trial (right). In gray we plot the decoding accuracy of shuffled labels
across trials. Differences assessed using a paired Wilcoxon signed-rank test, *p, 0.05, **p, 0.01, #p, 0.005. Symbols plot means6 SEM across 49 sessions. b, As for a, plotted as relative
decoding accuracy, the difference between the decoding accuracy of the data and of the mean of the shuffled data in that session. All p values are given for a Wilcoxon signed-rank test against
zero median. c, No correlation between session performance and the accuracy of decoding the upcoming outcome of a trial. Gray line is a linear regression fit to the data. d, e, Per-subject break-
down of the decoding results in b. f, As for a, but for population activity during the intertrial intervals of each session, decoding the features of the following (left) and preceding (right) trials.
g, as for b, for decoding during the intertrial interval. h, As for c, for decoding the outcome preceding the intertrial interval. i, j, Per-subject breakdown of the decoding results in g.
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time (Fig. 2k), considerable further work, and likely additional
experiments, would be necessary to tease apart the causal mecha-
nisms (see Discussion). For the remainder of the article we thus
continue to consider activity subspaces defined by the trial-ITI
split while being mindful that exactly when the shift occurred
and what causes it is unknown.

Different states of the same task features can be decoded
from population activity
We then tested whether these distinct subspaces corresponded
to encoding different states of the world between the trials
and intertrial intervals. Using a linear decoder on the vector of
population activity during each trial (see above, Materials and
Methods), we decoded key features of the task during the trial,
that is, the choice of arm direction of the animal in the trial, the
outcome of the trial, and which arm end was lit during the trial.
We trained the same decoders using the same population vectors
but with features shuffled across trials (see above, Materials and
Methods) to define appropriate chance levels for each decoder
given the unbalanced distribution of some task features such as
outcome.

We could decode all direction choice, light position, and out-
come in the current trial above chance (Fig. 3a,b, left). In Figure
3a we plot the absolute accuracy of decoding; in Figure 3b we
also plot the decoding accuracy relative to the shuffled data for
each session, which, as it accounts for the different distributions
of features (e.g., outcome) in each session, better shows the effect
size of the decoding. Relative decoding accuracies well above
zero could even be seen for each animal (Fig. 3d), despite the
small populations (Fig. 1i, median 10 neurons), the limited num-
bers of trials per session (median 29 trials) available for training
the decoder, and the low number (11–14) of sessions. As the out-
come was not yet known during the trial, the ability to decode
outcome implies anticipatory activity for outcome in mPfC neu-
rons, as previously reported by a number of labs (Euston et al.,
2012). However, we found no correlation between the perform-
ance of an animal in a session and our ability to decode the
upcoming outcome (Fig. 3c), suggesting this anticipatory activity
is not dependent on how frequently reward was acquired.
Nonetheless, although it is unclear what this anticipatory activity
reflects, the ability to decode outcome was robust across all clas-
sifiers we tested (data not shown; see above, Materials and
Methods; Maggi et al., 2018). To test for the effects of past states
on population activity in the trials, we also tried decoding the
direction choice, outcome, and light position of the preceding
trial and found that decoding was at or close to chance (Fig. 3a,b,
right; e, each subject). Population activity in mPfC during the tri-
als thus depended on features in the present state of the task and
weakly or not at all on features in the past trials.

In contrast, from population activity during the intertrial
interval we could decode the direction choice, outcome, and light
position of the immediately preceding trial well above chance
(Fig. 3f,g, right), which could even be seen for each rat despite
the relatively small number (11–14) of sessions each performed
(Fig. 3i). One caveat is that although the light was extinguished
during the intertrial interval, precisely when is not clear from the
data we have available (see above, Materials and Methods); con-
sequently, it is possible that the decoding of the light could repre-
sent in part its ongoing state. Decoding of the past outcome
also did not depend on performance in the session (Fig. 3h).
Decoding the same features of the immediately following trial
was at chance (Fig. 3 f,g, left, j). Thus, trial and intertrial activity
both represented distinct states of the world. Moreover, the

evidence suggests trial activity represented the present, and inter-
trial activity predominantly represented the past.

Independent decoding axes between the trials and intertrial
intervals
Having found evidence that the activity of a single mPfC popula-
tion occupies different subspaces encoding distinct states of the
world, we could now ask whether and how the representations
are kept distinct to downstream targets.

To compare the population coding between the trial and
intertrial interval, we determined the decoding axis of trial activ-
ity for each of the present features and the decoding axis of inter-
trial interval activity for those same features in the preceding trial
(see above, Materials and Methods). These decoding axes were
close to orthogonal for all three features: the angles cluster at or
close to p /2 (or, equivalently, their dot-product clusters at or
around zero; Fig. 4a). And although the decoding axes for direc-
tion choice and light position departed from purely orthogonal,
the median departure was small, being 0.067p for direction and
0.045p for light position. These differences between trial and
intertrial decoding axes were also consistently and substantially
larger than the differences within the same phase (Fig. 4b). Thus,
the state of the world in the trial and intertrial interval can be inde-
pendently decoded from the same mPfC population.

By contrast, within the trial and the intertrial interval, pairs of
decoding axes for different features were not close to orthogonal,
except the direction and outcome axes (Fig. 4c,d). This neatly
demonstrates that the near orthogonality of the decoding axes
between trials and intertrial intervals is not then a trivial conse-
quence of the decoding axes being random vectors drawn from
the same distribution because the decoding axes of the same
dimension within each phase are not orthogonal. Notably, the
distributions of angles between the decoding axes for a given pair
of features were preserved between the trials and the intertrial
intervals, with outcome direction around p /2, light direction
centered below p /2, and light outcome centered above p /2.
Thus, although each decoding axis rotated close to orthogonal
between the trial and intertrial interval, the relationships between
the feature decoding axes were preserved.

To quantify how distinct these independent axes made the
decoding of the trial and intertrial states, we cross-decoded one
from the other: for each feature type, we trained the classifier on
all trials of a session and tested its ability to decode the same fea-
ture from the following intertrial intervals. We found that cross-
decoding was at chance level for both outcome and light posi-
tion, and significant but weak for direction (Fig. 4e), consistent
with the angles between their decoding axes in the trials and
intertrial intervals (Fig. 4a). This result was robust whether we
trained on trials and tested on intertrial intervals or vice versa.
Cross-decoding was also weak or at chance if we used leave-one-
out testing instead (Fig. 4f) by leaving out the ith trial and its fol-
lowing intertrial interval, training on N – 1 trials, and predicting
the ith intertrial interval. Thus the near independent decoding
axes (Fig. 4a) indeed imply that downstream targets could inde-
pendently read out either the trial or the intertrial state of the
task frommPfC population activity.

Decoding and cross-decoding are robust across types of
session
We explored the extent to which this decoding depended on
what occurred during each session. We first split the sessions by
whether the target rule was direction based (15 sessions) or cue
based (34 sessions). For trials, the present direction choice and
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outcome could still be significantly decoded for
both types of rule, despite the considerable
drop in power from the reduced number of ses-
sions (Fig. 5a). For intertrial intervals, the pre-
ceding direction choice, outcome, and light
position could still be decoded well above
chance for both types of rule (Fig. 5b).

To determine whether learning itself
affected any dependence on the task state, we
then separated the sessions into two behavioral
groups, putative learning sessions (n = 10),
identified by a step change in task performance
(see above, Materials and Methods), and the
remaining sessions, called here Other (n = 39).
We found decoding of task features was similar
when comparing learning sessions and all
Other sessions for both trials (Fig. 5c) and
intertrial intervals (Fig. 5d). The sole exception,
decoding the current light position during tri-
als of Other sessions but not learning sessions,
could be due either to a real effect or to the low
power for decoding from 10 learning sessions.

For completeness, we also examined the
breakdown of the cross-decoding results in
Figure 4d by types of session. Figure 5, e and f,
shows that cross-decoding of most features
between trial and intertrial activity remained at
chance, with again significant but weak cross-
decoding of direction.

Evolution of decoding within trials and
intertrial intervals
It is likely that the decoding of task features
from mPfC activity is partly dependent on
maze position (Ito et al., 2015; Spellman et al.,
2015). To further examine the evolution of
decoding over the trial and intertrial interval,
we again divided the maze into five equally
sized sections (Fig. 2g) and constructed popula-
tion firing rate vectors for each position.
Although the trials averaged only;6.5 s in du-
ration, and so each position was occupied for
;1 s, we still obtained clear evidence for
decoding the direction choice, outcome, and
light position of the current trial across multi-
ple contiguous locations (Fig. 6a, left). The
contrast between the strong decoding of the
features of the current trial and the weak
decoding of the features of the previous trial
was even clearer across maze positions (Fig. 6b,
right).

This evolution means that there is contiguous decoding from
the trial to the intertrial interval for all three features (Fig. 6a).
Despite this contiguity, the cross-decoding between the same
position in the two phases was at chance (Fig. 6c). In particular,
cross-decoding at the arm end (position 5) was at chance, despite
the rat continuously occupying this position during the transi-
tion from the trial to the intertrial interval. This suggests that the
distinct decoding of the trial and intertrial states of the same fea-
ture appeared immediately at the arm end, or close to it (Fig. 2).

Figure 7 shows that these position-dependent decoding and
cross-decoding results for trials are broadly robust to breaking
them down by the type of rule or by learning behavior.

Breakdowns of position decoding by session type in the intertrial
intervals are given in Maggi et al. (2018), their Figure 5. In partic-
ular, we note here that the decoding of the state of the light dur-
ing the intertrial interval only significantly occurs at position 5
when taken over all sessions (Fig. 6a, right), and as these data do
not specify precisely when the light was extinguished during the
interval, it is unknown whether that reflects the ongoing state of
the light or the past state.

Population representations of features reactivate in sleep
That the population activity occupies linearly separable subspa-
ces between the trial and intertrial intervals (or the inbound and
outbound phases) strongly suggests that the mPfC populations
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can be driven to either one or the other by upstream inputs. In
turn, this implies that the representations of these two world
states were independently addressable. To explore this question
further, we turned to activity of the same populations during
sleep.

Prior reports showed that patterns of mPfC population activ-
ity during training are preferentially repeated in post-training
slow-wave sleep (Euston et al., 2007; Peyrache et al., 2009; Singh
et al., 2019), consistent with a role in memory consolidation.
However, these analyses looked only at specific templates or the
reappearance of correlations between neurons, so it is unknown
what task states these repeated patterns represented. Thus, we
took advantage of the fact that our mPfC populations were also
recorded during both pre-training and post-training sleep to ask
whether their activity during sleep was specifically driven to ei-
ther or both of the activity subspaces occupied by the population
during the trials and intertrial intervals.

We first tested whether population activity representing fea-
tures in the trials reactivated during slow-wave sleep. For each
feature of the task happening in the present (e.g., choosing the
left arm), we created the mean vector of population activity spe-
cific to that feature during trials in a session. This average popu-
lation vector thus represented the region of the activity subspace
(Fig. 2) occupied during trials with that feature. To seek reactiva-
tion of this region of the subspace in slow-wave sleep, we

computed population firing rate vectors in pre-training and
post-training slow-wave sleep in time bins of 1 s duration and
correlated each sleep vector with the feature-specific trial vector
(Fig. 8a). We thus obtained a distribution of correlations
between the trial vector and all pre-training sleep vectors and a
similar distribution between the trial vector and all post-training
sleep vectors. Greater correlation with post-training sleep activity
would then be evidence of preferential reactivation of feature-
specific activity in post-training sleep.

We examined reactivation separately between learning and
Other sessions, seeking consistency with previous reports that
reactivation of waking population activity in mPfC most clearly
occurs immediately after rule acquisition (Peyrache et al., 2009;
Singh et al., 2019). Figure 8b (top) shows an example of a learn-
ing session with preferential reactivation. For all trial features,
the distribution of correlations between the trial and post-train-
ing sleep population activity is right shifted from the distribution
for pre-training sleep. For example, the population activity vector
for choosing the right arm is more correlated with activity vec-
tors in post-training (PostR) than pre-training (PreR) sleep.

Such post-training reactivation was not inevitable. In Figure
8b (bottom), we plot another example in which the trial-activity
vector equally correlates with population activity in pre-training
and post-training sleep. Although specific pairs of features (such
as the left and right light positions) differed in their overall
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correlation between sleep and trial activity, no feature shows
preferential reactivation in post-training sleep.

These examples were recapitulated across the data (Fig.
8c). In learning sessions, feature-specific activity vectors
were consistently more correlated with activity in post-train-
ing than pre-training sleep. By contrast, the Other sessions
showed less consistent preferential reactivation of any fea-
ture-specific activity vector in post-training sleep. As a con-
trol for statistical artifacts in our reactivation analysis, we
looked for differences in reactivation between paired features
(e.g., left vs right arm choice) within the same sleep epoch
and found these all center on zero (Fig. 8d). Thus, population
representations of present task features in the trials were
preferentially reactivated in post-training sleep, and this
most consistently occurred after a learning session.

We repeated the same analyses using feature-specific population
vectors from the intertrial interval activity and also found evidence
of preferential reactivation in some sessions (Fig. 8e,f). However, in
contrast to trial activity, there was no consistent preferential reacti-
vation of intertrial interval activity after a learning session.

Neither the preferential reactivation of trial nor intertrial ac-
tivity was explained by significantly higher correlations between
waking and sleep activity vectors from smaller populations (Fig.
8g,h).

As our measure of reactivation is asking whether and when
the activity of the mPfC population revisits the trial and/or inter-
trial activity subspaces, it could do so on a range of time scales.
These patterns of preferential reactivation were consistent across
a range of bin sizes used to construct the activity vectors during
sleep (Fig. 9). Notably, across these time scales, trial activity
showed two independent properties from intertrial interval activ-
ity—consistent preferential reactivation after learning sessions,
and preferential reactivation in those sessions was stronger at
smaller bin sizes. These results are consistent with trial and inter-
trial activity subspaces being independently addressable; we thus
sought further evidence of their independence.

Independent properties of trial and intertrial activity
reactivation in sleep
We asked whether the amount of reactivation of population ac-
tivity differed between trial and intertrial activity. The reactiva-
tion of trial population activity was strongly correlated between
pre-training and post-training sleep (Fig. 10a), but the reactiva-
tion of intertrial interval activity was less correlated (Fig. 10b),
and this was consistent across time scales used to construct the
sleep activity vectors (Fig. 10c). Thus the overall reactivation of
trial and intertrial interval activity was consistently different,
again suggestive that the two subspaces of activity were inde-
pendently addressable.

Given the above evidence that reactivation of trial and inter-
trial interval activity could be independently controlled, we fur-
ther asked whether they differed in how preferential reactivation
correlated with behavior. Following the differences in reactiva-
tion after learning sessions (Fig. 9), we looked at the degree of
learning in a session, which we quantified by the size of the
change in reward rate in that session (see above, Materials and
Methods). We found preferential reactivation of trial activity cor-
related with the change in reward rate (Fig. 11a), but preferential
reactivation of intertrial activity did not (Fig. 11b). Again, this
difference between trial and intertrial activity reactivation was
consistent across a wide range of time scales used to construct
the sleep activity vectors (Fig. 11c,d).

Discussion
Activity in the prefrontal cortex is known to represent different
states of the world, including the immediate past or present state
in a range of tasks (Baeg et al., 2003; Averbeck et al., 2006;
Fujisawa et al., 2008; Sul et al., 2010; Rigotti et al., 2013; Hanks et
al., 2015; Ito et al., 2015; Siegel et al., 2015; Spellman et al., 2015;
Guise and Shapiro, 2017). How the representations of the differ-
ent states relate to each other, and whether they coexist in the
same population of neurons, has been unclear. Consequently, it
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is unknown how downstream readouts of prefrontal cortex activ-
ity can distinguish activity representing different states of the
world.

Here, we have shown one potential solution in the medial
prefrontal cortex of rats learning rules in a Y-maze: different
states are encoded in the same population in such a way that lin-
ear decoders can read out different states of multiple features of
the task. That encoding had two notable features. First, popula-
tion activity is linearly separable between the trial and intertrial
interval in as little as one dimension and so exists in different
subspaces during these two phases of the task. Second, the
decoding was roughly orthogonal between the trial and intertrial

activity. These two features allow a simple solution to the inter-
ference problem.

The interference problem
Any neural population whose activity contains information
about multiple states of the world faces the problem of interfer-
ence (Libby and Buschman, 2021), of how downstream popula-
tions can distinguish the activity that depends on each state, so
that the sequence and causality of world events is clear. The
inverse problem is how inputs to the population can selectively
recall only the activity that depends on a particular state.
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Figure 7. Robustness of location-dependent decoding in trials across session types. a, b, Breakdown of decoding performance in Figure 6a, according to the type of rule in each session,
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As we have shown here, because trial and intertrial activity
occupies different subspaces of the population activity, a down-
stream target using a linear decoder can distinguish the two
(Semedo et al., 2019). This suggests a simple solution to the in-
terference problem of having two downstream populations, one
whose input weights from the mPfC population match the
decoding axis for the trial state and another whose input weights
from the mPfC population match the decoding axis for the inter-
trial state. Then the first downstream population only responds
to activity representing the state of the trial and the other only to
activity representing the state of the intertrial.

Key here is that the decoding axes are orthogonal, or close to
it, although the population activity in mPfC is not. In Figure 12
we show this by plotting the angles between the mean activity
vectors representing each feature in trials and intertrial intervals:
we see that the activity representing each feature is more closely
aligned between trials and intertrial intervals than are the corre-
sponding decoding axes. Despite this alignment, because the ac-
tivity sits in different linearly separable subspaces between trials
and intertrial intervals, the different states of the task in the trial
and in the intertrial interval are easily distinguishable by a linear
decoder.
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Figure 8. Reactivation of population subspaces in post-training sleep. a, Example population activity vectors. Top, From one learning session, we plot the average firing rate vector for correct
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We also found evidence here of a solution to the inverse prob-
lem, as the existence of different subspaces of activity between
trials and intertrial intervals means that upstream inputs could in
principle separately drive the population activity to either sub-
space. The sequential decoding also strongly suggests that the
same mPfC population can be driven into different representa-
tions by upstream inputs.

To explore this further we looked at activity of the same
mPfC populations during sleep to ask whether trial and intertrial
intervals representations of the task features are reactivated dif-
ferently. Trial and intertrial activity were both preferentially reac-
tivated in post-training slow-wave sleep, yet we found evidence
that preferential reactivation of trial activity differed in the fol-
lowing four ways: the time scales at which it occurred most
strongly, it occurred after learning sessions, the strength of reac-
tivation was more consistent between pre-training and post-
training sleep, and it correlated with the performance of the rats
in the sessions. Together, these differences between the reactiva-
tion of trial and intertrial interval activity are consistent with
upstream inputs to the mPfC population being able to separately
address the representations of these states.

The consistency of preferential reactivation across broad time
scales suggests that it is the changes to the relative excitability of
neurons within the mPfC population that are carried forward
into sleep (Singh et al., 2019). Thus, this consistency across broad
time scales implies that whenever the neurons of the population
are active, they are active together with approximately the same
ordering of firing rates.

Mixed population coding in mPfC
Our finding that small mPfC populations can sustain mixed
encoding of two or more of direction choice, light position, and
outcome of the current trial is consistent with prior reports of
mixed or multiplexed coding by single neurons in the prefrontal
cortex (Jung et al., 1998; Horst and Laubach, 2012; Rigotti et al.,
2013; Fusi et al., 2016; Aoi et al., 2020). These encodings were
also position dependent. Decoding of direction choice reliably
occurred from the choice point of the maze onward, but it is
unclear whether this represents a causal role in the choice itself
or an ongoing representation of a choice being made.

Indeed, we are not claiming that the specific task features we
decoded are necessarily explicitly represented in mPfC popula-
tion activity. Rather, throughout we have interpreted the decod-
ing of these features as evidence that mPfC population activity is
at least representing the state of the world, similar to reinforce-
ment learning views of PfC representations (Wang et al., 2018),
because these features are a part of that state; and, hence, any
change in one of those features, such as arm choice, would thus
be a different state of the world.
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Previous studies have reported that past choices modulated
mPfC population activity during trials (Baeg et al., 2003; Sul et
al., 2010). In contrast to the robust decoding of the present, we
found weak evidence that mPfC activity during a trial depended
on the light position of the previous trial and weak evidence that
it depended on the direction choice of the previous trial only
during direction-based rules. Moreover, these features of the past
could only be decoded at one or two locations on the maze.
Thus, during trials, population activity in the prefrontal cortex
had robust, sustained dependence on multiple features of the
present but at best weakly and transiently depended on one fea-
ture of the past.

Indeed, we have evidence here that the trial and intertrial ac-
tivity represent not just different task states but, respectively, the
present and past state of the task. Trial activity decoded present

but not past features; intertrial activity decoded features of the
preceding trial. The latter is consistent with well-established roles
for the prefrontal cortex in short-term memory (Funahashi et al.,
1989; Machens et al., 2010; Constantinidis et al., 2018; Lundqvist
et al., 2018). However, the limitations of the Y-maze task data
mean we cannot rule out that the intertrial activity also repre-
sented some features of the present during that interval, which is
a question to be pursued further. Nonetheless, we have strong
evidence that mPfC activity represents distinct states in the trials
and in the intertrial intervals.

What could drive changes in mPfC population activity
The evolution of activity within trials and intertrial intervals was
continuous, with adjacent maze sections containing more similar
population activity, yet the transition from the trial to the inter-
trial interval was discontinuous, with population activity moving
to a different subspace, linearly separable from the trials’ sub-
space. What might be driving this shift from the trial to the inter-
trial interval subspace of activity and hence its decodability?

The division into trials and intertrial intervals or the inbound
and outbound phases in Figure 2 both distinguish the two legs of
the journey in the maze. During the return trip to the starting
position, the change in context and direction of movement
would likely change the signals available to the mPfC. It does not
automatically follow though that changes in context and move-
ment cause the observed changes in population activity in mPfC;
those changes to sensory and movement information could have
changed mPfC population activity so that it did not encode any-
thing about the immediately preceding trial, in the same way, for
example, that we showed the intertrial activity encodes nothing
about the immediately upcoming trial, even when the decision of
the trial could be known in advance. Thus, our finding that we
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could still decode the state of the immediately preceding task fea-
tures from intertrial activity despite the changes in context and
movement information is nontrivial. Indeed, it implies that those
changes could be the drivers of the observed changes in popula-
tion activity.

This suggests multiple lines of fruitful further work here. One
open question is which inputs to the mPfC drive the move from
one activity subspace to another. Given the switch in context and
heading direction, a likely candidate is the direct input from
region CA1 of the hippocampus (Jones and Wilson, 2005;
Benchenane et al., 2010, 2011). Another open question is pre-
cisely when the change in activity subspace happens. We showed
here preliminary results that the larger, discontinuous change in
population activity could be plausibly either on reaching the arm
end or on initiating the outbound trip back to the starting posi-
tion. Another is the precise function of the representations of the
trial and intertrial interval; one possibility is they respectively
reflect reward prediction and reward processing. One way to
tackle this question would be to examine how much the clean in-
dependence between the decoding of task states depends on the
behavioral task. For example, tasks where the future choice of
arm depends on recent history, such as double-ended T-mazes
(Jones and Wilson, 2005), multiarm sequence mazes (Poucet et
al., 1991), or delayed nonmatch to place (Spellman et al., 2015),
blur the separation of the present and the past. Comparing popu-
lation-level decoding of the states in such tasks would give useful
insights into when they are or are not independently coded
within mPfC.
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