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Successful decision making requires an ability to monitor contexts,
actions, and outcomes. The anterior cingulate cortex (ACC) is
thought to be critical for these functions, monitoring and guiding
decisions especially in challenging situations involving conflict and
errors. A number of different single-unit correlates have been
observed in the ACC that reflect the diverse cognitive components
involved. Yet how ACC neurons function as an integrated network
is poorly understood. Here we show, using advanced population
analysis of multiple single-unit recordings from the rat ACC during
performance of an ecologically valid decision-making task, that
ensembles of neurons move through different coherent and dis-
sociable states as the cognitive requirements of the task change.
This organization into distinct network patterns with respect to
both firing-rate changes and correlations among units broke down
during trials with numerous behavioral errors, especially at choice
points of the task. These results point to an underlying functional
organization into cell assemblies in the ACC that may monitor
choices, outcomes, and task contexts, thus tracking the animal’s
progression through ‘‘task space.’’

cell assemblies � decision making � multiple single-unit recordings �
neural coding � population analysis

There is general agreement that processing of information in
the neocortex is done by networks of cells operating in a

coordinated fashion rather than working independently, as in a
purely feed-forward-type architecture. The most popular con-
cept to describe these processes dates back to Hebb’s (1)
proposal on cell assemblies, which has been investigated from a
variety of experimental perspectives (2–8) and has formed the
foundation of a number of computational approaches (9–12).
There is now accumulating evidence that the transient organi-
zation of neurons into dynamic ensembles and the sequential
transitions among them may form the basis for cortical infor-
mation processing (2, 3, 5, 7, 13–15).

Although such processes have been investigated in some depth
for perceptual and spatial domains, much less is known regarding
the network dynamics that govern higher-order cognitive pro-
cesses, such as action and outcome monitoring. The anterior
cingulate cortex (ACC) has been the subject of increased interest
as a region that plays a role in action monitoring, a supervisory
cognitive function that is especially important for optimal deci-
sion making in challenging and novel situations (16–19). A
number of diverse single-unit correlates accompanying these
processes have been observed in the ACC (20–27), yet it is
unknown how single neurons organize into functional networks
that could serve these functions.

In the present study, we investigated functional ensemble
dynamics within the ACC during the performance of the delayed
win-shift radial-arm maze, a task with distinct cognitive phases
and high ecological validity (28). The locations of rewards
changed between and within trials, such that the animal had to
continually monitor its own actions and track the changing

environmental contingencies as it progressed through the task.
Using sophisticated statistical methods, we found that the re-
corded population appeared to track each aspect of the task by
entering distinct and separable network states that broke down
on trials with numerous errors.

Results
Population Activity Organizes into Specific Patterns During Distinct
Task Epochs. Multiple single-unit recordings from the rat ACC
[dorsal medial agranular prefrontal cortex; see supporting in-
formation (SI) Fig. S1 A] were obtained from 10 rats over a total
of 27 trials of the delayed-win-shift radial arm-maze task. The
task consisted of the following behaviorally dissociable epochs
illustrated in Fig. 1A: the periods surrounding correct arm
choices during the training phase (TrC) and test phase (TsC),
respectively; periods surrounding incorrect choices during the
test phase (TsI; there were very few incorrect choices during
the training phase); the period surrounding the point when the
animal reached a food cup (TrR, during the training phase, and
TsR, during the test phase); the entire delay phase (Dl); and all
of the remaining periods intervening between arm choices and
reward epochs during the training (Tr) and test phases (Ts).

Consistent with previous studies (24, 29–33), we observed a
number of single-unit correlates that were associated with arm
entries, reward processing, specific movements, and behavioral
errors (Fig. 1E). However, the focus of the present study was the
functional patterns of network activity associated with the
distinct task epochs rather than single-unit correlates.

To analyze population activity, spike trains of all units were
first convolved with Gaussian functions and binned at 200 ms,
yielding smoothed instantaneous firing rates (iFR) for each unit
as a function of time. For each time bin, the iFR of the N
simultaneously recorded units were combined into population
vectors embedded within an N-dimensional state space, here
termed multiple-unit activity (MUA) space. For the purpose of
visualization, we used multidimensional scaling to obtain 3D
projections of these N-dimensional MUA spaces as shown in Fig.
1 B and C. In these graphs, each dot represents the entire state
of the recorded network within one 200-ms bin of the task, and
all population vectors (dots) belonging to different 200-ms bins

Author contributions: C.C.L., D.D., L.J.C., and J.K.S. designed research; C.C.L. performed
research; D.D. designed and implemented statistical analysis; C.C.L., D.D., and J.K.S. ana-
lyzed data; and C.C.L., D.D., L.J.C., and J.K.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

‡C.C.L. and D.D. contributed equally to this work.

¶To whom correspondence may be addressed. E-mail: daniel.durstewitz@plymouth.ac.uk
or seamans@interchange.ubc.ca.

This article contains supporting information online at www.pnas.org/cgi/content/full/
0804045105/DCSupplemental.

© 2008 by The National Academy of Sciences of the USA

www.pnas.org�cgi�doi�10.1073�pnas.0804045105 PNAS � August 19, 2008 � vol. 105 � no. 33 � 11963–11968

N
EU

RO
SC

IE
N

CE

http://www.pnas.org/cgi/data/0804045105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0804045105/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/content/full/0804045105/DCSupplemental
http://www.pnas.org/cgi/content/full/0804045105/DCSupplemental


of the same task epoch are shown in the same color. As Fig. 1B
illustrates (see also Movies S1 and S2 and Fig. S2), different task
epochs segregate in MUA space, i.e., MUA vectors belonging to
the same task epoch tend to cluster within similar regions of
MUA space, whereas MUA vectors belonging to different task
epochs populate different regions, implying that the population
as a whole differentiates between individual task epochs. Aver-
aging across all points in MUA space belonging to the same task
epoch yields an N-dimensional ‘‘prototype vector’’ representing
the mean iFRs of all units within this epoch, illustrating the
differential patterns of activation as a function of task epoch
(Fig. 1D).

This organization into distinct patterns appeared to be func-
tionally relevant to the successful completion of a trial. Fig. 1B
illustrates population activity for an animal that performed
perfectly on a trial. However, when the population activity for
the same animal was reexamined during a trial in which six errors
were committed, the segregation in MUA space broke down
(Fig. 1C; see also Movies S1 and S2 and Fig. S2). This collapse
of segregation in MUA space was also reflected in the lack of
differentiation between task-epoch iFR prototypes (Fig. 1D). On
this trial, only one unit showed clear differential activity, and it
appeared to be most tightly linked to the signaling of behavioral
errors (Fig. 1E). Therefore, successful task performance was
characterized by the neural population attaining distinct task-
epoch-specific patterns that changed dynamically with the cog-

nitive requirements of the task. A failure to exhibit such distinct
population patterns was correlated with errors in choosing the
correct arms.

To quantify these phenomena statistically, activity patterns
were analyzed across all animals used in this study by computing
a separation error for each trial and every pair of task epochs.
This was done by fitting a hyperplane (linear discriminant
function) that optimally separated the clouds of points associated
with each pair of task epochs using discriminant analysis and by
determining for all of these pairs the relative number of popu-
lation vectors (i.e., dots in MUA space) that were assigned to the
wrong task epoch according to this linear classifier. Because the
separability of task-epoch points is also affected by other factors
such as the dimensionality of the MUA space and the total
number of points/epoch, conservative surrogate data, obeying
the same temporal continuity constraints as the original data,
were constructed and used to test the significance of separation
between any pair of task epochs (see Methods for details). Fig.
2A shows the separation errors for each of the original pairwise
comparisons and for the respective surrogates constructed for
each pair of task epochs averaged across all trials and animals.
Each of the pairwise comparisons reached significance except
for the comparison between test-phase incorrect (TsI) and
correct (TsC) choices (paired t tests using corrected �*-levels
according to the Holm–Bonferroni method, (34), � � 0.05; see
SI Text and Fig. S3 for additional separation measures and
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Fig. 1. Population analysis of ACC neuronal firing properties with respect to task epochs on a trial when an animal performed with no errors and a trial when
the same animal made six errors. (A) Illustration of the delayed win-shift radial arm maze with the separate task epochs chosen. (B, C) MUA space representation.
Each color-coded dot represents the state of the network (i.e., the iFR population vector of all recorded neurons) in a 200-ms time bin at some time point during
the task. The blue and green dots are from 1-s periods centered around the points of arm entries (threshold crossings) for correct arm choices during the training
phase (TrC) and test phase (TsC), respectively. The yellow dots are from 1-s time periods centered around the points of arm entries for incorrect choices during
the test phase (TsI). The brown and red dots are from 1-s periods starting 200 ms before the points where the animal’s nose reached a food cup during the training
phase (TrR) and test phase (TsR), respectively. The smaller light gray, dark gray, and black dots represent delay (Dl), training (Tr), and test phase (Ts) epochs,
respectively, excluding those periods defined by the choice and reward events. The axes of this 3D projection correspond to the simultaneous activation and
mutual suppression of several units. (D) iFR prototypes showing for each task epoch the average deviation of the iFR of each neuron from the grand average
across all task epochs from the same trials as in B and C with no errors (D, Left) and six errors (D, Right). (E) White lines represent the Gaussian smoothed iFRs
of 5 units from the 0-error trial (Upper) and 1 unit from the six-error trial (Lower) as the trial progressed from the training phase (dark gray) through the delay
(light gray) to the test phase (black). Units were selected based on the prototypes in D. Blue and green vertical lines represent the points of arm entries, whereas
brown and red lines indicate points of reward during the training and test phase, respectively.
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analysis). Moreover, in �40% of all trials (averaged across all
pairwise comparisons), a significant separation could be
achieved on a single trial basis (with significant contributions
coming from all animals and trials; Fig. S3A). Hence, the
statistical analysis confirmed what visual inspection of MUA
spaces in Fig. 1 suggested: in many more single trials than
expected by chance (5% according to a P � 0.05 criterion), and
overall on average, all pairs of task epochs significantly differed
in terms of population behavior, except for one comparison
involving incorrect choices (which is related to the general
breakdown of MUA space separation especially at choice points
in high-error trials as shown below).

Individual Neurons Are Generally not Selective for Single-Task Epochs.
As described above, ensemble activity significantly differenti-
ated between almost all pairs of task epochs. To address the
question to what extent this differentiation may be rooted in
highly task-epoch selective responses of single ACC neurons, a

selectivity index for each unit and task epoch was computed that
compared the average activity of a unit during a given epoch with
the average activity across all other epochs (see Methods for
details), and the significance of this index was again tested using
surrogates. A significant selectivity index of a unit for a particular
epoch implies that its average activity during that epoch signif-
icantly deviated (positively or negatively) from the average
activity across all remaining epochs. For each of the eight task
epochs, between 13% and 27% of all units were found to be
task-epoch-selective according to this definition (Fig. 2B). How-
ever, cells may significantly modulate their average iFR com-
pared with the grand mean during more than one task epoch
(e.g., units 5 and 9 in Fig. 1E). Indeed, �80% of task-epoch-
selective units exhibited a significant modulation in at least one
other epoch (Fig. 2C, gray bars). Conversely, this implies that
�4% of all units recorded were highly selective for just one
epoch. On the other hand, if any two of the epochs were
compared with each other, 72% of the epoch-selective units were
active in only one of the two instances and could therefore
account for their separation (Fig. 2C, white bars). Thus, although
each unit was generally modulated during more than one epoch,
all pairs of task epochs differed in their constitution of selective
units.

Different Task Epochs Are also Associated with Unique Coalitions
Among Neurons. Our results thus far show that different cognitive
phases of the task are associated with specific patterns of iFR
activity across all recorded units. To examine whether these iFR
patterns are also accompanied by epoch-specific correlations
among units, the absolute (zero time lag), iFR Pearson corre-
lation coefficients averaged across all pairs of units as a function
of task epoch were computed (using 200-ms bins as before; Fig.
2D, dark bars). For each task epoch, except for the incorrect
choices, iFR comodulations were significantly above chance (t
tests, all P � 0.005) based on comparisons with data sets where
we shuffled the iFR bins (Fig. 2D, light gray bars). To assess
whether these correlated activity changes were indeed task-
epoch-specific or simply a general feature of the neuronal pairs
recorded, we extracted the pairs with the 20% highest correla-
tions from each epoch and determined the overlap between task
epochs with regard to the most highly correlated pairs. A given
task epoch shared only �20–30% on average of its most highly
correlated pairs with any other task period (Fig. 2E; Fig. S4),
suggesting that coalitions among neurons formed and dispersed
with each task epoch. As a further confirmation of this obser-
vation, we constructed surrogates by recombining iFR bins from
different task epochs while maintaining the temporal relation
among units (i.e., no shuffling of iFR bins). In all cases except
for the TsR epochs (t test, P � 0.1), these across-task-epoch iFR
correlations were significantly lower than the within-task-epoch
correlations (t tests, all P � 0.005), even after correction by the
shuffle predictor (Fig. S5). Hence, different task epochs are not
only differentiated by unique patterns of changes in firing rate
but also through task epoch specific coalitions among units.

Ensemble Organization Is Diminished on Trials with Numerous Behav-
ioral Errors. To address the functional importance of the distinct
network patterns, changes in population activity as a function of
behavioral errors were examined. For the entire dataset, trials
were divided according to a median split based on the number
of incorrect choices. The resulting groups agreed with previously
defined criteria of asymptotic performance on this task (0–1 vs.
2 � incorrect choices; ref. 35). For the combined delay and test
phases, separability was significantly worse for trials with many
incorrect choices versus trials with 0–1 incorrect choices (Fig.
3A; t test, P � 0.01). Furthermore, Fig. 3A shows that the
breakdown in MUA space affected mostly comparisons involv-
ing test-phase choice and reward epochs (TsC and TsR), and less
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Fig. 2. Summary statistics revealing distinct network states in terms of both
firing rate properties and correlations for each task epoch. (A) Separability
between any two epochs in MUA space was quantified as the percentage of
incorrectly classified points in the original data set (blue points and error bars)
relative to those in the surrogates (black points and error bars) averaged across
all datasets. Error bars � SEM. The gray shadings between the error bars
surrounding the means of the original and surrogate data highlight the
degree of difference between them. All pairs of task epochs were statistically
separable except for the comparison TsC � TsI as indicated by the arrow. (B)
The percentage of cells that have a significant iFR selectivity index for each
task epoch. (C) For each task epoch, the percentage of the epoch-selective cells
shown in B that exhibited a significant modulation of their firing rate in at
least one other epoch (gray bars), and the percentage of selective cells shared
on average with any one of the other epochs (white bars). The light-gray bars
provide an indication of how many cells are involved in multiple task epochs,
whereas conversely the white bars indicate how well the subpopulation of
cells with significant selectivity can dissociate between any two task epochs.
(D) For each task epoch, averaged (across all cell pairs and datasets) absolute
iFR correlations � SEM for the original data (black bars) and for surrogates
composed of shuffled iFR bins (gray bars). For all task epochs, the differences
between correlations among the original iFR time series and those within the
shuffled surrogates were significant as denoted by an asterisk, except for the
incorrect choice epoch. (E) Relative proportion of the 20% highest-correlated
pairs a given task epoch shares on average with any other task epoch. The
relatively low values indicate that the cell pairs exhibiting the strongest
functional couplings change from one task epoch to the next.
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so basal test vs. delay phase epochs (Ts vs. Dl). There was not
only an overall significant decrease in separation but also a lower
number of individual trials that yielded significant separation for
comparisons involving TsC and TsR epochs (Fig. 3B). In addi-
tion, task-epoch specific iFR correlations among units also
tended to decrease as a function of behavioral errors, but only
with TsC did this reduction reach statistical significance (Fig. 3C;
t test, P � 0.05). In conclusion, on trials where animals made two
or more choice errors, network dynamics were severely com-
promised as evidenced by a failure to organize into distinct
task-epoch-specific patterns both in terms of firing rate activity
and correlations among units. This was especially true at choice
points during the test phase, suggesting that errors are associated
with a failure of the ACC to enter into unique and coordinated
network states particularly at those times where decisions about
arm entries are made.

Discussion
The present study explored population coding within the ACC
while animals foraged for food in an ecologically valid radial arm
maze task involving distinct cognitive phases. Many single-unit
correlates (e.g., of choices or rewards) were observed. In most
cases, however, single units did not limit their firing rate changes

to one specific event type but were active across multiple
cognitively defined task epochs. On the other hand, each task
epoch was characterized by a unique pattern of firing-rate
changes across units and correlations among units. The behav-
ioral importance of this functional organization was supported
by the fact that these population patterns tended to break down
on trials with numerous errors.

Cell Assemblies and Dynamic Population Patterns. The cell assembly
framework first introduced by Hebb (1) could provide a mech-
anistic basis for the observed ensemble patterns. A cell assembly
is defined by a functional group of neurons entertaining rela-
tively strong recurrent excitatory connections among each other,
while potentially inhibiting pyramidal cells of other assemblies.
ACC networks may consist of various partially overlapping cell
assemblies encoding various cognitive events within the decision
making process as illustrated in Fig. 4. As a result of such
functional arrangements, at the single-neuron level, there would
be numerous combinations of enhanced and depressed activity
changes across different cognitive events, whereas each assembly
as a whole would be associated with a unique pattern of firing
rate changes and a unique pattern of within-assembly correla-
tions (due to the recurrent excitatory connectivity within but not
across assemblies), as observed here (Figs. 1 and 2).

Many other approaches, both similar to and different from
ours, have been used to identify ensemble organization in
multiple single-unit data. These include Hidden Markov Models,
which also revealed distinct patterns and transitions among them
in vivo (14, 36), and principal component or cluster analysis to
unravel functional groupings (37), hierarchical organization of
task-coding assemblies (7), or simply as a means for visualizing
distinct population states and their connecting trajectories (15).
At the level of precise spiking times, task-phase-specific alliances
among neurons were demonstrated in primate prefrontal areas
using spike train cross-correlograms (13) and repeating patterns
of spikes aligned among multiple neurons (6, 38) were also taken
as evidence for ensemble organization. Hence, a number of
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Fig. 3. Breakdown of separability in MUA space and decrease of correlations
are associated with a rise in behavioral errors. (A) Separability of task epochs
in MUA space as given by the normalized (to the surrogates) classification
errors for the low (0–1; blue bars) and high (�2; red bars) behavioral error
trials. The graph shows overall separability averaged across all pairs of delay
and test phase comparisons and separately for all epoch-pair comparisons
from the delay � test phases. Asterisks denote a significant (P � 0.05) differ-
ence in separability for high and low behavioral error trials. (B) Percentage of
individual datasets for which a significant separation of task epochs was
reached for the low (blue bars) and high (red bars) behavioral error groups,
averaged across all delay � test phase comparisons, and separately for all
delay � test phase comparisons. (C) Absolute iFR correlations averaged across
all cell pairs in the low (blue bars) vs. high (red bars) behavioral error groups
as a function of task epoch, corrected by subtracting the average iFR correla-
tions obtained for the respective iFR-shuffled surrogates.

Fig. 4. Schema of a functional architecture that could explain the present
results. Shown are three cell assemblies corresponding to correct choices
(green), reward epochs (red), and basic test epochs (black). Neurons enclosed
by the same colored outline are embedded within the same assembly, with
neurons shared among assemblies being located within the intersections of
the colored outlines. The firing rate of a neuron is indicated by its gray level.
As the task progresses, first choice assemblies are activated (Left), followed by
reward assemblies (Center), followed by a general test phase assembly (Right).
Neurons 1 and 2 give an example of a pair that would be correlated during
activation of the choice-assembly, as they form part of the same activated
assembly but may be uncorrelated during the reward and test epochs. Neuron
3 is an example for a cell that is suppressed during correct choices due to
mutual inhibition among assemblies (not illustrated for clarity), activated
during the reward epoch, and fires at its average baseline activity in the test
epoch. Neuron 2, in contrast, would be activated in both the choice and
reward epochs. Recording from such a neuron would therefore allow one to
differentiate between choice or reward epochs and the test phase, but not
between choice and reward epochs. Hence, depending on a neuron’s partic-
ipation in various assemblies, numerous patterns of differential activity may
be observed for single units, whereas at the same time, the cell assembly gives
rise to a unique pattern at the network level.
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studies employing different analysis methodologies provide con-
verging evidence for the organization of neurons into functional
ensembles at different temporal scales.

ACC and Functional Assemblies in Behavioral Monitoring. Transient
lesions of the rat ACC produced significant impairments on the
same task used here (35), causing numerous revisits to previously
baited arms indicative of an inability to update responding as
reward contingencies changed. Consistent with the putative
function of the ACC in monitoring and updating response
policies (39), single-unit activity in this area is most often related
to specific movements, movement sequences, or response choices,
as well as to rewards, specific action-reward pairs, or to the
detection of response errors (21–27, 29–33). One important aspect
of these single-unit correlates is their highly dynamical nature, with
neural firing rates changing as a function of task context and reward
magnitude even for the very same movements (24, 32, 40), or, vice
versa, with the same neurons coding for very different movements
in different tasks (29, 40). This high degree of flexibility and context
dependence supports the view of the ACC as a device for moni-
toring or attending to actions (16, 17).

Within this framework, the functional organization into as-
semblies and the transitions among them may help to bind
different cognitive attributes of a response strategy together, and
to connect actions to subsequent outcomes (39). Performing a
complex or novel task requires an animal to integrate various
sensory, motor, reward, and memory aspects, and the transient
formation of dynamic assemblies in the ACC as observed here
may reflect this process. In this sense, the assemblies monitor the
animal’s progression in a task-dependent frame of reference or
‘‘task space.’’ The sequential transitions among ACC assemblies
and the transepoch activity of some of the units recorded may in
addition help to connect the temporally separated components
of action-outcome chains. Sequential transitions among active
populations as well as persistent activity of single frontal neurons
have been proposed previously as a means to link events through
time (33, 41–43). Thus, we propose that the capacity of neural
networks within the ACC to achieve and move between distinct
dynamical patterns of activity may provide the neural bases for
the putative role of the ACC in the selection and monitoring of
action-outcome sequences (39).

Methods
Data Acquisition. Male Long-Evans rats (225–250 g, Harlan) were deeply
anesthetized with 100 mg/kg ketamine and 10 mg/kg xylazine and placed into
a sterotaxic device where multielectrode arrays were inserted through a
cranial hole centered at A/P 2.2; M/L 0.8; D/V 2.5 relative to bregma and offset
10° from the vertical. After recovery, rats received 1 trial per day of the delayed
win-shift radial arm maze described in detail elsewhere (35). During the
training phase, four open arms were chosen randomly and baited, whereas
the remaining four arms were blocked by a door. Upon visiting all four baited
arms, the animal was locked into the last arm it visited, and the lights were
turned out. After a 60- to 90-sec delay, the light was turned on, the door
opened, and the animal began the testing phase. During the testing phase, all
eight arms were open, and the rat had to visit the four arms that were blocked
during the training phase. An error was scored as an entry into an arm that has
been visited previously during either the training or test phase. All behavior
was recorded with an online frame-capture COHU camera synchronized with
timestamps created by the Neuralynx recording system (Custom Software).
Off-line analysis of the video was used to collect the timestamps of behavior-
ally relevant events, from which event files were created with Event Session

Splitter (Neuralynx). At the end of the experiments, each animal was deeply
anesthetized with pentobarbital and transcardially perfused with 4% para-
formaldehyde (P6148, Sigma). The brains were then collected, sectioned at
50 �m, and placements were observed with a dissecting microscope at 20�
(Cambridge Instruments). See SI Text for in-depth description of arrays and
unit recording and isolation parameters.

Data Analysis. All spike trains were first convolved with Gaussian functions to
yield smoothed firing-rate functions and minimize the impact of random
spike-time jitter at the borders between bins. Spike trains were then binned
at 200 ms (approximately the inverse of the average firing rate of �4.8 Hz),
and all simultaneously recorded neurons were combined into N-dimensional
vectors iFR(t). To confirm the visually apparent separation among task epochs
statistically, a linear classifier was constructed for each trial and pair of task
epochs by determining an optimally separating (N�1)-dimensional hyper-
plane via discriminant analysis (e.g., ref. 44). The relative number of misclas-
sified points was taken as an index of separability and was compared to
surrogates constructed in the following way: Pairs of task epochs were first
combined, and from these unions of points k contingent segments were
randomly drawn, where k is the number of contingent segments for the
original task epoch. To determine significance for each dataset individually, a
nonparametric test was applied: significance at the 5% level was assigned by
establishing whether the original classification error was among the 5%
lowest within the set of 1 original and 99 surrogate classification errors.

To examine percentages of epoch-selective cells, for each cell n and task
epoch p, a selectivity index was computed as

sn	p
 �
��iFRn	t
�p � �iFRn	t
�qp�
�iFRn	t
�p � �iFRn	t
�qp

,

where ��� denotes the average across segments of epoch p, or across all of the
combined other epochs q, respectively. Significance of each index sn(p) at the
5% level was again established by a nonparametric comparison with 99
surrogates, where in this case k contingent segments, with k being the number
of segments making up epoch p, were drawn at random from the combination
of all epochs in the task.

For the correlation analysis, absolute standard zero-lag Pearson correlation
coefficients �rp(n,m)� were computed among scalar times series iFRn,p(t) and
iFRm,p(t) for all pairs of simultaneously recorded neurons n,m � {1..N}, n  m,
and separately for all task epochs p. To test significance nonparametrically, 99
surrogates were constructed for each rp(n,m) by randomly shuffling the bins
within series iFRn,p(t) and iFRm,p(t). For comparison of within-task-epoch to
across-task-epoch correlations, equal time slices were first drawn from all task
epochs to ensure that the surrogates drew from every task epoch with equal
likelihood. Surrogates were then constructed by drawing for each comparison
at random 20 bins from the union of time-equalized task epochs, original
correlations were also recomputed for the time-equalized task epochs, and
both original and across-epoch surrogate correlations were corrected by the
mean from 99 shuffles.

For the comparison of the two behavioral error groups, all separation errors
for each dataset were first normalized to the average separation error within
the respective set of surrogates. However, the two behavioral error groups
based on the median split did not differ with regard to either the average
number of recorded neurons (ME �13.8 for the low and ME �14.2 for the high
error group, two-sided t test: P � 0.86) or the standard deviation of this
number (SD �5.2 for the low and SD �5.8 for the high error group), i.e., the
dimensionality of the MUA spaces for those two groups was the same.

Further details of methods and methodological considerations can be
found in SI Text.
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