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Supplementary Materials 

General case: computing log likelihood  

We first describe the general case of computing the log likelihood of a sensory parameter θ 

that is encoded by the activity of N neurons. Each neuron’s tuning function is described by 

Φi(θ,S) where S represents the stimulus strength (e.g. contrast for gratings or coherence for 

random–dot motion) and fires ni spikes in response to the stimulus. The average number of 

spikes elicited is determined by the neuron’s mean firing rate (from the tuning function) 

multiplied by the stimulation time, t, and is subject to Poisson noise (equation (1)). Neurons 

are assumed to be statistically independent (equation (2)). Equation (3) describes the form 

of the log likelihood:  
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The last two terms on the right hand side (RHS) are clearly independent of θ and can be 

dropped. The second term on the RHS is a sum over all tuning curves for a given stimulus. 

For a homogeneous sensory representation, this term will generally sum to a constant and 

would therefore be independent of θ. Dropping these terms:  
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If the stimulus strength only scales the profile of the tuning curves and does not change 

their shape, Φi(θ,S) can be written as a product of two functions ƒi(θ) and g(S) and the log 

likelihood (after removing terms that are independent of θ) becomes: 
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To arrive at this solution we made four assumptions:  

1. Homogeneous sensory representation: This is a common property for many sensory 
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parameters (e.g. orientation and direction of motion). The uniformity of the 

representation is also expected for an unbiased cortical representation of sensory 

parameters. If this requirement were not satisfied the cortical representation would 

become biased. Log L would reflect this bias. Note that while population profiles need to 

be self–similar, the individual tuning curves can differ.  

2. Signal strength–invariant tuning functions: Contrast–independent orientation tuning for 

grating stimuli in the primary visual cortex (V1) is perhaps the most extensively studied 

instance of this widespread property
1
. Similarly, direction tuning in area MT is invariant 

with respect to the coherence of random–dot stimuli
2
. Our model highlights the 

importance of this property for computing likelihoods. Note that individual tuning curves 

are not required to have a particular shape so long as assumptions 1 and 2 are 

satisfied. Examples of the many kinds of tuning curves that could satisfy these 

requirements include: (1) Gaussian and circular Gaussian tuning curves; (2) a family of 

low–pass, band–pass and high–pass tuning curves; (3) a family of monotonically 

increasing and decreasing sigmoidal tuning curves.  

3. Statistical independence: The key assumption in our model is that the downstream 

output neurons do not take account of the structure of the interneuronal correlations 

between the sensory responses. This assumption is based on three factors: (1) 

interneuronal correlations that are stimulus–dependent
3 
cannot be straightforwardly 

taken into account without prior knowledge about either the stimulus or the full structure 

of the correlations; (2) the relatively constant variability observed across multiple stages 

of cortical hierarchy has may arise from the propagation – and not removal – of these 

correlations
4
; (3) the general structure of these correlations is not known. Available data 

on pairwise correlations in area MT suggest that neurons preferring similar directions 

are more correlated than neurons with more remote preferences
5
. The fact that the 

model ignores correlations does not excuse us from taking them into account in 

generating predictions. In the next section we describe the model of interneuronal 

correlations that we used to compute the log likelihood of direction of motion.  

4. Firing rate statistics: Poisson statistics can describe the variable firing pattern of cortical 

neurons reasonably well and may be the most widely used model of cortical firing. 

However, this is not a crucial assumption. The key requirement for our model is to have 

a log likelihood that is linear with respect to ni. The likelihood function can include any 

other term that is independent of the parameter we want to estimate. In particular, 

considering the family of exponential distribution functions of the form:  
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When φ is treated as a nuisance parameter, it is evident that our formulation holds for all 

members of the exponential family for which ∑ c(ni,φ) is independent of ni. 

Example case: decoding motion from MT responses 

The encoding model of direction tuned neurons in area MT consists of N similar neurons 

with uniformly distributed preferred directions, θi. The tuning functions of the neurons are 

self–similar and have a circular Gaussian (von Mises) profile, ƒi(θ) with concentration 

parameter κ. The mean firing rate of neurons in the model approximates the response of 

MT neurons to random–dot stimuli where the percentage of coherently moving dots 

(coherence, C) measures the signal strength. Rmax is the maximum mean firing rate of the 

cells in response to a fully coherent stimulus (C=1), and ni is the number of spikes elicited in 

response to the stimulus and is described by Poisson statistics with a mean that is derived 

from the coherence of the stimulus, the tuning of the cell, ƒi(θ) and the stimulation time, t. 

The neurons are assumed to have pairwise correlations with correlation coefficient ρij. 

Neurons preferring the same direction are maximally correlated (correlation coefficient ρmax) 

and the strength of pairwise correlations monotonically decreases as the preferred 

directions of the neurons become more different; a circular Gaussian form with 

concentration parameter δ describes the profile of pairwise correlations (Fig. S1). 

The elements of the model are:  
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The log likelihood function, its mean, µL, and variance, σL
2 (up to a constant) can be 

straightforwardly derived:  
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We used equations (4) and (5) to examine the behavior of the model in a motion detection 

task (Fig. 3a). By assuming that log L(θ), at the limit of large N, has a Gaussian distribution, 

the hit and false alarm rates can be computed using standard signal detection theory (SDT). 

To compute the false alarm rate we assumed that all MT neurons have a mean firing rate of 

Rmin imp/s in response to zero coherence motion. We computed the individual ROCs by 

changing the decision criterion from its largest possible value (hit and false alarms rates of 

zero) to its smallest value (hit and false alarm rates of 1); we computed d′ from these curves 

in the usual way (Fig. 3a).  

When discriminating between two alternatives, θ1 and θ2, we denote log L(θ1) and log L(θ2) 

by Lθ1  and Lθ2  respectively. The log likelihood ratio, log LR, and its first two moments can 

be written:  
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Assuming direction θ1 was presented, we can denote (θ1 – θ2)/2 with Δθ and (θ1 + θ2)/2 with 

θm, and the log LR becomes: 
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When the neurons are correlated, the pairwise interaction terms increase the variance 

substantially. To explore how this influences the performance of the model, we assumed 

that log LR, at the limit of large N, has a Gaussian distribution. The performance of the 
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model can then be quantified by:  
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We used equation (6) to measure our model’s performance for various two–alternative 

discrimination tasks (Fig. 3c). The coherence threshold for 80% correct discrimination was 

computed as a least square problem using the fminsearch unconstrained nonlinear 

optimization tool from Matlab (Version 7.0.4.352 (R14) Service Pack 2).  

To deal with multiple alternative discrimination tasks, we note that, for the case of motion 

discrimination, the log likelihood of any direction of motion can be readily computed from 

any other two non–degenerate log likelihoods. Imagine that we know two points on the full 

likelihood function, say, Lθ1  and Lθ2. We can write:  
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In matrix form, we can write:  
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and therefore, the log likelihood of any other direction, say, θ3 can be computed as follows: 
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To compute the performance of the model for multiple alternative motion discrimination 

(Fig. 3d), we assumed that the stimulus was a random–dot pattern moving at the direction θ 

= 0°. We took 10000 samples from the joint distribution of log likelihoods for θ = 0 and θ = 

45°. We then used these values and from equation (7), computed 10000 log likelihood 

values for all other alternative directions of motion, and asked on what percentage of the 

trials the log likelihood of θ = 0 exceeded the log likelihood of all other alternative directions. 

We then used a least-squares optimization (using fminsearch from Matlab) to compute the 
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coherence threshold for 80% correct discrimination.  

We used the same method to examine the performance of the model in a direction 

identification task. For a motion signal moving at the direction θ = 0°, we sampled 10000 

pairs of log likelihoods for θ = 0 and θ = 45° and from there computed the log likelihoods of 

all directions. On each trial, we extracted the direction with the largest log likelihood (using a 

max operation) and used the distribution of estimates around the true direction of motion (θ 

= 0) to compute the circular standard deviation as a function of motion strengths (Fig. 3b).  

All numerical calculations (Fig. 3 and 4) were carried out using Matlab software. The 

parameters used throughout were:  

Name Value Comments  

N 720 Results largely insensitive to values of N > 300  

κ 3 Equivalent to a bandwidth of ~ 90°; 
consistent with reported values in the literature2 

Rmin 10 imp/s Used to measure false alarm rates for motion detection; 
taken from reported values in the literature6 

Rmax 60 imp/s Results insensitive to its specific value; 
taken from reported values in the literature6  

ρmax 0.2 Results insensitive to its specific value; 
taken from reported values in the literature5 

δ 0.1 Changes the details of the quantitative predictions;  
empirical data not available; roughly consistent with literature5 
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Figure S1. Interneuronal correlation coefficient matrix. A grayscale representation of the 

structure of the interneuronal pairwise correlation coefficients. The elements on the diagonal 

are the correlation between pairs of neurons with the same preferred directions, ρmax; off–

diagonal elements decrease with a circular Gaussian profile for pairs of neurons with 

different preferred directions. Higher correlations are represented with lighter grays. 


