

Research Articles: Behavioral/Cognitive

Categorical Biases in Human Occipitoparietal Cortex

https://doi.org/10.1523/JNEUROSCI.2700-19.2019

Cite as: J. Neurosci 2019; 10.1523/JNEUROSCI.2700-19.2019

Received: 14 November 2019 Accepted: 3 December 2019

This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data.

Alerts: Sign up at www.jneurosci.org/alerts to receive customized email alerts when the fully formatted version of this article is published.

Copyright © 2019 the authors

Categorical Biases in Human Occipitoparietal Cortex 1

Edward F. Ester^{1*}, Thomas C. Sprague², John T. Serences³

- ¹Department of Psychology, Center for Complex Systems and Brain Sciences, and FAU Brain
- 6 Institute, Florida Atlantic University
 - ²Department of Psychological and Brain Sciences, University of California, Santa Barbara
 - ³Department of Psychology, Neurosciences Graduate Program, and Kavli Institute for Brain and
 - Mind, University of California, San Diego
 - *Correspondence:
- 12 13 Edward Ester
- Department of Psychology, Center for Complex Systems and Brain Sciences, and FAU Brain Institute 14
- 15 Florida Atlantic University
- 16 777 Glades Rd.
- Boca Raton, FL. 33431 17 eester@fau.edu
- 18
- 19

2

3

4

5

7

8 9

10

11

- Acknowledgments: Funding provided by NIH R01 EY025872 and a James S. McDonnell 20
- 21 Foundation award to J.T.S.. E.F.E., conceived and designed the experiment, collected and
- 22 analyzed the data, and wrote the paper. T.C.S. provided conceptual input during all phases of the
- project and edited the paper. J.T.S. supervised all phases of the project. The authors thank Kelvin 23
- 24 Lam for assistance with data collection for Experiment 2. The authors declare no competing 25 interests.
- 26

27 Word Counts:

- 28 29 Abstract: 183/250
- Significance Statement: 93/120 30
- Introduction: 463/650 31
- 32 Discussion: 1190/1500

33

Figure/Table Count: 18/0 34

Abstract

Categorization allows organisms to generalize existing knowledge to novel stimuli and to 36 discriminate between physically similar yet conceptually different stimuli. Humans, nonhuman 37 primates, and rodents can readily learn arbitrary categories defined by low-level visual features, 38 and learning distorts perceptual sensitivity for category-defining features such that differences 39 between physically similar yet categorically distinct exemplars are enhanced while differences 40 41 between equally similar but categorically identical stimuli are reduced. We report a possible 42 basis for these distortions in human occipitoparietal cortex. In three experiments, we used an 43 inverted encoding model to recover population-level representations of stimuli from multivoxel and multi-electrode patterns of human brain activity while human participants (both sexes) 44 classified continuous stimulus sets into discrete groups. In each experiment, reconstructed 45 46 representations of to-be-categorized stimuli were systematically biased towards the center of the 47 appropriate category. These biases were largest for exemplars near a category boundary, 48 predicted participants' overt category judgments, emerged shortly after stimulus onset, and could not be explained by mechanisms of response selection or motor preparation. Collectively, our 49 50 findings suggest that category learning can influence processing at the earliest stages of cortical visual processing. 51

52

54 Significance Statement 55 56 Category learning enhances perceptual sensitivity for physically similar yet categorically 57 different stimuli. We report a possible mechanism for these changes in human occipitoparietal cortex. In three experiments, we used an inverted encoding model to recover population-level 58 representations of stimuli from multivariate patterns in occipitoparietal cortex while participants 59 60 categorized sets of continuous stimuli into discrete groups. The recovered representations were 61 systematically biased by category membership, with larger biases for exemplars adjacent to a category boundary. These results suggest that mechanisms of categorization shape information 62 processing at the earliest stages of the visual system. 63

65	Categorization refers to the process of mapping continuous sensory inputs onto discrete
66	and behaviorally relevant concepts. It is a cornerstone of flexible behavior that allows organisms
67	to generalize existing knowledge to novel stimuli and to discriminate between physically similar
68	yet conceptually different stimuli. Many real-world categories are defined by a combination of
69	low-level visual properties such as hue, luminance, spatial frequency, and orientation. For
70	example, a forager might be tasked with determining whether a food source is edible based on
71	subtle variations in color, shape, size, and texture. Humans and other animals can readily learn
72	arbitrary novel categories defined by low-level visual properties (Goldstone, 1998; Ashby &
73	Maddox, 2005), and such learning "distorts" perceptual sensitivity for category-defining features
74	such that discrimination performance for physically similar yet categorically different stimuli is
75	increased (i.e., acquired distinctiveness; Goldstone, 1995; Newell & Bulthoff, 2002) and
76	discrimination performance for stimuli from the same category reduced (i.e., acquired similarity;
77	Livingston et al., 1998).
78	Invasive electrophysiological studies suggest that single-unit responses in early visual

79 areas index the physical properties of a stimulus but not its category membership, while singleunit responses in later areas index the category membership of a stimulus regardless of its 80 physical properties (e.g., Sigala & Logothetis, 2002; Freedman et al., 2001; Freedman & Assad, 81 82 2006). These results have been taken as evidence that category-selective responses are a de novo 83 property of higher-order visual areas. However, perceptual distortions following category learning could also reflect subtle changes in how to-be-categorized information is represented by 84 sensory neural populations (Folstein et al., 2012; Davis & Poldrack, 2013). Here we provide a 85 test of this possibility. In three experiments, we trained human participants (both sexes) to 86 87 classify sets of continuous stimuli into discrete groups. Next, next, we applied multivariate

88	models to noninvasive measurements of human brain activity (fMRI and EEG) from visual and
89	parietal cortical areas while participants categorized the same stimulus sets. This allowed us to
90	recover, visualize, and quantify stimulus-specific representations of to-be-categorized exemplars.
91	In Experiment 1 (fMRI), we show that reconstructed representations of to-be-categorized
92	orientations in visual areas V1-V3 are systematically biased towards the center of the category to
93	which they belong. These biases were correlated with trial-by-trial variability in overt category
94	judgments and were largest for orientations adjacent to the category boundary where they would
95	be most beneficial for discrimination performance. In Experiment 2, we utilized EEG to generate
96	time-resolved representations of to-be-categorized orientations and show that categorical biases
97	manifest shortly after stimulus onset (\leq 300 ms). In Experiment 3, we used EEG and a delayed
98	match-to-category task to show that categorical biases observed in Experiments 1 and 2 cannot
99	be explained by response biases or motor preparation. Collectively, our findings suggest that
100	mechanisms of categorization can shape information processing at the earliest stages of the
101	visual system.

JNeurosci Accepted Manuscript

Methods

104 General Overview

103

Participants. A total of 44 human volunteers (both sexes) participated in this study. Eight 105 106 participants completed Experiment 1 (fMRI), 28 participants completed Experiment 2 (EEG), and eight participants completed Experiment 3 (EEG). Experiments 1 and 2 were performed at 107 the University of California, San Diego, while Experiment 3 was performed at Florida Atlantic 108 109 University. Participants were recruited from the student body at each university. All study 110 procedures were approved by local institutional review boards, and all participants gave both 111 written and oral informed consent. Participants self-reported normal or corrected-to-normal visual acuity and were remunerated with cash incentives (\$20/h for fMRI and \$15/h for EEG). 112 Stimulus Displays. Stimulus displays were generated in MATLAB and rendered using 113 Psychophysics Toolbox software extensions (Kleiner et al., 2017). During Experiment 1 (fMRI), 114 displays were projected onto a 110 cm-wide screen placed at the base of the MRI table, and 115 116 participants viewed displays via a mirror attached to the MR head coil from a distance of 370 cm. During Experiments 2 and 3, displays were projected onto a 19-inch CRT monitor cycling at 117 120Hz (Experiment 2) or 85Hz (Experiment 3). Participants were seated approximately 65 cm 118 from the display (head position was not constrained). 119

120 Experiment 1 - fMRI

121 Participants. Eight neurologically intact human volunteers (AA, AB, AC, AD, AE, AF, AG, and

- 122 AH; six females) completed Experiment 1. Each participant completed a single one-hour
- 123 behavioral training session approximately 24-72 hours prior to scanning. Seven participants (AA,
- 124 AB, AC, AD, AE, AF, AG) completed two 2-hour experimental scan sessions; an eighth
- 125 participant (AH) completed a single 2-hour experimental scan session. Participants AA, AB, AC,

126 AD, AE, AF, and AH also completed a single 2-hour retinotopic mapping scan session. Data from this session were used to identify visual field borders in early visual cortical areas V1-127 hV4/V3A and subregions of posterior intraparietal sulcus (IPS0-3; see *Retinotopic Mapping*, 128 129 below). Behavioral Tasks. In separate runs (where "run" refers to a continuous block of 30 trials lasting 130 280 seconds) participants performed either an orientation mapping task or a category 131 132 discrimination task. Trials in each task lasted 3 seconds, and consecutive trials were separated by 133 a 5 or 7 s inter-trial-interval (pseudorandomly chosen on each trial). During the orientation mapping task, participants attended a stream of letters presented at fixation (subtending 1.0° x 134 1.0° from a viewing distance of 370 cm) while ignoring a task-irrelevant phase-reversing (15 Hz) 135 square-wave grating (0.8 cycles/deg with inner and outer radii of 1.16° and 4.58°, respectively) 136 137 presented in the periphery. On each trial, the grating was assigned one of 15 possible orientations 138 $(0^{\circ}-168^{\circ})$ in 12° increments). Participants were instructed to detect and report the identity of a target ("X" or "Y") in the letter stream using an MR-compatible button box. Only one target was 139 presented on each trial. Letters were presented at a rate of 10 Hz (50% duty cycle, i.e. 50 msec 140 on, 50 msec off), and targets could occur during any cycle from +750 to +2250 msec after 141 stimulus onset. During category discrimination runs, participants were shown displays containing 142 a circular aperture (inner and outer radii of 1.16° and 4.58° from a viewing distance of 370 cm) 143 144 filled with 150 iso-oriented bars (see Figure 1A). Each bar subtended $0.2^{\circ} \times 0.6^{\circ}$ with a stroke width of 8 pixels (1024 x 768 display resolution). Each bar flickered at 30 Hz and was randomly 145 replotted within the aperture at the beginning of each "up" cycle. 146 147 On each trial, all bars were assigned an orientation from 0°-168° in 12° increments. 148 Inspired by earlier work in non-human primates (Freedman & Assad, 2006), we randomly

149	selected and designated one of these orientations as a category boundary such that the seven
150	orientations counterclockwise to this value were assigned membership in "Category 1", while the
151	seven orientations clockwise to this value were assigned membership in "Category 2".
152	Participants were not informed that the category boundary was chosen from the set of possible
153	stimulus orientations. Participants reported whether the orientation shown on each trial was a
154	member of Category 1 or 2 (via an MR-compatible button box). Participants were free to respond
155	at any point during the trial, though the stimulus was always presented for a total of 3000 ms.
156	Each participant was familiarized and trained to criterion performance on the category
157	discrimination task during a one-hour behavioral testing session completed one to three days
158	prior to his or her first scan session. Written feedback ("Correct!" or "Incorrect") was presented
159	in the center of the display for 1.25 sec. after each trial during behavioral training and MR
160	scanning. Across either one $(N = 1)$ or two $(N = 7)$ scan sessions, each participant completed 7
161	(N = 1), 13 $(N = 1)$, 14 $(N = 1)$, 15 $(N = 1)$ or 16 $(N = 4)$ runs of the orientation mapping and
162	category discrimination tasks.
163	fMRI Acquisition and Preprocessing. Imaging data were acquired with a 3.0T GE MR 750
164	scanner located at the Center for Functional Magnetic Resonance imaging on the UCSD campus.
165	All images were acquired with a 32 channel Nova Medical head coil (Wilmington, MA). Whole-
166	brain echo-planar images (EPIs) were acquired in 35 3 mm slices (no gap) with an in-plane
167	resolution of 3 x 3 mm (192 x 192 mm field-of-view, 64 x 64 mm image matrix, 90° flip angle,
168	2000 ms TR, 30 ms TE). During retinotopic mapping scans (see below) EPIs were acquired in 31
169	3mm thick oblique slices (no gap) positioned over posterior visual and parietal cortex with an in-
170	plane resolution of 2 x 2 mm (192 x 192 mm field-of-view, 96 x 96 mm image matrix, 90° flip
171	angle, 2250 ms TR, 30 ms TE). EPIs were coregistered to a high-resolution anatomical image

172	collected during the same session (FSPGR T1-weighted sequence, 11 ms TR, 3.3 ms TE, 1100
173	ms TI, 172 slices, 18° flip angle, 1 mm ³ resolution), unwarped (FSL software extensions), slice-
174	time-corrected, motion-corrected, high-pass-filtered (to remove first-, second- and third-order
175	drift), transformed to Talairach space, and normalized (z-score) on a scan-by-scan basis. Data
176	from data from scan sessions were then co-registered to a high-resolution anatomical image
177	(FSPGR T1-weighted sequences; parameters as described above) collected during the retinotopic
178	mapping session.

Retinotopic Mapping. Retinotopically organized visual areas V1-hV4v/V3A were defined using 179 data from a single retinotopic mapping run collected during each experimental scan session. 180 Participants fixated a small dot at fixation while phase-reversing (8 Hz) checkerboard wedges 181 subtending 60° of polar angle (at maximum eccentricity) were presented along the horizontal or 182 vertical meridian (alternating with a period of 40 seconds; i.e., 20 seconds of horizontal 183 184 stimulation followed by 20 seconds of vertical stimulation). To identify visual field borders, we 185 constructed a general linear model with two boxcar regressors, one marking epochs of vertical stimulation and another marking epochs of horizontal stimulation. Each regressor was convolved 186 with a canonical hemodynamic function ("double gamma" as implemented in BrainVoyager 187 QX). Next, we generated a statistical parametric map marking voxels with larger responses 188 during epochs of vertical relative to horizontal stimulation. This map was projected onto a 189 190 computationally inflated representation of each participant's cortical surface for visualization to aid in the definition of the borders of visual areas V1, V2v, V2d, V3v, V3d, hV4v, and V3A. 191 Data from V2v and V2d were combined into a single V2 ROI, and data from V3v and V3d were 192 combined into a single V3 ROI. ROIs were also combined across cortical hemispheres (e.g., left 193

and right V1) as no asymmetries were observed and the stimulus was presented in the center ofthe visual field.

Seven participants (AA, AB, AC, AD, AE, AF, and AH) completed a separate two-hour 196 197 retinotopic mapping scan; data from this session were used to identify retinotopically organized regions of inferior parietal sulcus (IPS0-3). During each task run, participants were shown 198 displays containing a rotating wedge stimulus (period 24.75 or 36 sec) that subtended 72° of 199 200 polar angle with inner and outer radii of 1.75 and 8.75°, respectively. In alternating blocks, the 201 wedge contained a 4 Hz phase-reversing checkerboard or field of moving dots and participants were required to detect small, brief, and temporally unpredictable changes in checkerboard 202 203 contrast or dot speed. Six participants completed between 8 and 14 task runs. To compute the best polar angle for each voxel in IPS we shifted the signals from counterclockwise runs by twice 204 the estimated hemodynamic response function (HRF) delay ($2 \times 6.75 \text{ s} = 13.5 \text{ s}$), removed data 205 206 from the first and last full stimulus cycle, and reversed the time series so that all runs reflected 207 clockwise rotation. We next computed the power and phase of the response at the stimulus' period (either 1/24.75 or 1/36 Hz) and subtracted the estimated hemodynamic response function 208 209 delay (6.75 seconds) to align the signal phase in each voxel with the stimulus' location. Maps of orientation preference (computed via cross-correlation) were projected onto a computationally 210 inflated representation of each participant's grey-white matter boundary to aide in the 211 212 identification of visual field borders separating IPS0-3. An eighth participant (AG) chose not to participate in an additional retinotopic mapping session. For this participant, we estimated visual 213 field borders for visual areas V1-hV4/V3A. using data from the retinotopic mapping run 214 collected during the participant's sole experimental session. We did not attempt to define IPS 215 216 regions IPS0-3 for this participant.

217	Decoding Categorical Biases in Visual Cortex. We used a linear decoder to examine whether
218	fMRI activation patterns evoked by exemplars adjacent to the category boundary and at the
219	center of each category were more similar during the category discrimination task relative to the
220	orientation mapping task (i.e., acquired similarity). In the first phase of the analysis, we trained a
221	linear support vector machine (LIBSVM implementation; Chang & Lin, 2011) to discriminate
222	between the oriented exemplars at the center of each category (48° from the boundary) using
223	data from the orientation mapping and category discrimination tasks. To ensure internal
224	reliability, we implemented a "leave-one-run-out" cross validation scheme where data from all
225	but one scanning run was used to train the classifier and data from the remaining scanning run
226	were used for validation. This procedure was repeated until data from each scan had served as
227	the validation set, and the results were averaged across permutations. Next, we trained a second
228	classifier on activation patterns evoked by exemplars at the center of each category boundary and
229	used the trained classifier to predict the category membership of exemplars adjacent to the
230	category boundary. If category learning increases the similarity of activation patterns evoked by
231	exemplars within the same category, then within-category decoding performance should be
232	superior during the category discrimination task relative to the orientation mapping task.
233	Inverted Encoding Model of Orientation Selectivity. A linear inverted encoding model (IEM)
234	was used to recover a model-based representation of stimulus orientation from multivoxel
235	activation patterns measured in early visual areas (Brouwer & Heeger, 2011). The same general
236	approach was used during Experiments 1 (fMRI) and 2 (EEG). Specifically, we modeled the
237	responses of voxels (electrodes) measured during the orientation mapping task as a weighted
238	sum of 15 orientation-selective channels, each with an idealized response function (half-wave-
239	rectified sinusoid raised to the 14 th power). The maximum response of each channel was set to

unit amplitude; thus units of response are arbitrary. Let B_1 (*m* voxels or electrodes x n_1 trials) be

241 the response of each voxel (electrode) during each trial of the RSVP task, let C_1 (k filters x n_1

trials) be a matrix of hypothetical orientation filters, and let W (m voxels or electrodes x k filters)

243 be a weight matrix describing the mapping between B_1 and C_1 :

244

$$B_1 = WC_1$$

245

246 In the first phase of the analysis, we computed the weight matrix W from the voxel-wise

247 (electrode-wise) responses in B₁ via ordinary least-squares:

248

$$W = B_1 C_1^T (C_1 C_1^T)^{-1}$$

249

Next, we defined a test data set B_2 (*m* voxels or electrodes x n_2 trials) using data from the

251 category discrimination task. Given W and B_2 , a matrix of filter responses C_2 (k filters x n trials)

can be estimated via model inversion:

253

$$C_2 = (W^T W)^{-1} W^T B_2$$

254

 C_2 contains the reconstructed response of each modeled orientation channel (the channel

response function; CRF) on each trial of the category discrimination task. This analysis can be

257 considered a form of model-based, directed dimensionality reduction where activity patterns are

transformed from their original measurement space (fMRI voxels; EEG electrodes) into a

259 modeled information space (orientation-selective channels). Importantly, results from this

260 method cannot be used to infer any changes in orientation tuning - or any properties of neural responses - occurring at the single neuron level, and only assay the information content of large-261 scale patterns of neural activity (Sprague et al., 2018) Additionally, while it is the case that 262 arbitrary linear transforms can be applied to the basis set, model weights, and reconstructed 263 channel response function (Gardiner & Liu, 2019), results are uniquely defined for a given model 264 specification (Sprague, Boynton & Serences, 2019). Trial-by-trial CRFs were multiplied by the 265 266 original basis set to recover a full 180-degree function, circularly shifted to a common center (0°) 267 and sorted by category membership so that any category bias would manifest as a clockwise shift (i.e., towards the center of Category 2). 268

269 *Quantification of Bias in Orientation Representations*. To quantify categorical biases in

270 reconstructed model-based CRFs, these functions were fit with an exponentiated cosine function271 of the form:

272

$$f(x) = \alpha \left(e^{k(\cos(\mu - x) - 1)} \right) + \beta$$

273

where, *x* is a vector of channel responses and α , β , *k* and μ correspond to the amplitude (i.e., signal over baseline), baseline, concentration (the inverse of bandwidth) and the center of the function, respectively. Fitting was performed using a multidimensional nonlinear minimization algorithm (Nelder-Mead).

Category biases in the estimated center of each construction (μ) during the category discrimination task were quantified via permutation tests. For a given visual area (e.g., V1) we randomly selected (with replacement) stimulus reconstructions from eight of eight participants. Specifically, we computed a "mean" reconstruction by randomly selecting (with replacement)

282	and averaging reconstructions from all participants. The mean reconstruction was fit with the
283	cosine function described above, yielding point estimates of α , β , k , and μ . This procedure was
284	repeated 1,000 times, yielding 1,000 element distributions of parameter estimates. We then
285	computed the proportion of permutations where a $\boldsymbol{\mu}$ value less than 0 was obtained to obtain an
286	empirical <i>p</i> -value for categorical shifts in reconstructed representations.
287	Searchlight Decoding of Category Membership. We used a roving searchlight analysis (Ester et
288	al., 2015) to identify cortical regions beyond V1-V3 that contained category-specific
289	information. We defined a spherical neighborhood with a radius of 8 mm around each grey
290	matter voxel in the cortical sheet. We next extracted and averaged the normalized response of
291	each voxel in each neighborhood over a period from 4-8 seconds after stimulus onset (this
292	interval was chosen to account for typical hemodynamic lag of 4-6 seconds). A linear SVM
293	(LIBSVM implementation) was used to classify stimulus category using activation patterns
294	within each neighborhood. To classify category membership, we designated the three
295	orientations immediately counterclockwise to the category boundary (see Figure 1) as members
296	of Category 1 and the three orientations immediately clockwise of the boundary as members of
297	Category 2. We then trained our classifier to discriminate between categories using data from all
298	but one task run. The trained classifier was then used to predict category membership from
299	activation patterns measured during the held-out task run. This procedure was repeated until each
300	task run had been held out, and the results were averaged across permutations. Finally, we
301	repeated the same analysis using the three Category 1 and Category 2 orientations adjacent to the
302	second (orthogonal) category boundary (see Figure 1) and averaged the results across category
303	boundaries.

304	We identified neighborhoods encoding stimulus category using a leave-one-participant-
305	out cross validation approach (Esterman et al., 2010). Specifically, for each participant (e.g., AA)
306	we randomly selected (with replacement) and averaged classifier performance estimates from
307	each neighborhood from each of the remaining 7 volunteers (e.g., AB-AH). This procedure was
308	repeated 1000 times, yielding a set of 1000 classifier performance estimates for each
309	neighborhood. We generated a statistical parametric map (SPM) for the held-out participant that
310	indexed neighborhoods where classifier performance was greater than chance (50%) on 97.5% of
311	permutations (false-discovery-rate corrected for multiple comparisons across neighborhoods).
312	Finally, we projected each participant's SPM onto a computationally inflated representation of
313	his or her grey-white matter boundary and used Brain Voyager's "Create POIs from Map
314	Clusters" function with an area threshold of 25 mm ² to identify ROIs supporting above-chance
315	category classification performance. Because of differences in cortical folding patterns, some
316	ROIs could not be unambiguously identified in all 8 participants. Therefore, across participants,
317	we retained all ROIs that were shared by at least 7 out of 8 participants. Finally, we extracted
318	multivoxel activation patterns from each ROI and computed model-based reconstructions of
319	channel response functions during the RSVP and category tasks using a leave-one-run-out cross-
320	validation approach. Specifically, we used data from all but one task run to estimate a set of
321	orientation weights for each voxel in each ROI. We then used these weights and activation
322	patterns measured during the held-out task run to estimate a channel response function, which
323	contains a representation of stimulus orientation. This procedure was repeated until each task run
324	had been held out, and the results were averaged across permutations. Note that each
325	participant's ROIs were defined using data from the remaining 7 participants. This ensured that

participant-level reconstructions were statistically independent of the searchlight method used todefine ROIs encoding category information.

Within-participant Error Bars. We report estimates of within-participant variability (e.g., ±1

S.E.M.) throughout the paper. These estimates discard subject variance (e.g., overall differences
in BOLD response amplitude) and instead reflect variance related to the subject by condition(s)
interaction term(s) (i.e., variability in estimated channel responses). We used the approach
described by Cousineau (2005): raw data (e.g., channel response estimates) were de-meaned on a
participant by participant basis, and the grand mean across participants was added to each
participant's zero-centered data. The grand mean-centered data were then used to compute
estimates of standard error.

336 Experiment 2 - EEG

Participants. 29 new volunteers recruited from the UC San Diego community completed 337 338 Experiment 2. All participants self-reported normal or corrected-to-normal visual acuity and 339 gave both written and oral informed consent as required by the local Institutional Review Board. Each participant was tested in a single 2.5-3 hour experimental session (the exact duration varied 340 across participants depending on the amount of time needed to set up and calibrate the EEG 341 equipment). Unlike Experiment 1, participants were not trained on the categorization task prior 342 to testing. We adopted this approach in the hopes of tracking the gradual emergence of 343 344 categorical biases during learning. However, many participants learned the task relatively quickly (within 40-60 trials), leaving too few trials to enable a direct analysis of this possibility. 345 Data from one participant were discarded due to a high number of EOG artifacts (over 35% of 346 trials); the data reported here reflect the remaining 28 participants. 347

348 Behavioral Tasks.

349	In separate runs (where "run" refers to a continuous block of 60 trials lasting approximately 6.5
350	minutes), participants performed orientation mapping and category discrimination tasks similar
351	to those used in Experiment 1. During both tasks a rapid series of letters (subtending 1.14° x
352	1.14° from a viewing distance of 55 cm) was presented at fixation, and an aperture of 150 iso-
353	oriented bars (subtending $0.5^{\circ} \ge 1.2^{\circ}$) was presented in the periphery. The aperture of bars had
354	inner and outer radii of 1.96° and 9.13°, respectively. On each trial, the bars were assigned one of
355	15 possible orientations (again 0°-168° in 12° increments) and flickered at a rate of 30 Hz. Each
356	bar was randomly replotted within the aperture at the beginning of each "up" cycle. Letters in the
357	RSVP stream were presented at a rate of 6.67 Hz
358	During orientation mapping runs, participants detected and reported the presence of a
359	target letter (an X or Y) that appeared at an unpredictable time during the interval from +750
360	msec to +2250 ms following stimulus onset. Responses were made on a USB-compatible
361	number pad. During category discrimination runs, participants ignored the RSVP stream and
362	instead reported whether the orientation of the bar aperture was an exemplar from category "1"
363	or category "2". As in Experiment 1, we randomly designated one of the 15 possible stimulus
364	orientations as the category boundary such that the seven orientations counterclockwise to this
365	value were assigned to Category 1 and the seven orientations clockwise to this value were
366	assigned to Category 2. Participants could respond at any point during the trial, but the stimulus

367 was presented for a total of 3000 msec. Trials were separated by a 2.5 - 3.25 sec inter-trial-

368 interval (randomly selected from a uniform distribution on each trial). Each participant

369 completed four (N = 1), five (N = 10), six (N = 8), seven (N = 8), or eight (N = 1) blocks of the

370 category task and three (N = 1), four (N = 1), five (N = 5), six (N = 12), seven (N = 8), or eight

(N = 1) blocks of the orientation mapping task.

372	EEG Acquisition and Preprocessing. Participants were seated in a dimly lit, sound-attenuated,
373	and electrically shielded recording chamber (ETS Lindgren) for the duration of the experiment.
374	Continuous EEG was recorded from 128 Ag-AgCl ⁻ scalp electrodes via a Biosemi "Active Two"
375	system (Amsterdam, Netherlands). The horizontal electrooculogram (EOG) was recorded from
376	additional electrodes placed near the left and right canthi, and the vertical EOG was recorded
377	from electrodes placed above and below the right eye. Additional electrodes were placed over
378	the left and right mastoids. The horizontal and vertical EOG were recorded from electrodes
379	placed over the left and right canthi and above and below the right eye (respectively). Electrode
380	impedances were kept well below 20 k Ω , and recordings were digitized at 1024 Hz.
381	After testing, the entire EEG time series at each electrode was high- and low-pass filtered
382	(3 rd order zero-phase forward and reverse Butterworth) at 0.1 and 50 Hz and re-referenced to the
383	average of the left and right mastoids. Data from both tasks were epoched into intervals spanning
384	-1000 to +4000 msec from stimulus onset; the relatively large pre- and post-stimulus epochs
385	were included to absorb filtering artifacts that could affect later analyses. Trials contaminated by
386	EOG artifacts (horizontal eye movements $> 2^{\circ}$ and blinks) were identified and excluded from
387	additional analyses. Across participants an average of 5.58% ($\pm 1.67\%$) and 8.74% ($\pm 1.84\%$) of
388	trials from the orientation mapping and category discrimination tasks were discarded
389	(respectively). Finally, noisy channels (those with multiple deflections $\ge 100 \ \mu V$ over the course
390	of the experiment) were visually identified and eliminated (mean number of removed electrodes
391	across participants ± 1 S.E.M. = 2.25 ± 0.64).
392	Next, we identified a set of electrodes-of-interest (EOIs) with strong responses at the
393	stimulus' flicker frequency (30 Hz). Data from each task were re-epoched into intervals spanning

0 to 3000 msec around stimulus onset and averaged across trials and tasks (i.e., RSVP and

395	category discrimination), yielding a k electrode by t sample data matrix. We computed the
396	evoked power at the stimulus' flicker frequency (30 Hz) by applying a discrete Fourier transform
397	to the average time series at each electrode and selected the 32 electrodes with the highest
398	evoked power at the stimulus' flicker frequency for further analysis. These electrodes were
399	typically distributed over occipitoparietal electrode sites (see Figure 12).
400	To isolate stimulus-specific responses, the epoched timeseries at each electrode was
401	resampled to 256 Hz and then bandpass filtered from 29 to 31 Hz (zero-phase forward and
402	reverse 3 rd order Butterworth). We next estimated a set of complex Fourier coefficients
403	describing the power and phase of the 30 Hz response by applying a Hilbert transformation to the
404	filtered data. To visualize and quantify orientation-selective signals from frequency-specific
405	responses, we first constructed a complex-valued data set $B_1(t)$ (<i>m</i> electrodes x n_{train} trials). We
406	then estimated a complex-valued weight matrix $W(t)$ (<i>m</i> channels x k filters) using $B_1(t)$ and a
407	basis set of idealized orientation-selective filters C1. Finally, we estimated a complex-valued
408	matrix of channel responses $C_2(t)$ (<i>m</i> channels x n_{test} trials) given W(t) and complex-valued test
409	data set $B_2(t)$ (<i>m</i> electrodes x n_{test} trials) containing the complex Fourier coefficients measured
410	during the category discrimination task. Trial-by-trial and sample-by-sample response functions
411	were shifted in the same manner described above so that category biases would manifest as a
412	rightward (clockwise) shift towards the center of Category 2. We estimated the evoked (i.e.,
413	phase-locked) power of the response at each filter by computing the squared absolute value of
414	the average complex-valued coefficient for each filter after shifting. Categorical biases were
415	quantified using the same curve fitting analysis described in the main text.
416	To obtain an unbiased estimate of orientation selectivity in each electrode, we ensured

that the training data set B₁(t) contained an equal number of trials for each stimulus orientation 417

418 $(0-168^{\circ} \text{ in } 12^{\circ} \text{ increments})$. For each participant, we identified the stimulus orientation θ with the 419 N fewest repetitions in the orientation mapping data set after EOG artifact removal. Next, we constructed the training data set $B_1(t)$ by randomly selecting (without replacement) 1:N trials for 420 421 each stimulus orientation. Data from this training set were used to estimate a set of orientation weights for each electrode and these weights were in turn used to estimate a response for each 422 hypothetical orientation channel during the category discrimination task. To ensure that our 423 424 method generalized across multiple combinations of orientation mapping trials, we repeated this 425 analysis 100 times and averaged the results across permutations.

426 Experiment 3 - EEG

Participants. 8 volunteers recruited from the Florida Atlantic University community completed
Experiment 3. All participants self-reported normal or corrected-to-normal visual acuity and
gave both written and oral informed consent as required by the local Institutional Review Board.
Each participant was tested in a single 2-2.5 hour experimental session (the exact duration varied
across participants depending on the amount of time needed to set up and calibrate the EEG
equipment).

Behavioral Tasks. Participants performed six blocks of a spatial recall task followed by multiple 433 blocks of a delayed match-to-category (DMC) task. Both tasks used identical stimulus and 434 display geometry. During the spatial recall task, participants were shown a sample display 435 containing a disc (diameter 2.5° from a viewing distance of 60 cm) rendered in one of 12 polar 436 locations (0° to 330° in 30° increments) along the perimeter of an imaginary circle centered at 437 fixation (radius 7.5°). The sample display was shown for 250 ms and followed by a 1750 ms 438 blank delay. At the end of each trial, participants were shown a mouse cursor and instructed to 439 click on the position of the disc shown in the sample display. Participants were instructed to 440

441	prioritize accuracy over speed, though a 3000 ms response deadline was imposed. Each trial was
442	followed by a 1500-2200 ms blank interval (randomly sampled from a uniform distribution on
443	each trial). Each block featured 72 trials (six repetitions per stimulus position) and lasted
444	approximately six minutes. EEG data recorded during this task were used to train a position-
445	specific inverted encoding model (see below). Each participant completed six blocks of this task
446	After completing the spatial recall task, participants performed a delayed match-to-
447	category task. Participants were shown stimuli in the same 12 positions used during the spatial
448	recall task. However, for each participant we defined a category boundary such that half of the
449	possible stimulus positions were assigned membership in Category 1 and the remaining half
450	were assigned membership in Category 2. For example, the category boundary could be set such
451	that positions [315, 345, 15, 45, 75, 105] comprised Category 1 while positions [135, 165, 195,
452	225, 255, 285] comprised Category 2. The location of the category boundary was randomly and
453	independently chosen for each participant and held constant throughout the experiment. At the
454	beginning of each trial, a sample disc appeared in one of the 12 possible stimulus locations for
455	250 ms. After a 1750 ms delay period, a probe disc was presented. The probe could occupy any
456	of the 11 stimulus positions not occupied by the sample, and participants were required to judge
457	whether the position of the probe matched the category of the sample stimulus via keypress.
458	Participants were instructed to prioritize accuracy over speed, but a 3000 ms response limit was
459	imposed. Feedback (correct vs. incorrect) was presented at the end of each trial. Participants
460	completed 5 (N = 1) or 8 (N = 7) blocks of 72 trials.
461	EEG Acquisition and Preprocessing. Continuous EEG was recorded from 63 Ag/Ag-Cl

EEG Acquisition and Preprocessing. Continuous EEG was recorded from 65 Ag/Ag-Cl
 462 scalp electrodes via a Brain Products actiCHamp amplifier. An additional electrode was placed
 463 over the right mastoid. Data were recorded with a right mastoid reference and later re-referenced

464	to the algebraic mean of the left and right mastoids (10-20 site TP9 served as the left mastoid
465	reference). The horizontal and vertical electrooculogram (EOG) was recorded from electrodes
466	placed on the left and right canthi and above and below the right eye, respectively. All electrode
467	impedances were kept below 15 k Ω , and recordings were digitized at 1000 Hz. Recorded data
468	were bandpass filtered from 1 to 50 Hz (3 rd order zero-phase forward and reverse Butterworth
469	filters), epoched from a period spanning -1000 to +3000 ms relative to the start of each trial, and
470	baseline corrected from -250 to 0 ms. Muscle and electrooculogram artifacts were removed from
471	the data using independent components analysis (ICA) as implemented in EEGLAB (Delorme &
172	Makeig, 2004). Reconstructions of stimulus locations were computed from the spatial
473	topography of induced alpha-band (8-12 Hz) power measured across 17 occipitoparietal
174	electrode sites: O1, O2, Oz, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2, P4, P6, and P8.
475	Inverted Encoding Model. Experiment 3 relied on a fundamentally different signal than
476	Experiment 2 (induced-alpha-band activity vs. evoked 30 Hz power, respectively). Following
477	earlier research (Kok et al., 2017; Ester et al., 2018; Nouri & Ester, 2019), we used a variant of
478	the IEM approach described in Experiment 2 to compute location channel responses. We first
179	isolated alpha-band activity, by bandpass filtering the raw EEG time series at each electrode
480	from 8-12 Hz (zero-phase forward and reverse filters as implemented by EEGLAB's "eegfilt"
481	function), yielding a real-valued signal $f(t)$. The analytic representation of $f(t)$ was obtained by
482	applying a Hilbert transformation:

$$z(t) = f(t) + if(t)$$

185	where $i = \sqrt{-1}$ and $if(t) = A(t)e^{i\varphi(t)}$. Induced alpha power was computed by extracting and
186	squaring the instantaneous amplitude $A(t)$ of the analytic signal $z(t)$. We modeled alpha power at
187	each scalp electrode as a weighted sum of 12 location-selective channels, each with an idealized
188	tuning curve (a half-wave rectified cosine raised to the 12 th power). The maximum response of
189	each channel was normalized to 1, thus units of response are arbitrary. The predicted responses
190	of each channel during each trial were arranged in a k channel by n trials design matrix C .
191	Separate design matrices were constructed to track the locations of the blue and red discs across
192	trials (i.e., we reconstructed the locations of the blue and red discs separately, then later sorted
193	these reconstructions according to cue condition). The relationship between the data and the
194	predicted channel responses C is given by a general linear model of the form:

$$B = WC + N$$

496

497 where B is a *m* electrode by *n* trials training data matrix, W is an *m* electrode by *k* channel weight 498 matrix, and *N* is a matrix of residuals (i.e., noise).

To estimate W, we constructed a "training" data set containing an equal number of trials 499 500 from each stimulus location (i.e., 45-360° in 45° steps) condition. We first identified the location 501 φ with the fewest r repetitions in the full data set after EOG artifact removal. Next, we constructed a training data set B_{trn} (*m* electrodes by *n* trials) and weight matrix C_{trn} (*n* trials by k 502 channels) by randomly selecting (without replacement) 1:r trials for each of the eight possible 503 stimulus locations (ignoring cue condition; i.e., the training data set contained a mixture of 504 505 neutral and valid trials). The training data set was used to compute a weight for each channel C_i 506 via least-squares estimation:

$$W_i = B_{trn} C_{trn,i}^T (C_{trn,i} C_{trn,i}^T)^{-1}$$

508

where $C_{trn,i}$ is an *n* trial row vector containing the predicted responses of spatial channel *i* during each training trial.

511 After estimating the weight matrix W, we next estimated a set of spatial filters V that

512 capture the underlying channel responses while accounting for correlated variability between

513 electrode sites (i.e., the noise covariance; Kok et al. 2017):

514

$$V_i = \frac{\sum_i^{-1} W_i}{W_i^T \sum_i^{-1} W_i}$$

515

516 where Σ_i is the regularized noise covariance matrix for channel *i* and estimated as:

517

$$\sum_{i} = \frac{1}{n-1} \in_{i} \in_{i}^{T}$$

518

519 where *n* is the number of training trials and ε_i is a matrix of residuals:

520

$$\in_i = B_{trn} - W_i C_{trn,i}$$

522	Estimates of ε_i were obtained by regularization-based shrinkage using an analytically
523	determined shrinkage parameter (see Blankertz et al. 2011; Kok et al. 2017). An optimal spatial
524	filter v_i was estimated for each channel C_i , yielding an <i>m</i> electrode by <i>k</i> filter matrix <i>V</i> . Next, we

525 constructed a "test" data set B_{tst} (*m* electrodes by *n* trials) containing data from all trials not

526 included in the training data set and estimated trial-by-trial channel responses C_{tst} (k channels x n 527 trials) from the filter matrix V and the test data set:

528

$$C_{tst} = V^T B_{tst}$$

529

Trial-by-trial channel responses were interpolated to 360°, circularly shifted to a common 530 center (0° , by convention), and sorted by category membership. As in Experiments 1 and 2, 531 reconstructions were shifted and aligned so that any bias would manifest as a shift toward 532 Category B (clockwise). Finally, to ensure internal reliability this entire analysis was repeated 50 533 times, and unique (randomly chosen) subsets of trials were used to define the training and test 534 535 data sets during each permutation. The results were then averaged across permutations. Eve Movement Control Analyses – Experiments 2 and 3. Systematic biases in eye position can 536 contribute to orientation and location performance (e.g., Quax et al., 2019). We did not collect 537 538 eye position data from Experiment 1 (fMRI). However, different tasks were used to train and test the encoding model, which can be an effective way of mitigating the effects of eye movements 539 540 on stimulus decoding (Mostert et al., 2018). We also collected electrooculogram (EOG) data 541 during Experiments 2 and 3 (EEG). To examine whether eye position varied as a function of stimulus position during these experiments, we regressed trial-by-trial horizontal EOG 542 543 recordings (in μ V) onto the orientation of a to-be-categorized stimulus (Experiment 2) or the location of a to-be-categorized disc (Experiment 3). In both experiments, we identified and 544 545 excluded trials contaminated by large horizontal EOG artifacts ($\geq 40 \ \mu V$, which corresponds to a horizontal displacement of 2.5° assuming a voltage threshold of 16 μ V per degree; Lins et al., 546

547	1993), but smaller variations in eye positions - for example, along the inner stimulus aperture -
548	may have escaped detection. Using Experiment 2 as an example, we considered two possibilities.
549	First, participants may have foveated the inner aperture of the stimulus at a polar location
550	matching its orientation. To illustrate, participants could fove ate the inner aperture of a 45°
551	stimulus at a polar angle of 45° or 225°; likewise, they could foveate the inner aperture of a 168°
552	stimulus at a polar angle of 168° or 348°. Second, participants may have foveated the inner
553	aperture of each stimulus matching the center of the category it belonged to. We tested these
554	possibilities by calculating predicted horizontal eye positions under the assumption that
555	participants foveated the inner stimulus aperture at locations matching its orientation or the
556	center of the relevant category. Specifically, we converted records of stimulus orientation (or the
557	center of the category to which the stimulus belonged) to polar format and scaled the resulting
558	estimates by the radius of the inner stimulus aperture, then regressed these estimates onto
559	horizontal EOG activity (in μ V). If there is a systematic relationship between eye position and
560	either stimulus orientation or category at any point during a trial, then this analysis should yield
561	regression coefficients reliably greater than 0 μ V. Identical analyses were used to examine
562	systematic relationships between horizontal eye position and stimulus location in Experiment 3.
563	

<u>JNeurosci Accepted Manuscript</u>

565

566

Experiment 1 - fMRI

Results

We trained eight human volunteers to categorize a set of orientations into two groups, Category 1 567 and Category 2. The stimulus space comprised a set of 15 oriented stimuli, spanning 0-168° in 568 12° increments (Figure 1A-B). For each participant, we randomly designated one of these 15 569 570 orientations as a category boundary such that the seven orientations anticlockwise to the 571 boundary were assigned membership in Category 1 and the seven orientations clockwise to the 572 boundary were assigned membership in Category 2. Each participant completed a one-hour training session prior to scanning. Each participant's category boundary was kept constant across 573 all behavioral training and scanning sessions. Many participants self-reported that they learned 574 575 the rule delineating the categories in one or two 5-minute blocks of trials. Consequently, task 576 performance measured during scanning was extremely high, with errors and slow responses 577 present only for exemplars immediately adjacent to the category boundary (Figure 1C-D). 578 During each scanning session, participants performed the category discrimination task and an orientation model estimation task where they were required to report the identity of a target letter 579 580 embedded within a rapid stream presented at fixation while a task-irrelevant grating flickered in the background. Data from this task were used to compute an unbiased estimate of orientation 581 selectivity for each voxel in visual areas V1-hV4v/V3A (see below). 582 583 We first examined whether category training increased the similarity of activation patterns evoked by exemplars from the same category (i.e., acquired similarity). We tested this 584

patterns evoked by exemplars from the same category (i.e., acquired similarity). We tested this by training a linear decoder (support vector machine) to discriminate between activation patterns associated with exemplars at the center of each category (48° from the boundary), then used the trained classifier to predict the category membership of exemplars immediately adjacent to the

610

588	category boundary (±12°; Figure 2A). This analysis was performed separately for the orientation
589	mapping and category discrimination tasks. We reasoned that if category training homogenizes
590	activation patterns evoked by members of the same category, then decoding performance should
591	be superior during the category discrimination task relative to the orientation mapping task. This
592	is precisely what we observed (Figure 2B). For example, near-boundary decoding performance
593	in V1 was reliably above chance during the category discrimination task (p < 0.0001 , false-
594	discovery-rate-corrected bootstrap test), but not during the orientation mapping task when the
595	category boundary was irrelevant and the oriented stimulus was unattended ($p = 0.38$).
596	Importantly, the absence of robust decoding performance during the orientation mapping task
597	cannot be attributed to poor signal, as a decoder trained and tested on activation patterns
598	associated with exemplars at the center of each category (Figure 2C) yielded above-chance
599	decoding during both behavioral tasks (Figure 2D; $M = 0.58$ and 0.69 for the mapping and
600	discrimination tasks, respectively; $p < 0.01$, bootstrap test). Collectively, these results suggest
601	that category training can alter population-level responses at very early stages of the visual
602	processing hierarchy.
603	To better understand how category training influences orientation-selective activation
604	patterns in early visual cortical areas, we used an inverted encoding model (Brouwer & Heeger,
605	2011) to generate model-based reconstructed representations of stimulus orientation from these
606	patterns. For each visual area (e.g., V1), we first modelled voxel-wise responses measured during
607	the orientation mapping task as a weighted sum of idealized orientation channels, yielding a set
608	of weights that characterize the orientation selectivity of each voxel (Figure 3A). In the second

phase of the analysis, we reconstructed trial-by-trial representations of stimulus orientation by

combining these weights with the observed pattern of activation across voxels measured during

each trial of the category discrimination task, resulting in single-trial reconstructed channel
response function that contains a representation of stimulus orientation for each ROI on each trial
(Figure 3B). Finally, we sorted trial-by-trial reconstructions according to category membership
such that any bias would manifest as a clockwise (rightward) shift of the orientation
representation towards the center of Category 2 and quantified biases towards this category using
a curve-fitting analysis (Methods).

617 Note that stimulus orientation was irrelevant during the orientation mapping task used for 618 model weight estimation. We therefore reasoned that voxel-by-voxel responses evoked by each oriented stimulus would be largely uncontaminated by its category membership. Indeed, the 619 logic of our analytical approach rests on the assumption that orientation-selective responses are 620 quantitatively different during the orientation mapping and category discrimination tasks: if 621 622 identical category biases are present in both tasks then the orientation weights computed using data from either task will capture that bias and reconstructed representations of orientation will 623 not exhibit any category shift. This is precisely what we observed when we used a cross-624 validation approach to reconstruct stimulus representations separately for the orientation 625 626 mapping and category discrimination tasks (Figure 4).

As shown in Figure 5, reconstructed representations of orientation in visual areas V1, V2, and V3 were systematically biased away from physical stimulus orientation and towards the center of the appropriate category (shifts of 22.13°, 26.65°, and 34.57°, respectively; P < 0.05, bootstrap test, false-discovery-rate [FDR] corrected for multiple comparisons across regions; see Figure 6 for separate reconstructions of Category 1 and Category 2 orientations and Figure 7 for participant-by-participant reconstructions plotted by visual area). Similar, though less robust biases were also evident in hV4v and V3A (mean shifts of 9.73° and 6.45°, respectively; p >

634 0.19). A logistic regression analysis established that categorical biases in V1-V3 were strongly correlated with variability in overt category judgments (Figure 8). That is, trial-by-trial category 635 judgments were more strongly associated with the responses of orientation channels near the 636 637 center of each category rather than those near the physical orientation of the stimulus. 638 Importantly, because the location of the boundary separating categories 1 and 2 was randomly selected for each participant, it is unlikely that categorical biases shown in Figure 5 reflect 639 640 intrinsic biases in stimulus selectivity in early visual areas (e.g., due to oblique effects; Sun et al., 2013). 641

The category biases shown in Figure 5 may be the result of an adaptive process that facilitates task performance by enhancing the discriminability of physically similar but 643 categorically distinct stimuli. Consider a hypothetical example where an observer is tasked with 644 645 discriminating between two physically similar exemplars on opposite sides of a category 646 boundary. Discriminating between these alternatives should be challenging as each exemplar 647 evokes a similar and highly overlapping response pattern. However, discrimination performance could be improved if the responses associated with each exemplar are made more separable via 648 649 acquired distinctiveness following training (or equivalently, an acquired similarity between exemplars adjacent to the category boundary and exemplars near the center of each category). 650 Similar changes would be less helpful when an observer is tasked with discriminating between 651 652 physically and categorically distinct exemplars, as each exemplar already evokes a dissimilar and non-overlapping response. From these examples, a simple prediction can be derived: categorical 653 biases in reconstructed representations of orientation should be largest when participants are 654 shown exemplars adjacent to the category boundary and progressively weaker when participants 655 656 are shown exemplars further away from the category boundary.

657	We tested this possibility by sorting stimulus reconstructions according to the angular
658	distance between stimulus orientation and the category boundary (Figure 9). As predicted,
659	reconstructed representations of orientations adjacent to the category boundary were strongly
660	biased by category membership, with larger biases for exemplars nearest to the category
661	boundary ($\mu = 42.62^{\circ}$, 24.16°, and 20.12° for exemplars located 12°, 24°, and 36° from the
662	category boundary, respectively; FDR-corrected bootstrap $p < 0.0015$), while reconstructed
663	representations of orientations at the center of each category exhibited no signs of bias (μ = -
664	3.98° , p = 0.79; the direct comparison of biases for exemplars adjacent to the category boundary
665	and in the center of each category was also significant; $p < 0.01$). Moreover, the relationship
666	between average category bias and distance from the category boundary was well-approximated
667	by a linear trend (slope = -14.38°/step; $r^2 = 0.96$). Thus, category biases in reconstructed
668	representation are largest under conditions where they would facilitate behavioral performance
669	and absent under conditions where they would not.
670	Category-selective signals have been identified in multiple brain areas, including portions
671	of lateral occipital cortex, inferotemporal cortex, posterior parietal cortex, and lateral prefrontal

672 cortex (Sigala & Logothetis, 2002; Freedman et al., 2011; Freedman & Assad, 2006; Folstein et

al., 2012; Davis & Poldrack, 2013; Pourtois et al., 2008; Mack et al., 2013). We identified

674 category selective information in many of these same regions using a whole-brain searchlight-

675 based decoding analysis where a classifier was trained to discriminate between exemplars from

676 Category 1 and Category 2 (independently of stimulus orientation; Figure 10 and Methods).

677 Next, we used the same inverted encoding model described above to reconstruct representations

- of stimulus orientation from activation patterns measured in each area during each of the
- 679 orientation mapping and category discrimination tasks (reconstructions were computed using a

680 "leave-one-participant-out" cross-validation routine to ensure that reconstructions were independent of the decoding analysis used to define category-selective ROIs). We were able to 681 reconstruct representations of stimulus orientation in many of these regions during the category 682 683 discrimination task, but not during the orientation mapping task (where stimulus orientation was 684 task-irrelevant; Figure 11). This is perhaps unsurprising as representations in many mid-to-high order cortical areas are strongly task-dependent (e.g., Silver et al., 2005). As our analytical 685 686 approach requires an independent and unbiased estimate of each voxel's orientation selectivity 687 (e.g., during the orientation mapping task), this meant that we were unable to probe categorical biases in reconstructed representations in these regions. 688

689 Experiment 2 - EEG

Due to the sluggish nature of the hemodynamic response, the category biases shown in 690 691 Figures 5 and 9 could reflect processes related to decision making or response selection rather 692 than stimulus processing. In a second experiment, we evaluated the temporal dynamics of 693 category biases using EEG. Specifically, we reasoned that if the biases shown in Figures 5 and 9 reflect processes related to decision making, response selection, or motor planning, then these 694 biases should manifest only during a period shortly before the participants' response. 695 Conversely, if the biases are due to changes in how sensory neural populations encode features, 696 they should be evident during the early portion of each trial. To evaluate these alternatives, we 697 698 recorded EEG while a new group of 28 volunteers performed variants of the orientation mapping 699 and categorization tasks used in the fMRI experiment. On each trial, participants were shown a large annulus of iso-oriented bars that flickered at 30 Hz (i.e., 16.67 ms on, 16.67 ms off; Figure 700 701 12A). During the orientation mapping task, participants detected and reported the identity of a 702 target letter (an X or a Y) that appeared in a rapid series of letters over the fixation point.

Identical displays were used during the category discrimination task, with the caveat that
 participants were asked to report the category of the oriented stimulus while ignoring the letter
 stream.

706 The 30 Hz flicker of the oriented stimulus elicits a standing wave of frequency-specific 707 sensory activity known as a steady-state visually-evoked potential (SSVEP, Vialatte et al., 2010; 708 Figure 12B). The coarse spatial resolution of EEG precludes precise statements about the cortical 709 source(s) of these signals (e.g., V1, V2, etc.). However, to focus on visual areas (rather than 710 parietal or frontal areas) we deliberately entrained stimulus-locked activity at a relatively high 711 frequency (30 Hz). Our approach was based on the logic that coupled oscillators can only be entrained at high frequencies within small local networks, while larger or more distributed 712 networks can only be entrained at lower frequencies due to conduction delays (Breakspear et al., 713 714 2010). Indeed, a topographic analysis showed that evoked 30 Hz activity was strongest over a 715 localized region of occipitoparietal electrode sites. (Figure 12C). As in Experiment 1, 716 participants learned to categorize stimuli with a high degree of accuracy, with errors and slow responses present only for exemplars adjacent to a category boundary (Figure 12D-E) 717 We computed the power and phase of the 30 Hz SSVEP response across each 3,000 ms 718 trial and then used these values to reconstruct a time-resolved representation of stimulus 719 orientation (Garcia et al., 2013). Our analysis procedure followed that used in Experiment 1: In 720 721 the first phase of the analysis, we rank-ordered scalp electrodes by 30 Hz power (based on a discrete Fourier transform spanning the 3000 ms trial epoch, averaged across all trials of both the 722 orientation mapping and category discrimination tasks). Responses measured during the 723 orientation mapping task were used to estimate a set of orientation weights for the 32 electrodes 724 725 with the strongest SSVEP signals (i.e., those with the highest 30 Hz power; see Figure 12C) at

726	each timepoint. In the second phase of the analysis, we used these timepoint-specific weights and
727	corresponding responses measured during each trial of the category discrimination task across all
728	electrodes to compute a time-resolved representation of stimulus orientation (Figure 13A-B). We
729	reasoned that if the categorical biases shown in Figures 5 and 9 reflect processes related to
730	decision making or response selection, then they should emerge gradually over the course of
731	each trial. Conversely, if the categorical biases reflect changes in sensory processing, then they
732	should manifest shortly after stimulus onset. To test this possibility, we computed a temporally
733	averaged stimulus reconstruction over an interval spanning 0 to 250 ms after stimulus onset
734	(Figure 14B). A robust category bias was observed ($M = 23.35^\circ$; $p = 0.014$; bootstrap test)
735	suggesting that the intent to categorize a stimulus modulates how neural populations in early
736	visual areas respond to incoming sensory signals.

737 Importantly, the bandpass filter used to isolate 30 Hz activity will distort temporal 738 characteristics of the raw EEG signal by some amount. We estimated the extent of this distortion 739 by generating a 3 second, 30 Hz sinusoid with unit amplitude (plus 1 second of pre-and postsignal zero padding) and running it through the same filters used in our analysis path. We then 740 computed the time at which the filtered signal reach 25% of maximum. For an instantaneous 741 filter, this should occur at exactly 1 second (due to the pre- and post-signal zero-padding). We 742 estimated a signal onset of ~877 ms, or 123 ms prior to the start of the signal. Therefore, if 743 744 reconstruction amplitude is greater than zero at time t, then we can conclude that the pattern of scalp activity used to generate the stimulus reconstruction contained reliable orientation 745 information at time $t \pm 125$ ms. The same logic applies to estimates of reconstruction bias as the 746 747 reconstructions are based on data filtered using the same parameters. Importantly, we also 748 verified that there was no categorical bias in stimulus reconstructions prior to stimulus onset

(Figure 14), nor were categorical biases present when we reconstructed stimulus representations
using data from the orientation mapping and category discrimination tasks separately (Figure

751 15).

752 *Ruling out contributions from eve movements.* We identified and removed trials contaminated by large EOG artifacts (blinks and eye movements greater than $\sim 2^{\circ}$). However, small and consistent 753 eye movement patterns could nevertheless contribute to the orientation reconstructions reported 754 755 here. We examined this possibility by testing whether participants foveated the inner aperture of 756 the stimulus at polar locations matching its orientation (Figure 16A) or at polar locations 757 matching the center of the appropriate category (A vs B; Figure 16B; see Methods for details). No systematic differences in eye position were observed as a function of stimulus orientation or 758 category membership (Figure 16), suggesting that eye movements were not a major contributor 759 to orientation-specific reconstructions. 760

761 Experiment 3 - EEG

762 The results of Experiments 1 and 2 suggest that category learning can bias stimulusspecific representations encoded by occipitoparietal cortical areas. However, an alternative 763 explanation is that the biases shown in Figures 5, 9, and 13 reflect mechanisms of response 764 selection or decision making independent of categorical processing. Experiment 3 examined this 765 possibility by examining categorical biases in stimulus-specific memory representations while 766 767 participants performed a delayed match-to-category (DMC) task. A schematic of the task is shown in Figure 17A-B. At the beginning of each trial a sample disc rendered in one of 12 768 possible stimulus locations (15-345° polar angle in 30° along the perimeter of an imaginary 769 circle). Half of the disc positions were assigned membership in Category 1, while the remaining 770 half of disc positions were assigned membership in Category 2 (Figure 17A). Participants 771

772 remembered the position of the sample disc over a blank delay, then judged whether a probe disc 773 was rendered in a position matching the category of the sample disc. The location of the category boundary was randomly determined for each participant, and response feedback (correct vs. 774 incorrect) was provided after every trial. Like Experiment 2, participants were not trained on the 775 776 DMC task prior to testing and learned to associate specific positions with specific categories 777 through feedback. Before completing the DMC task, participants also completed a spatial 778 working memory task. Display and stimulus geometry were identical during the spatial memory 779 task and the DMC task. On each trial a sample disc was rendered in one of the same 12 positions 780 used during the DMC task. After a short delay, participants recalled the location of the sample disc via mouse click. 781

Following earlier work (e.g., Foster et al., 2016; Samaha et al., 2016; Ester et al., 2018; 782 Nouri & Ester, 2019), we used spatiotemporal patterns of induced alpha-band (8-12 Hz) activity 783 784 over occipitoparietal electrode sites to track the contents of spatial working memory during the 785 recall and DMC tasks. Specifically, we modeled sample-by-sample estimates of alpha band activity recorded during the spatial recall task as a combination of 12 location filters, each with 786 an idealized tuning curve (a cosine raised to the 12th power). The result of this step is a set of 787 weights that characterizes the location preferences of each scalp electrode. Next, we used these 788 weights and spatiotemporal patterns of alpha-band activity recorded during the DMC task to 789 790 compute an expected response for each location filter, yielding a time-resolved estimate of stimulus position. Trial-by-trial response functions were shifted to a common center (0° by 791 convention), averaged, and arranged such that any category bias would manifest as a clockwise 792 or positive shift towards the center of Category 2. 793

794	As expected, a robust category bias was observed during the delay period of the DMC
795	task (Figure 17C), though unlike Experiment 2 the bias seemed to emerge gradually over the
796	course of the delay period. To quantify this bias, we averaged channel responses from period
797	0.25 to 2.0 sec after onset of the sample display and fit the resulting function with an
798	exponentiated cosine (Quantification of Bias in Orientation Representations, Methods). Mean
799	reconstruction centers were reliably greater than 0° (M = 10.55°; $p = 0.002$, bootstrap test),
800	indicating a robust bias towards the center of the relevant category. Importantly, this bias cannot
801	be explained by mechanisms associated with decision making and response selection:
802	participants could not plan or implement a response until the probe stimulus was presented at the
803	end of the delay period. This result further suggests that the results of Experiments 1 and 2
804	cannot be wholly explained by mechanisms of response selection or bias.
805	Assessing contributions from eye movements. We identified and removed electrooculogram
806	artifacts from the data via independent components analysis. However, small and consistent eye
807	movement patterns opaque to ICA could nevertheless contribute to the location reconstructions
808	reported here. We examined this possibility by regressing time-resolved estimates of horizontal
809	EOG activity onto remembered stimulus locations. As shown in Figure 18, the regression
810	coefficients linking eye position with remembered locations were indistinguishable from 0 for
811	the duration of each trial, suggesting that eye movements were not a major determinant of
812	location reconstructions.

Discussion

814	Our findings suggest that category learning shapes information processing at the earliest
815	stages of the visual system. The results of Experiment 1 showed that representations of a to-be-
816	categorized stimulus encoded by population-level activity in early visual cortical areas were
817	systematically biased by their category membership. These biases were correlated with overt
818	category judgments and were largest for exemplars adjacent to the category boundary. The
819	results of Experiments 2 and 3 demonstrate that similar biases are present in orientation- and
820	location-specific reconstructions computed by human scalp EEG data, and further suggest that
821	our findings cannot be explained by response bias, motor planning, or eye movements.
822	The categorical biases reported here are strongly task dependent, and therefore must
823	reflect changes in responses caused by transient top-down factors rather than long-term changes
824	in feature or location selectivity. However, the effects of these top down modulations are
825	fundamentally different from task-dependent modulations reported elsewhere. In one example,
826	Ester et al. (2016) asked participants to attend the orientation or luminance of a peripheral
827	grating and found both multiplicative and additive enhancements of orientation-specific
828	reconstructions during the attend orientation condition relative to the attend luminance condition,
829	but no evidence for a shift like the one reported here. In a different study, Byers and Serences
830	(2014) examined changes in orientation-specific reconstructions before and after participants
831	underwent extensive training (10 1-hour sessions) in a challenging orientation discrimination
832	task. We observed changes in the amplitude (i.e., signal-to-noise ratio) of orientation-specific
833	reconstructions following training, but no evidence for a shift like the one reported in the current
834	study. In other studies, Scolari et al. (2012; 2014) examined changes in orientation-specific
835	reconstructions when participants performed fine-grained and coarse-grained orientation

836	discrimination tasks. Participants viewed two oriented gratings in sequence and judged whether
837	they were identical. During one experiment participants were cued to how the second grating
838	might differ from the first (clockwise vs. counterclockwise rotation), while in a second
839	experiment they were not. During the fine-grained discrimination task, the authors observed a
840	modest shift in orientation-specific reconstructions towards "off-target" neural populations that
841	maximally discriminated between two oriented stimuli, but only when participants were cued to
842	expect a clockwise or counterclockwise rotation. While this type of modulation is desirable while
843	performing a fine-discrimination task, it is qualitatively different than the shifts we report in the
844	current experiment, as participants have no way of anticipating what orientation will be
845	presented on each trial, nor the difference between that orientation and the category boundary.
846	Moreover, the shifts reported by Scolari et al. (2012) during fine discriminations were relatively
847	modest - at most few degrees. We report an opposite pattern of findings, where shifts are largest
848	for oriented exemplars immediately adjacent to the category boundary. Thus, while other studies
849	have documented task-dependent changes in orientation-specific reconstructions, those studies
850	have failed to reveal shifts in reconstructed representations (Ester et al., 2016; Byers & Serences
851	2014) or have revealed modest shifts that follow different patterns from those reported here
852	(Scolari et al. 2012).

Several mechanisms may be responsible for our findings. One possibility is that the orientation preferences of single-units (or populations of units) are systematically shifted towards the center of each category during the category discrimination task, much in the same way that neurons in the rodent auditory system exhibit emergent selectivity for categorically different stimuli (e.g., Xin et al., 2019) or in the same way that the spectral preferences of neural populations are biased by feature-based attention (David et al., 2008; Cukur et al., 2012). These

859	shifts are relatively small at the single unit level but could be amplified by a read-out
860	mechanisms that integrate the responses of large neural populations. A second possibility is that
861	participants strategically apply gain to neural populations that maximally discriminate between
862	to-be-categorized exemplars during the category discrimination task. Here there are no changes
863	in the spectral preferences of single units, but the responses of neurons that respond to stimuli
864	near the category boundary are amplified. These alternatives are not mutually exclusive; nor is
865	this an exhaustive list. Our data cannot resolve these possibilities. For example, several different
866	patterns of single-unit gain changes and/or tuning shifts can produce identical responses in a
867	single fMRI voxel, and different patterns of single-voxel modulation could produce categorical
868	biases in multivariate stimulus reconstructions (see, e.g., Sprague et al., 2018 for a detailed
869	discussion of this issue). Ultimately, targeted experiments that combine non-invasive
870	measurements of brain activity with careful psychophysical measurements and detailed model
871	simulations will be needed to conclusively identify the mechanisms responsible for the category
872	biases we have reported here.

873 Our findings appear to conflict with results from nonhuman primate research which 874 suggests that sensory cortical areas do not encode categorical information. However, there is reason to suspect that mechanisms of category learning might be qualitatively different in human 875 876 and non-human primates. For example, our participants learned to categorize stimuli based on performance feedback after approximately 10 minutes of training. In contrast, macaque monkeys 877 878 typically require six months or more of training using a similar feedback scheme to reach a 879 similar level of performance, and this extensive amount of training may influence how neural circuits code information (e.g., Itthipurripat et al., 2017; Birman & Gardner, 2015). Moreover, 880 there is growing recognition that the contribution(s) of sensory cortical areas to performance on a 881

visual task are highly susceptible to recent history and training effects (Itthipurripiat et al., 2017,
Chen et al., 2016; Liu & Pack, 2017). In one example (Liu & Pack, 2017), extensive training was
associated with a functional substitution of human visual area V3a for MT+ in discriminating
noisy motion patches. Thus, training effects may help explain why previous electrophysiological
experiments have found category-selective responses in association but not sensory cortical
areas.

888 Studies of categorization in non-human primates have typically employed variants of a 889 delayed match to category task, where monkeys are shown a sequence of two exemplars 890 separated by a blank delay interval and asked to report whether the category of the second exemplar matches the category of the first exemplar. The advantage of this task is that it allows 891 experimenters to decouple category-selective signals from activity related to decision making, 892 893 response preparation, and response execution. However, this same advantage also precludes 894 examinations of whether and/or how top-down category-selective signals interact with bottom-up 895 stimulus-specific signals. We made no effort to decouple category-selective and decision-related signals in Experiments 1-2, and thus the category biases observed in those studies could reflect 896 897 mechanisms of decision making, response selection, or motor planning. The results of Experiment 3 conflict with this interpretation by demonstrating that robust category biases are 898 present during the memory period of a delayed match-to-category task (Freedman & Assad, 899 900 2006).

Previous studies have identified cortical modules selective for faces (Kanwisher et al.,
1997), locations (Epstein & Kanwisher, 1998), actions (Astafiev et al., 2004; Huth et al., 2012),
bodies (Downing et al., 2001); animacy (Konkle & Caramazza, 2013) and size (Konkle &
Caramazza, 2013). Other category distinctions (e.g., tools vs. cars) lack specialized processing

905 modules but can be decoded from multivoxel patterns in multiple occipitotemporal regions (e.g., 906 Folstein et al., 2012). Our findings complement these studies by demonstrating that learning a novel and arbitrary category rule is correlated with rapid and reversible changes in stimulus-907 specific information processing at even earlier stages of the cortical visual processing hierarchy, 908 including V1 (see also Brouwer & Heeger, 2009; 2013). Category-dependent changes in early 909 visual areas may contribute to more complex forms of category selectivity exhibited by upstream 910 911 cortical areas, including portions of lateral occipital and inferotemporal cortex. This possibility 912 awaits further scrutiny. To summarize, we have shown that learning a novel and arbitrary category rule based on 913

a simple visual feature (orientation or location) correlates with rapid and reversible changes in
sensory and mnemonic representations encoded by regions in early occipitoparietal cortex. These
changes correlate with participants' overt category judgments, are largest for exemplars adjacent
to a category boundary, and cannot be explained by decision making or motor preparation.
Collectively, these results provide novel and important evidence suggesting that category
learning induces rapid-yet-reversable changes in information processing at early stages of the

921

920

cortical visual processing hierarchy.

922	References
923	Ashby FG, Maddox WT (2005) Human category learning. Annu Rev Psychol 56:148-178.
924	Astafiev SV, Stanley CM, Shulman GL, Corbetta M (2004) Extrastriate body area in human
925	occipital cortex responds to the performance of motor actions. Nat Neurosci 7:542-548
926	Birman D, Gardiner JL (2015) Parietal and prefrontal: categorical differences? Nat Neurosci
927	19:5-7
928	Breakspear M, Heitmann S, Daffertshofer A (2010) Generative models of cortical oscillations:
929	Neurobiological implication of the Kuramoto model. Front Hum Neurosci 4:190
930	Brouwer GJ, Heeger DJ (2011) Decoding and reconstructing color from responses in human
931	visual cortex. J Neurosci 29:13992-14003
932	Brouwer GJ, Heeger DJ (2011) Cross-orientation suppression in human visual cortex. J
933	Neurophysiol 106:2108-2119.
934	Brouwer GJ, Heeger DJ (2013) Categorical clustering of the neural representation of color. J
935	Neurosci 33:15454-15465
936	Byers A, Serences JT (2014) Enhanced attentional gain as a mechanism for generalized
937	perceptual learning in human visual cortex. J Neurophysiol 112:1217-1227
938	Chang C-C, Lin CJ (2011) LIBSVM: A library for support vector machines. ACM Trans Intell
939	Syst Technol 2(27):1-27
940	Chen N, Cai P, Zhou T, Thompson B, Fang F (2016) Perceptual learning modifies the functional
941	specializations of visual cortical areas. Proc Natl Acad Sci USA 113:5724-5729
942	Cousineau D (2005) Confidence intervals in within-subject designs: A simpler solution to Loftus
943	& Masson's method. Quant Meth Psych 1:42-45

944	Cukur T, Nishimoto S, Huth AG, Gallant JL (2013) Attention during natural vision warps
945	semantic representation across the human brain. Nat Neurosci 16:763-770
946	David SV, Hayden BY, Mazer JA, Gallant JL (2008) Attention to stimulus features shifts
947	spectral tuning of V4 neurons during natural vision. Neuron 59:509-521
948	Davis T, Poldrack RA (2013) Quantifying the internal structure of categories using a neural
949	typicality measure. Cereb Cortex 24:1720-1737.
950	Downing PE, Jiang Y, Shuman M, Kanwisher N (2001) A cortical area selective for visual
951	processing of the human body. Science 293:2470-2473
952	Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature
953	392:598
954	Ester EF, Sprague TC, Serences JT (2015) Parietal and frontal cortex encode stimulus-specific
955	mnemonic representations during visual working memory. Neuron 87:893-905.
956	Ester EF, Nouri A, Rodriguez L (2018) Retrospective cues mitigate information loss in human
957	cortex during working memory storage. J Neurosci 38:8538-8548
958	Esterman M, Tamber-Rosenau BJ, Chiu Y-C, Yantis S (2010) Avoiding non-independence in
959	fMRI data analysis: Leave one subject out. NeuroImage 50:572-576
960	Folstein JR, Palmeri TJ, Gauthier I (2012) Category learning increases discriminability of
961	relevant object dimensions in visual cortex. Cereb Cortex 23:714-823.
962	Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2011) Categorical representation of visual
963	stimuli in the primate prefrontal cortex. Science 291:312-316
964	Freedman DJ, Assad JA (2006) Experience-dependent representation of visual categories in
965	parietal cortex. Nature 443:85-88.

966	Friston K (2010) The free-energy principle: A unified brain theory? Nat Rev Neurosci 11:127-
967	138
968	Garcia JO, Sreenivasan R, Serences JT (2013) Near-real-time feature-selective modulations in
969	human cortex. Curr Biol 23:515-522
970	Gardiner JL, Liu T (2019) Inverted encoding models reconstruct an arbitrary model response, not
971	the stimulus. eNeuro
972	Goldstone RL (1994) Influence of categorization on perceptual discrimination. J Exp Psychol
973	Gen 123:178-200
974	Goldstone RL (1998) Perceptual Learning. Annu Rev Psychol 49:585-612
975	Huth AG, Nishimoto S, Vu AT, Gallant JL (2012) A continuous semantic space describes the
976	representation of thousands of object and action categories across the human brain.
977	Neuron 76:1210-1224
978	Itthipurripat S, Cha K, Byers A, Serences JT (2017) Two different mechanisms support selective
979	attention at different phases of training. PLOS Biology
980	Jazayeri M, Movshon JA (2006) Optimal representation of sensory information by neural
981	populations. Nat Neurosci 9:690-696
982	Kanwisher N, McDermott J, Chun MM (1997) The fusiform face area: a module in human
983	extrastriate cortex specialized for face perception. J Neurosci 17:4302-4311
984	Konkle T, Caramazza A (2013) Tripartite organization of the ventral stream by animacy and
985	object size. J Neurosci 33:10235-10242
986	Kleiner M, Brainard D, Pelli D (2007) What's new in Psychtoolbox-3. Perception 36(14)
987	Koida K, Komatsu H (2007) Effects of task demands on the responses of color-selective neurons

988 in the inferior temporal cortex. Nat Neurosci 10:108-116

989 Liu LD, Pack CC (2017) The contribution of area MT to visual motion perception depends on training. Neuron 95:436-446 990

Livingston K, Andrews J, Harnad S (1998) Categorical perception effects induced by category 991 learning. J Exp Psychol Learn Mem Cogn 24:732-753. 992

993 Mack ML, Preston AR, Love BC (2013) Decoding the brain's algorithm for categorization from it's neural implementation. Curr Biol 23:2023-2027. 994

995 Martinez-Trujillo JC, Treue S (2004) Feature-based attention increases the selectivity of

population responses in primate visual cortex. Curr Biol 14:744-751. 996

Navalpakkam V, Itti L (2007) Search goal tunes visual features optimally. Neuron 53:605-617 997

Newell FN, Bulthoff HH (2002) Categorical perception of familiar objects. Cognition 85:113-998 143 999

Nouri A, Ester EF (2019) Recovery of information from latent memory stores decreases over 1000 1001 time. Cogn Neurosci doi: 10.1080/17588928.2019.1617258

1002 Pourtois G, Schwartz S, Spiridon M, Martuzzi R, Vuilleumier P (2008) Object representations

for multiple visual categories overlap in lateral occipital and medial fusiform cortex. 1003

Cereb Cortex 19:1806-1819 1004

Rao RPN, Ballard DH (1999) Predictive coding in the visual cortex: A functional interpretation 1005 1006 of some extra-classical receptive-field effects. Nat Neurosci 2:79-87

1007 Scolari M, Serences JT (2010) Basing perceptual decision on the most informative sensory neurons. J Neurophysiol 104:2266-2273 1008

Scolari M, Byers A, Serences JT (2012) Optimal deployment of attentional gain during fine 1009 discriminations. J Neurosci 32:7723-7733

1011	Sigala N, Logothetis NK (2002) Visual categorization shapes feature selective in the primate
1012	temporal cortex. Nature 415:318-320.
1013	Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human
1014	parietal cortex. J Neurophysiol 94:1358-1371
1015	Sprague TC, Adam KCS, Foster JJ, Rahmati M, Sutterer DW, Vo VA (2018) Inverted encoding
1016	models assay population-level stimulus representations, not single-unit neural tuning.
1017	eNeuro 5(3)
1018	Sun P, Gardiner JL, Costagli M, Ueno K, Waggoner RA, et al. Demonstration of tuning to
1019	stimulus orientation in the human cortex: A high-resolution fMRI study with a novel
1020	continuous stimulation paradigm. Cereb Cortex 23:1618-1629
1021	Vialatter F-B, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked
1022	potentials: Focus on essential paradigms and future perspectives. Prog Neurobiol 90:418-
1023	438

1026 Figure 1. Overview of Experiment 1. (A) Participants viewed displays containing a circular 1027 aperture of iso-oriented bars. On each trial, the bars were assigned one of 15 unique orientations 1028 from 0-168°. (B) We randomly selected and designated one stimulus orientation as a category 1029 boundary (black dashed line), such that the seven orientations counterclockwise from this value 1030 were assigned to Category 1 (red lines) and the seven orientations clockwise from this value 1031 were assigned to Category 2 (blue lines). (C) After training, participants rarely miscategorized 1032 orientations. (D) Response latencies are significantly longer for oriented exemplars near the category boundary (RT = response time; shaded regions in C-D are ±1 within-participant 1033 S.E.M.). 1034

1038 Figure 2. Category Decoding Performance. (A) We trained classifiers on activation patterns 1039 evoked by exemplars at the center of each category boundary during the orientation mapping and 1040 category discrimination task (blue lines), then used the trained classifier to predict the category 1041 membership of exemplars adjacent to the category boundary (red lines). (B) Decoding accuracy 1042 was significantly higher during the category discrimination task relative to the orientation mapping task (p = 0.01), suggesting that activation patterns evoked by exemplars adjacent to the 1043 1044 category boundary became more similar to activation patterns evoked by exemplars at the center 1045 of each category during the categorization task. The absence of robust decoding performance 1046 during the orientation mapping task cannot be attributed to poor signal or a uniform enhancement 1047 of orientation representations by attention, as a decoder trained and tested on activation patterns 1048 associated with exemplars at the center of each category (C) yielded above-chance decoding 1049 during both behavioral tasks (D). Decoding performance was computed from activation patterns 1050 in V1. Error bars depict ±1 S.E.M.

1055 Figure 3. Inverted Encoding Model. (A) In the first phase of the analysis, we estimated an 1056 orientation selectivity profile for each voxel retinotopically organized V1-hV4/V3a using data 1057 from an independent orientation mapping task. Specifically, we modeled the response of each 1058 voxel as a set of 15 hypothetical orientation channels, each with an idealized response function. 1059 (B) In the second phase of the analysis, we computed the response of each orientation channel 1060 from the estimated orientation weights and the pattern of responses across voxels measured 1061 during each trial of the category discrimination task. The resulting reconstructed channel 1062 response function (CRF) contains a representation of the stimulus orientation (example; 24 deg), 1063 which we quantified via a curve-fitting procedure. 1064

Figure 4. Reconstructions of stimulus orientation during the orientation mapping task

(blue) and the category discrimination task (red). Reconstructions were computed using a leave-one-run-out cross validation approach where data from N-1 runs were used to estimate 1070 channel weights and data from the remaining run were used to estimate channel responses. This 1071 procedure was iterated until all runs had been used to estimate channel responses and the results 1072 were averaged over permutations. No categorical biases were observed in any visual area for 1073 either task. Shaded regions depict ± 1 within-participant S.E.M. a.u., arbitrary units.

Figure 5. Reconstructed representations of Orientation in Early Visual Cortex. The vertical
bar at 0° indicates the actual stimulus orientation presented on each trial. Channel response
functions (CRFs) from Category 1 and Category 2 trials have been arranged and averaged such
that any categorical bias would manifest as a clockwise (rightward) shift in the orientation
representation towards the center of Category B. Shaded regions are ±1 within-participant S.E.M
(see Methods). Note change in scale between visual areas V1-V3 and hV4-V3A. a.u., arbitrary
units.

1086Figure 6. Stimulus Reconstructions during Category 1 and Category 2 trials. Shaded regions1087 $\operatorname{are} \pm 1$ within-participant S.E.M. a.u., arbitrary units.

1090 1091

Figure 7. Participant-level Stimulus Reconstructions. Each panel plots a reconstructed

1092 representation of stimulus orientation for a given participant (columns) and visual area (rows).

1093 Dashed blue lines are the estimated peak of each reconstruction (obtained via curve-fitting).

1094 Ordinate units are arbitrary.

Figure 8. Categorical Biases predict Choice Behavior. Each plot shows a logistic regression of 1098 1099 each orientation channel's response onto trial-by-trial variability in category judgments. A 1100 positive coefficient indicates a positive relationship between an orientation channel's response and the correct category judgment (i.e., Category B), while a negative coefficient indicates a 1101 negative relationship between an orientation channel's response and correct category judgment 1102 1103 (i.e., Category A). Red and blue horizontal lines at the top of each plot depict orientation channels whose estimated β coefficients are significantly below or above zero, respectively 1104 1105 (FDR-corrected permutation test; p < 0.05). Shaded regions are ± 1 within-participant S.E.M. 1106

1107 Figure 9. Category Biases Scale Inversely with Distance from the Category Boundary. (A) 1108 The reconstructions shown in Fig. 3 sorted by the absolute angular distance between each exemplar and the category boundary. In our case, the 15 orientations were bisected into two 1109 1110 groups of 7, with the remaining orientation serving as the category boundary. Thus, the 1111 maximum absolute angular distance between each orientation category and the category 1112 boundary was 48°. Participant-level reconstructions were pooled and averaged across visual areas V1, V2, and V3 as no differences were observed across these regions. Shaded regions are 1113 1114 ± 1 within-participant S.E.M. (B) shows the amount of bias for exemplars located 1, 2, 3, or 4 1115 steps from the category boundary (quantified via a curve-fitting analysis). Error bars are 95% 1116 confidence intervals. a.u., arbitrary units. 1117

1118

1119

1120Figure 10. Cortical Areas Supporting Robust Decoding of Category Information. We

trained a linear support vector machine to discriminate between activation patterns associated

with Category A and Category B exemplars (see *Searchlight Classification Analysis*; Methods).
The trained classifier revealed robust category information in multiple visual, parietal, temporal,

and prefrontal cortical areas, including many regions previously associated with categorization

- 1125 (e.g., posterior parietal cortex and lateral prefrontal cortex).
- 1126

Figure 11. Stimulus Reconstructions in Visual, Parietal, and Frontal cortical areas during
the Orientation Mapping and Categorization Tasks. During the orientation mapping task,
participants detected and reported the identity of a target presented in a stream of letters at
fixation. During the categorization experiment, participants categorized stimulus orientation into
two discrete groups. Shaded regions are ±1 within-participant S.E.M. IPL, inferior parietal
lobule; IPS, intraparietal sulcus; sPCS, superior precentral sulcus; IT, inferotemporal cortex,
IFG, inferior frontal gyrus. a.u., arbitrary units.

1137 1138 Figure 12. Summary of Experiment 2. (A) Participants viewed displays containing an aperture 1139 of iso-oriented bars flickering at 30 Hz. (B) The 30 Hz flicker entrained a frequency-specific 1140 response known as a steady-state visually-evoked potential (SSVEP). (C) Evoked 30 Hz power 1141 was largest over occipitoparietal electrode sites. We computed stimulus reconstructions (Fig. 7) 1142 using the 32 scalp electrodes with the highest power. The scale bar indicates the proportion of 1143 participants (out of 27) for which each electrode site was ranked in the top 32 of all 128 scalp 1144 electrodes. (D-E) Participants categorized stimuli with a high degree of accuracy; incorrect and 1145 slow responses were observed only for exemplars adjacent to a category boundary. Shaded 1146 regions are ± 1 within-participant S.E.M. 1147

1151Figure 13. Category Biases Emerge Shortly after Stimulus Onset. (A) Time-resolved1152reconstruction of stimulus orientation. Dashed vertical lines at time 0.0 and 3.0 seconds mark1153stimulus on- and offset, respectively. (B) Average channel response function during the first 2501154ms of each trial. The reconstructed representation exhibits a robust category bias (p < 0.01;1155bootstrap test). a.u., arbitrary units.

Figure 14. Stimulus- and category information are absent in pre-trial EEG activity. Timeaveraged reconstruction computed over an interval spanning -250 to 0 ms relative to stimulus

onset. The center of the reconstruction was statistically indistinguishable from 0° (p = 0.234; bootstrap test)

1171 Figure 15. Reconstructions of stimulus orientation during the orientation mapping task (A)

and the category discrimination task (B) during Experiment 2. Vertical dashed lines at time

1173 0.0 and 3.0 mark the start and end of each trial, respectively. Reconstructions were computed

using a leave-one-run-out cross validation approach where data from N-1 runs were used to

estimate channel weights and data from the remaining run were used to estimate channel

1176 responses. This procedure was iterated until all runs had been used to estimate channel responses

- and the results were averaged over permutations. Units of response are arbitrary.
- 1178 1179

1198 Figure 16. No systematic biases in eye position during orientation categorization

(Experiment 2). We regressed trial-by-trial records of stimulus orientation (A) or category (B)

1200 onto horizontal EOG activity. Thus, positive coefficients reflect a systematic relationship

1201 between stimulus orientation (or category) and eye position. No such biases were observed.

1202 Black vertical dashed lines at 0.0 and 3.0 depict the start and end of each trial. Shaded regions

depict the 95% within-participant confidence interval of the mean.

1207 Figure 17. Design and Results of Experiment 3. (A) Possible stimulus locations. The 1208 orientation of the category boundary (red dashed line) was randomly determined for each 1209 participant (example shown). (B) Delayed match-to-category (DMC) task. Participants 1210 remembered the position of a sample disc over a blank delay, then judged whether the location of 1211 a probe disc was drawn from the same location category or a different location category. In this 1212 example, the categories are defined by the boundary shown in panel A. (C) Location-specific 1213 reconstructions computed during the DMC task. Vertical dashed lines at 0.0 and 2.0 sec mark the 1214 onset of the sample and probe epochs, respectively. Participants could not prepare a response 1215 until the onset of the probe display, yet a robust category bias was observed during the delay 1216 period. This suggests that category biases observed in Experiments 1 and 2 are not solely due to 1217 mechanisms of response selection.

1220

Figure 18. No systematic biases in eye position during location categorization (Experiment
3). We regressed trial-by-trial records of stimulus location (A) or category (B) onto horizontal
EOG activity. Thus, positive coefficients reflect a systematic relationship between stimulus
orientation (or category) and eye position. No such biases were observed. Black vertical dashed
lines at 0.0 and 3.0 depict the start and end of each trial. Shaded regions depict the 95% within-

1226 participant confidence interval of the mean.