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Abstract 35 

Categorization allows organisms to generalize existing knowledge to novel stimuli and to 36 

discriminate between physically similar yet conceptually different stimuli. Humans, nonhuman 37 

primates, and rodents can readily learn arbitrary categories defined by low-level visual features, 38 

and learning distorts perceptual sensitivity for category-defining features such that differences 39 

between physically similar yet categorically distinct exemplars are enhanced while differences 40 

between equally similar but categorically identical stimuli are reduced. We report a possible 41 

basis for these distortions in human occipitoparietal cortex. In three experiments, we used an 42 

inverted encoding model to recover population-level representations of stimuli from multivoxel 43 

and multi-electrode patterns of human brain activity while human participants (both sexes) 44 

classified continuous stimulus sets into discrete groups. In each experiment, reconstructed 45 

representations of to-be-categorized stimuli were systematically biased towards the center of the 46 

appropriate category. These biases were largest for exemplars near a category boundary, 47 

predicted participants’ overt category judgments, emerged shortly after stimulus onset, and could 48 

not be explained by mechanisms of response selection or motor preparation. Collectively, our 49 

findings suggest that category learning can influence processing at the earliest stages of cortical 50 

visual processing.  51 

 52 

53 
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Significance Statement 54 
 55 

Category learning enhances perceptual sensitivity for physically similar yet categorically 56 

different stimuli. We report a possible mechanism for these changes in human occipitoparietal 57 

cortex. In three experiments, we used an inverted encoding model to recover population-level 58 

representations of stimuli from multivariate patterns in occipitoparietal cortex while participants 59 

categorized sets of continuous stimuli into discrete groups. The recovered representations were 60 

systematically biased by category membership, with larger biases for exemplars adjacent to a 61 

category boundary. These results suggest that mechanisms of categorization shape information 62 

processing at the earliest stages of the visual system.  63 

  64 
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Categorization refers to the process of mapping continuous sensory inputs onto discrete 65 

and behaviorally relevant concepts. It is a cornerstone of flexible behavior that allows organisms 66 

to generalize existing knowledge to novel stimuli and to discriminate between physically similar 67 

yet conceptually different stimuli. Many real-world categories are defined by a combination of 68 

low-level visual properties such as hue, luminance, spatial frequency, and orientation. For 69 

example, a forager might be tasked with determining whether a food source is edible based on 70 

subtle variations in color, shape, size, and texture. Humans and other animals can readily learn 71 

arbitrary novel categories defined by low-level visual properties (Goldstone, 1998; Ashby & 72 

Maddox, 2005), and such learning “distorts” perceptual sensitivity for category-defining features 73 

such that discrimination performance for physically similar yet categorically different stimuli is 74 

increased (i.e., acquired distinctiveness; Goldstone, 1995; Newell & Bulthoff, 2002) and 75 

discrimination performance for stimuli from the same category reduced (i.e., acquired similarity; 76 

Livingston et al., 1998).  77 

Invasive electrophysiological studies suggest that single-unit responses in early visual 78 

areas index the physical properties of a stimulus but not its category membership, while single-79 

unit responses in later areas index the category membership of a stimulus regardless of its 80 

physical properties (e.g., Sigala & Logothetis, 2002; Freedman et al., 2001; Freedman & Assad, 81 

2006). These results have been taken as evidence that category-selective responses are a de novo 82 

property of higher-order visual areas. However, perceptual distortions following category 83 

learning could also reflect subtle changes in how to-be-categorized information is represented by 84 

sensory neural populations (Folstein et al., 2012; Davis & Poldrack, 2013). Here we provide a 85 

test of this possibility. In three experiments, we trained human participants (both sexes) to 86 

classify sets of continuous stimuli into discrete groups. Next, next, we applied multivariate 87 
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models to noninvasive measurements of human brain activity (fMRI and EEG) from visual and 88 

parietal cortical areas while participants categorized the same stimulus sets. This allowed us to 89 

recover, visualize, and quantify stimulus-specific representations of to-be-categorized exemplars. 90 

In Experiment 1 (fMRI), we show that reconstructed representations of to-be-categorized 91 

orientations in visual areas V1-V3 are systematically biased towards the center of the category to 92 

which they belong. These biases were correlated with trial-by-trial variability in overt category 93 

judgments and were largest for orientations adjacent to the category boundary where they would 94 

be most beneficial for discrimination performance. In Experiment 2, we utilized EEG to generate 95 

time-resolved representations of to-be-categorized orientations and show that categorical biases 96 

manifest shortly after stimulus onset (≤ 300 ms). In Experiment 3, we used EEG and a delayed 97 

match-to-category task to show that categorical biases observed in Experiments 1 and 2 cannot 98 

be explained by response biases or motor preparation. Collectively, our findings suggest that 99 

mechanisms of categorization can shape information processing at the earliest stages of the 100 

visual system.  101 

  102 
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Methods 103 

General Overview 104 

Participants. A total of 44 human volunteers (both sexes) participated in this study. Eight 105 

participants completed Experiment 1 (fMRI), 28 participants completed Experiment 2 (EEG), 106 

and eight participants completed Experiment 3 (EEG). Experiments 1 and 2 were performed at 107 

the University of California, San Diego, while Experiment 3 was performed at Florida Atlantic 108 

University. Participants were recruited from the student body at each university. All study 109 

procedures were approved by local institutional review boards, and all participants gave both 110 

written and oral informed consent. Participants self-reported normal or corrected-to-normal 111 

visual acuity and were remunerated with cash incentives ($20/h for fMRI and $15/h for EEG).  112 

Stimulus Displays. Stimulus displays were generated in MATLAB and rendered using 113 

Psychophysics Toolbox software extensions (Kleiner et al., 2017). During Experiment 1 (fMRI), 114 

displays were projected onto a 110 cm-wide screen placed at the base of the MRI table, and 115 

participants viewed displays via a mirror attached to the MR head coil from a distance of 370 116 

cm. During Experiments 2 and 3, displays were projected onto a 19-inch CRT monitor cycling at 117 

120Hz (Experiment 2) or 85Hz (Experiment 3). Participants were seated approximately 65 cm 118 

from the display (head position was not constrained).  119 

Experiment 1 - fMRI 120 

Participants. Eight neurologically intact human volunteers (AA, AB, AC, AD, AE, AF, AG, and 121 

AH; six females) completed Experiment 1. Each participant completed a single one-hour 122 

behavioral training session approximately 24-72 hours prior to scanning. Seven participants (AA, 123 

AB, AC, AD, AE, AF, AG) completed two 2-hour experimental scan sessions; an eighth 124 

participant (AH) completed a single 2-hour experimental scan session. Participants AA, AB, AC, 125 
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AD, AE, AF, and AH also completed a single 2-hour retinotopic mapping scan session. Data 126 

from this session were used to identify visual field borders in early visual cortical areas V1-127 

hV4/V3A and subregions of posterior intraparietal sulcus (IPS0-3; see Retinotopic Mapping, 128 

below).  129 

Behavioral Tasks. In separate runs (where “run” refers to a continuous block of 30 trials lasting 130 

280 seconds) participants performed either an orientation mapping task or a category 131 

discrimination task. Trials in each task lasted 3 seconds, and consecutive trials were separated by 132 

a 5 or 7 s inter-trial-interval (pseudorandomly chosen on each trial). During the orientation 133 

mapping task, participants attended a stream of letters presented at fixation (subtending 1.0˚ x 134 

1.0˚ from a viewing distance of 370 cm) while ignoring a task-irrelevant phase-reversing (15 Hz) 135 

square-wave grating (0.8 cycles/deg with inner and outer radii of 1.16˚ and 4.58˚, respectively) 136 

presented in the periphery. On each trial, the grating was assigned one of 15 possible orientations 137 

(0˚-168˚ in 12˚ increments). Participants were instructed to detect and report the identity of a 138 

target (“X” or “Y”) in the letter stream using an MR-compatible button box. Only one target was 139 

presented on each trial. Letters were presented at a rate of 10 Hz (50% duty cycle, i.e. 50 msec 140 

on, 50 msec off), and targets could occur during any cycle from +750 to +2250 msec after 141 

stimulus onset. During category discrimination runs, participants were shown displays containing 142 

a circular aperture (inner and outer radii of 1.16˚ and 4.58˚ from a viewing distance of 370 cm) 143 

filled with 150 iso-oriented bars (see Figure 1A). Each bar subtended 0.2˚ x 0.6˚ with a stroke 144 

width of 8 pixels (1024 x 768 display resolution). Each bar flickered at 30 Hz and was randomly 145 

replotted within the aperture at the beginning of each “up” cycle.  146 

On each trial, all bars were assigned an orientation from 0˚-168˚ in 12˚ increments. 147 

Inspired by earlier work in non-human primates (Freedman & Assad, 2006), we randomly 148 
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selected and designated one of these orientations as a category boundary such that the seven 149 

orientations counterclockwise to this value were assigned membership in “Category 1”, while the 150 

seven orientations clockwise to this value were assigned membership in “Category 2”. 151 

Participants were not informed that the category boundary was chosen from the set of possible 152 

stimulus orientations. Participants reported whether the orientation shown on each trial was a 153 

member of Category 1 or 2 (via an MR-compatible button box). Participants were free to respond 154 

at any point during the trial, though the stimulus was always presented for a total of 3000 ms. 155 

Each participant was familiarized and trained to criterion performance on the category 156 

discrimination task during a one-hour behavioral testing session completed one to three days 157 

prior to his or her first scan session. Written feedback (“Correct!” or “Incorrect”) was presented 158 

in the center of the display for 1.25 sec. after each trial during behavioral training and MR 159 

scanning. Across either one (N = 1) or two (N = 7) scan sessions, each participant completed 7 160 

(N = 1), 13 (N = 1), 14 (N = 1), 15 (N = 1) or 16 (N = 4) runs of the orientation mapping and 161 

category discrimination tasks.  162 

fMRI Acquisition and Preprocessing. Imaging data were acquired with a 3.0T GE MR 750 163 

scanner located at the Center for Functional Magnetic Resonance imaging on the UCSD campus. 164 

All images were acquired with a 32 channel Nova Medical head coil (Wilmington, MA). Whole-165 

brain echo-planar images (EPIs) were acquired in 35 3 mm slices (no gap) with an in-plane 166 

resolution of 3 x 3 mm (192 x 192 mm field-of-view, 64 x 64 mm image matrix, 90° flip angle, 167 

2000 ms TR, 30 ms TE). During retinotopic mapping scans (see below) EPIs were acquired in 31 168 

3mm thick oblique slices (no gap) positioned over posterior visual and parietal cortex with an in-169 

plane resolution of 2 x 2 mm (192 x 192 mm field-of-view, 96 x 96 mm image matrix, 90° flip 170 

angle, 2250 ms TR, 30 ms TE). EPIs were coregistered to a high-resolution anatomical image 171 
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collected during the same session (FSPGR T1-weighted sequence, 11 ms TR, 3.3 ms TE, 1100 172 

ms TI, 172 slices, 18° flip angle, 1 mm3 resolution), unwarped (FSL software extensions), slice-173 

time-corrected, motion-corrected, high-pass-filtered (to remove first-, second- and third-order 174 

drift), transformed to Talairach space, and normalized (z-score) on a scan-by-scan basis. Data 175 

from data from scan sessions were then co-registered to a high-resolution anatomical image 176 

(FSPGR T1-weighted sequences; parameters as described above) collected during the retinotopic 177 

mapping session. 178 

Retinotopic Mapping. Retinotopically organized visual areas V1-hV4v/V3A were defined using 179 

data from a single retinotopic mapping run collected during each experimental scan session. 180 

Participants fixated a small dot at fixation while phase-reversing (8 Hz) checkerboard wedges 181 

subtending 60° of polar angle (at maximum eccentricity) were presented along the horizontal or 182 

vertical meridian (alternating with a period of 40 seconds; i.e., 20 seconds of horizontal 183 

stimulation followed by 20 seconds of vertical stimulation). To identify visual field borders, we 184 

constructed a general linear model with two boxcar regressors, one marking epochs of vertical 185 

stimulation and another marking epochs of horizontal stimulation. Each regressor was convolved 186 

with a canonical hemodynamic function (“double gamma” as implemented in BrainVoyager 187 

QX). Next, we generated a statistical parametric map marking voxels with larger responses 188 

during epochs of vertical relative to horizontal stimulation. This map was projected onto a 189 

computationally inflated representation of each participant’s cortical surface for visualization to 190 

aid in the definition of the borders of visual areas V1, V2v, V2d, V3v, V3d, hV4v, and V3A. 191 

Data from V2v and V2d were combined into a single V2 ROI, and data from V3v and V3d were 192 

combined into a single V3 ROI. ROIs were also combined across cortical hemispheres (e.g., left 193 
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and right V1) as no asymmetries were observed and the stimulus was presented in the center of 194 

the visual field.  195 

Seven participants (AA, AB, AC, AD, AE, AF, and AH) completed a separate two-hour 196 

retinotopic mapping scan; data from this session were used to identify retinotopically organized 197 

regions of inferior parietal sulcus (IPS0-3). During each task run, participants were shown 198 

displays containing a rotating wedge stimulus (period 24.75 or 36 sec) that subtended 72˚ of 199 

polar angle with inner and outer radii of 1.75 and 8.75˚, respectively. In alternating blocks, the 200 

wedge contained a 4 Hz phase-reversing checkerboard or field of moving dots and participants 201 

were required to detect small, brief, and temporally unpredictable changes in checkerboard 202 

contrast or dot speed. Six participants completed between 8 and 14 task runs. To compute the 203 

best polar angle for each voxel in IPS we shifted the signals from counterclockwise runs by twice 204 

the estimated hemodynamic response function (HRF) delay (2 x 6.75 s = 13.5 s), removed data 205 

from the first and last full stimulus cycle, and reversed the time series so that all runs reflected 206 

clockwise rotation. We next computed the power and phase of the response at the stimulus’ 207 

period (either 1/24.75 or 1/36 Hz) and subtracted the estimated hemodynamic response function 208 

delay (6.75 seconds) to align the signal phase in each voxel with the stimulus’ location. Maps of 209 

orientation preference (computed via cross-correlation) were projected onto a computationally 210 

inflated representation of each participant’s grey-white matter boundary to aide in the 211 

identification of visual field borders separating IPS0-3. An eighth participant (AG) chose not to 212 

participate in an additional retinotopic mapping session. For this participant, we estimated visual 213 

field borders for visual areas V1-hV4/V3A. using data from the retinotopic mapping run 214 

collected during the participant’s sole experimental session. We did not attempt to define IPS 215 

regions IPS0-3 for this participant.  216 
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Decoding Categorical Biases in Visual Cortex. We used a linear decoder to examine whether 217 

fMRI activation patterns evoked by exemplars adjacent to the category boundary and at the 218 

center of each category were more similar during the category discrimination task relative to the 219 

orientation mapping task (i.e., acquired similarity). In the first phase of the analysis, we trained a 220 

linear support vector machine (LIBSVM implementation; Chang & Lin, 2011) to discriminate 221 

between the oriented exemplars at the center of each category (48° from the boundary) using 222 

data from the orientation mapping and category discrimination tasks. To ensure internal 223 

reliability, we implemented a “leave-one-run-out” cross validation scheme where data from all 224 

but one scanning run was used to train the classifier and data from the remaining scanning run 225 

were used for validation. This procedure was repeated until data from each scan had served as 226 

the validation set, and the results were averaged across permutations. Next, we trained a second 227 

classifier on activation patterns evoked by exemplars at the center of each category boundary and 228 

used the trained classifier to predict the category membership of exemplars adjacent to the 229 

category boundary. If category learning increases the similarity of activation patterns evoked by 230 

exemplars within the same category, then within-category decoding performance should be 231 

superior during the category discrimination task relative to the orientation mapping task.  232 

Inverted Encoding Model of Orientation Selectivity. A linear inverted encoding model (IEM) 233 

was used to recover a model-based representation of stimulus orientation from multivoxel 234 

activation patterns measured in early visual areas (Brouwer & Heeger, 2011). The same general 235 

approach was used during Experiments 1 (fMRI) and 2 (EEG). Specifically, we modeled the 236 

responses of voxels (electrodes) measured during the orientation mapping task as a weighted 237 

sum of 15 orientation-selective channels, each with an idealized response function (half-wave-238 

rectified sinusoid raised to the 14th power). The maximum response of each channel was set to 239 
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unit amplitude; thus units of response are arbitrary. Let B1 (m voxels or electrodes x n1 trials) be 240 

the response of each voxel (electrode) during each trial of the RSVP task, let C1 (k filters x n1 241 

trials) be a matrix of hypothetical orientation filters, and let W (m voxels or electrodes x k filters) 242 

be a weight matrix describing the mapping between B1 and C1: 243 

 244 =  

 245 

In the first phase of the analysis, we computed the weight matrix W from the voxel-wise 246 

(electrode-wise) responses in B1 via ordinary least-squares: 247 

 248 =  ( )  

 249 

Next, we defined a test data set B2 (m voxels or electrodes x n2 trials) using data from the 250 

category discrimination task. Given W and B2, a matrix of filter responses C2 (k filters x n trials) 251 

can be estimated via model inversion:  252 

 253 = ( )  

 254 

C2 contains the reconstructed response of each modeled orientation channel (the channel 255 

response function; CRF) on each trial of the category discrimination task. This analysis can be 256 

considered a form of model-based, directed dimensionality reduction where activity patterns are 257 

transformed from their original measurement space (fMRI voxels; EEG electrodes) into a 258 

modeled information space (orientation-selective channels). Importantly, results from this 259 
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method cannot be used to infer any changes in orientation tuning – or any properties of neural 260 

responses - occurring at the single neuron level, and only assay the information content of large-261 

scale patterns of neural activity (Sprague et al., 2018) Additionally, while it is the case that 262 

arbitrary linear transforms can be applied to the basis set, model weights, and reconstructed 263 

channel response function (Gardiner & Liu, 2019), results are uniquely defined for a given model 264 

specification (Sprague, Boynton & Serences, 2019). Trial-by-trial CRFs were multiplied by the 265 

original basis set to recover a full 180-degree function, circularly shifted to a common center (0°) 266 

and sorted by category membership so that any category bias would manifest as a clockwise shift 267 

(i.e., towards the center of Category 2).  268 

Quantification of Bias in Orientation Representations. To quantify categorical biases in 269 

reconstructed model-based CRFs, these functions were fit with an exponentiated cosine function 270 

of the form: 271 

 272 ( ) =  ( ( ) ) +  

 273 

where, x is a vector of channel responses and α, β, k and μ correspond to the amplitude (i.e., 274 

signal over baseline), baseline, concentration (the inverse of bandwidth) and the center of the 275 

function, respectively. Fitting was performed using a multidimensional nonlinear minimization 276 

algorithm (Nelder-Mead).  277 

Category biases in the estimated center of each construction (μ) during the category 278 

discrimination task were quantified via permutation tests. For a given visual area (e.g., V1) we 279 

randomly selected (with replacement) stimulus reconstructions from eight of eight participants.  280 

Specifically, we computed a “mean” reconstruction by randomly selecting (with replacement) 281 
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and averaging reconstructions from all participants. The mean reconstruction was fit with the 282 

cosine function described above, yielding point estimates of α, β, k, and μ. This procedure was 283 

repeated 1,000 times, yielding 1,000 element distributions of parameter estimates. We then 284 

computed the proportion of permutations where a μ value less than 0 was obtained to obtain an 285 

empirical p-value for categorical shifts in reconstructed representations. 286 

Searchlight Decoding of Category Membership. We used a roving searchlight analysis (Ester et 287 

al., 2015) to identify cortical regions beyond V1-V3 that contained category-specific 288 

information. We defined a spherical neighborhood with a radius of 8 mm around each grey 289 

matter voxel in the cortical sheet. We next extracted and averaged the normalized response of 290 

each voxel in each neighborhood over a period from 4-8 seconds after stimulus onset (this 291 

interval was chosen to account for typical hemodynamic lag of 4-6 seconds). A linear SVM 292 

(LIBSVM implementation) was used to classify stimulus category using activation patterns 293 

within each neighborhood. To classify category membership, we designated the three 294 

orientations immediately counterclockwise to the category boundary (see Figure 1) as members 295 

of Category 1 and the three orientations immediately clockwise of the boundary as members of 296 

Category 2. We then trained our classifier to discriminate between categories using data from all 297 

but one task run. The trained classifier was then used to predict category membership from 298 

activation patterns measured during the held-out task run. This procedure was repeated until each 299 

task run had been held out, and the results were averaged across permutations. Finally, we 300 

repeated the same analysis using the three Category 1 and Category 2 orientations adjacent to the 301 

second (orthogonal) category boundary (see Figure 1) and averaged the results across category 302 

boundaries.  303 
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 We identified neighborhoods encoding stimulus category using a leave-one-participant-304 

out cross validation approach (Esterman et al., 2010). Specifically, for each participant (e.g., AA) 305 

we randomly selected (with replacement) and averaged classifier performance estimates from 306 

each neighborhood from each of the remaining 7 volunteers (e.g., AB-AH). This procedure was 307 

repeated 1000 times, yielding a set of 1000 classifier performance estimates for each 308 

neighborhood. We generated a statistical parametric map (SPM) for the held-out participant that 309 

indexed neighborhoods where classifier performance was greater than chance (50%) on 97.5% of 310 

permutations (false-discovery-rate corrected for multiple comparisons across neighborhoods). 311 

Finally, we projected each participant’s SPM onto a computationally inflated representation of 312 

his or her grey-white matter boundary and used Brain Voyager’s “Create POIs from Map 313 

Clusters” function with an area threshold of 25 mm2 to identify ROIs supporting above-chance 314 

category classification performance. Because of differences in cortical folding patterns, some 315 

ROIs could not be unambiguously identified in all 8 participants. Therefore, across participants, 316 

we retained all ROIs that were shared by at least 7 out of 8 participants. Finally, we extracted 317 

multivoxel activation patterns from each ROI and computed model-based reconstructions of 318 

channel response functions during the RSVP and category tasks using a leave-one-run-out cross-319 

validation approach. Specifically, we used data from all but one task run to estimate a set of 320 

orientation weights for each voxel in each ROI. We then used these weights and activation 321 

patterns measured during the held-out task run to estimate a channel response function, which 322 

contains a representation of stimulus orientation. This procedure was repeated until each task run 323 

had been held out, and the results were averaged across permutations. Note that each 324 

participant’s ROIs were defined using data from the remaining 7 participants. This ensured that 325 
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participant-level reconstructions were statistically independent of the searchlight method used to 326 

define ROIs encoding category information.  327 

Within-participant Error Bars. We report estimates of within-participant variability (e.g., ±1 328 

S.E.M.) throughout the paper. These estimates discard subject variance (e.g., overall differences 329 

in BOLD response amplitude) and instead reflect variance related to the subject by condition(s) 330 

interaction term(s) (i.e., variability in estimated channel responses). We used the approach 331 

described by Cousineau (2005): raw data (e.g., channel response estimates) were de-meaned on a 332 

participant by participant basis, and the grand mean across participants was added to each 333 

participant’s zero-centered data. The grand mean-centered data were then used to compute 334 

estimates of standard error.  335 

Experiment 2 - EEG 336 

Participants. 29 new volunteers recruited from the UC San Diego community completed 337 

Experiment 2. All participants self-reported normal or corrected-to-normal visual acuity and 338 

gave both written and oral informed consent as required by the local Institutional Review Board. 339 

Each participant was tested in a single 2.5-3 hour experimental session (the exact duration varied 340 

across participants depending on the amount of time needed to set up and calibrate the EEG 341 

equipment). Unlike Experiment 1, participants were not trained on the categorization task prior 342 

to testing. We adopted this approach in the hopes of tracking the gradual emergence of 343 

categorical biases during learning. However, many participants learned the task relatively 344 

quickly (within 40-60 trials), leaving too few trials to enable a direct analysis of this possibility. 345 

Data from one participant were discarded due to a high number of EOG artifacts (over 35% of 346 

trials); the data reported here reflect the remaining 28 participants. 347 

Behavioral Tasks.  348 



 

 17 

In separate runs (where “run” refers to a continuous block of 60 trials lasting approximately 6.5 349 

minutes), participants performed orientation mapping and category discrimination tasks similar 350 

to those used in Experiment 1. During both tasks a rapid series of letters (subtending 1.14˚ x 351 

1.14˚ from a viewing distance of 55 cm) was presented at fixation, and an aperture of 150 iso-352 

oriented bars (subtending 0.5˚ x 1.2˚) was presented in the periphery. The aperture of bars had 353 

inner and outer radii of 1.96˚ and 9.13˚, respectively. On each trial, the bars were assigned one of 354 

15 possible orientations (again 0˚-168˚ in 12˚ increments) and flickered at a rate of 30 Hz. Each 355 

bar was randomly replotted within the aperture at the beginning of each “up” cycle. Letters in the 356 

RSVP stream were presented at a rate of 6.67 Hz 357 

During orientation mapping runs, participants detected and reported the presence of a 358 

target letter (an X or Y) that appeared at an unpredictable time during the interval from +750 359 

msec to +2250 ms following stimulus onset. Responses were made on a USB-compatible 360 

number pad. During category discrimination runs, participants ignored the RSVP stream and 361 

instead reported whether the orientation of the bar aperture was an exemplar from category “1” 362 

or category “2”. As in Experiment 1, we randomly designated one of the 15 possible stimulus 363 

orientations as the category boundary such that the seven orientations counterclockwise to this 364 

value were assigned to Category 1 and the seven orientations clockwise to this value were 365 

assigned to Category 2. Participants could respond at any point during the trial, but the stimulus 366 

was presented for a total of 3000 msec. Trials were separated by a 2.5 – 3.25 sec inter-trial-367 

interval (randomly selected from a uniform distribution on each trial). Each participant 368 

completed four (N = 1), five (N = 10), six (N = 8), seven (N = 8), or eight (N = 1) blocks of the 369 

category task and three (N = 1), four (N = 1), five (N = 5), six (N = 12), seven (N = 8), or eight 370 

(N = 1) blocks of the orientation mapping task.  371 
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EEG Acquisition and Preprocessing. Participants were seated in a dimly lit, sound-attenuated, 372 

and electrically shielded recording chamber (ETS Lindgren) for the duration of the experiment.  373 

Continuous EEG was recorded from 128 Ag-AgCl- scalp electrodes via a Biosemi “Active Two” 374 

system (Amsterdam, Netherlands). The horizontal electrooculogram (EOG) was recorded from 375 

additional electrodes placed near the left and right canthi, and the vertical EOG was recorded 376 

from electrodes placed above and below the right eye. Additional electrodes were placed over 377 

the left and right mastoids. The horizontal and vertical EOG were recorded from electrodes 378 

placed over the left and right canthi and above and below the right eye (respectively). Electrode 379 

impedances were kept well below 20 kΩ, and recordings were digitized at 1024 Hz.  380 

After testing, the entire EEG time series at each electrode was high- and low-pass filtered 381 

(3rd order zero-phase forward and reverse Butterworth) at 0.1 and 50 Hz and re-referenced to the 382 

average of the left and right mastoids. Data from both tasks were epoched into intervals spanning 383 

-1000 to +4000 msec from stimulus onset; the relatively large pre- and post-stimulus epochs 384 

were included to absorb filtering artifacts that could affect later analyses. Trials contaminated by 385 

EOG artifacts (horizontal eye movements > 2° and blinks) were identified and excluded from 386 

additional analyses. Across participants an average of 5.58% (±1.67%) and 8.74% (±1.84%) of 387 

trials from the orientation mapping and category discrimination tasks were discarded 388 

(respectively). Finally, noisy channels (those with multiple deflections ≥ 100 μV over the course 389 

of the experiment) were visually identified and eliminated (mean number of removed electrodes 390 

across participants ±1 S.E.M. = 2.25 ± 0.64).  391 

Next, we identified a set of electrodes-of-interest (EOIs) with strong responses at the 392 

stimulus’ flicker frequency (30 Hz). Data from each task were re-epoched into intervals spanning 393 

0 to 3000 msec around stimulus onset and averaged across trials and tasks (i.e., RSVP and 394 
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category discrimination), yielding a k electrode by t sample data matrix. We computed the 395 

evoked power at the stimulus’ flicker frequency (30 Hz) by applying a discrete Fourier transform 396 

to the average time series at each electrode and selected the 32 electrodes with the highest 397 

evoked power at the stimulus’ flicker frequency for further analysis. These electrodes were 398 

typically distributed over occipitoparietal electrode sites (see Figure 12). 399 

To isolate stimulus-specific responses, the epoched timeseries at each electrode was 400 

resampled to 256 Hz and then bandpass filtered from 29 to 31 Hz (zero-phase forward and 401 

reverse 3rd order Butterworth). We next estimated a set of complex Fourier coefficients 402 

describing the power and phase of the 30 Hz response by applying a Hilbert transformation to the 403 

filtered data. To visualize and quantify orientation-selective signals from frequency-specific 404 

responses, we first constructed a complex-valued data set B1(t) (m electrodes x ntrain trials). We 405 

then estimated a complex-valued weight matrix W(t) (m channels x k filters) using B1(t) and a 406 

basis set of idealized orientation-selective filters C1. Finally, we estimated a complex-valued 407 

matrix of channel responses C2(t) (m channels x ntest trials) given W(t) and complex-valued test 408 

data set B2(t) (m electrodes x ntest trials) containing the complex Fourier coefficients measured 409 

during the category discrimination task. Trial-by-trial and sample-by-sample response functions 410 

were shifted in the same manner described above so that category biases would manifest as a 411 

rightward (clockwise) shift towards the center of Category 2. We estimated the evoked (i.e., 412 

phase-locked) power of the response at each filter by computing the squared absolute value of 413 

the average complex-valued coefficient for each filter after shifting. Categorical biases were 414 

quantified using the same curve fitting analysis described in the main text.  415 

 To obtain an unbiased estimate of orientation selectivity in each electrode, we ensured 416 

that the training data set B1(t) contained an equal number of trials for each stimulus orientation 417 
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(0-168° in 12° increments). For each participant, we identified the stimulus orientation θ with the 418 

N fewest repetitions in the orientation mapping data set after EOG artifact removal. Next, we 419 

constructed the training data set B1(t) by randomly selecting (without replacement) 1:N trials for 420 

each stimulus orientation. Data from this training set were used to estimate a set of orientation 421 

weights for each electrode and these weights were in turn used to estimate a response for each 422 

hypothetical orientation channel during the category discrimination task. To ensure that our 423 

method generalized across multiple combinations of orientation mapping trials, we repeated this 424 

analysis 100 times and averaged the results across permutations.  425 

Experiment 3 - EEG 426 

Participants. 8 volunteers recruited from the Florida Atlantic University community completed 427 

Experiment 3. All participants self-reported normal or corrected-to-normal visual acuity and 428 

gave both written and oral informed consent as required by the local Institutional Review Board. 429 

Each participant was tested in a single 2-2.5 hour experimental session (the exact duration varied 430 

across participants depending on the amount of time needed to set up and calibrate the EEG 431 

equipment).  432 

Behavioral Tasks. Participants performed six blocks of a spatial recall task followed by multiple 433 

blocks of a delayed match-to-category (DMC) task. Both tasks used identical stimulus and 434 

display geometry. During the spatial recall task, participants were shown a sample display 435 

containing a disc (diameter 2.5° from a viewing distance of 60 cm) rendered in one of 12 polar 436 

locations (0° to 330° in 30° increments) along the perimeter of an imaginary circle centered at 437 

fixation (radius 7.5°). The sample display was shown for 250 ms and followed by a 1750 ms 438 

blank delay. At the end of each trial, participants were shown a mouse cursor and instructed to 439 

click on the position of the disc shown in the sample display. Participants were instructed to 440 
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prioritize accuracy over speed, though a 3000 ms response deadline was imposed. Each trial was 441 

followed by a 1500-2200 ms blank interval (randomly sampled from a uniform distribution on 442 

each trial). Each block featured 72 trials (six repetitions per stimulus position) and lasted 443 

approximately six minutes. EEG data recorded during this task were used to train a position-444 

specific inverted encoding model (see below). Each participant completed six blocks of this task. 445 

 After completing the spatial recall task, participants performed a delayed match-to-446 

category task. Participants were shown stimuli in the same 12 positions used during the spatial 447 

recall task. However, for each participant we defined a category boundary such that half of the 448 

possible stimulus positions were assigned membership in Category 1 and the remaining half 449 

were assigned membership in Category 2. For example, the category boundary could be set such 450 

that positions [315, 345, 15, 45, 75, 105] comprised Category 1 while positions [135, 165, 195, 451 

225, 255, 285] comprised Category 2. The location of the category boundary was randomly and 452 

independently chosen for each participant and held constant throughout the experiment. At the 453 

beginning of each trial, a sample disc appeared in one of the 12 possible stimulus locations for 454 

250 ms. After a 1750 ms delay period, a probe disc was presented. The probe could occupy any 455 

of the 11 stimulus positions not occupied by the sample, and participants were required to judge 456 

whether the position of the probe matched the category of the sample stimulus via keypress. 457 

Participants were instructed to prioritize accuracy over speed, but a 3000 ms response limit was 458 

imposed. Feedback (correct vs. incorrect) was presented at the end of each trial. Participants 459 

completed 5 (N = 1) or 8 (N = 7) blocks of 72 trials.  460 

EEG Acquisition and Preprocessing. Continuous EEG was recorded from 63 Ag/Ag-Cl- 461 

scalp electrodes via a Brain Products actiCHamp amplifier. An additional electrode was placed 462 

over the right mastoid. Data were recorded with a right mastoid reference and later re-referenced 463 
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to the algebraic mean of the left and right mastoids (10-20 site TP9 served as the left mastoid 464 

reference). The horizontal and vertical electrooculogram (EOG) was recorded from electrodes 465 

placed on the left and right canthi and above and below the right eye, respectively. All electrode 466 

impedances were kept below 15 kΩ, and recordings were digitized at 1000 Hz. Recorded data 467 

were bandpass filtered from 1 to 50 Hz (3rd order zero-phase forward and reverse Butterworth 468 

filters), epoched from a period spanning -1000 to +3000 ms relative to the start of each trial, and 469 

baseline corrected from -250 to 0 ms. Muscle and electrooculogram artifacts were removed from 470 

the data using independent components analysis (ICA) as implemented in EEGLAB (Delorme & 471 

Makeig, 2004). Reconstructions of stimulus locations were computed from the spatial 472 

topography of induced alpha-band (8-12 Hz) power measured across 17 occipitoparietal 473 

electrode sites: O1, O2, Oz, PO7, PO3, POz, PO4, PO8, P7, P5, P3, P1, Pz, P2, P4, P6, and P8. 474 

Inverted Encoding Model. Experiment 3 relied on a fundamentally different signal than 475 

Experiment 2 (induced-alpha-band activity vs. evoked 30 Hz power, respectively). Following 476 

earlier research (Kok et al., 2017; Ester et al., 2018; Nouri & Ester, 2019), we used a variant of 477 

the IEM approach described in Experiment 2 to compute location channel responses. We first 478 

isolated alpha-band activity, by bandpass filtering the raw EEG time series at each electrode 479 

from 8-12 Hz (zero-phase forward and reverse filters as implemented by EEGLAB’s “eegfilt” 480 

function), yielding a real-valued signal f(t). The analytic representation of f(t) was obtained by 481 

applying a Hilbert transformation:  482 

 483 ( ) = ( ) + ( ) 

 484 
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where i = √-1 and if(t) = ( ) ( ). Induced alpha power was computed by extracting and 485 

squaring the instantaneous amplitude A(t) of the analytic signal z(t). We modeled alpha power at 486 

each scalp electrode as a weighted sum of 12 location-selective channels, each with an idealized 487 

tuning curve (a half-wave rectified cosine raised to the 12th power). The maximum response of 488 

each channel was normalized to 1, thus units of response are arbitrary. The predicted responses 489 

of each channel during each trial were arranged in a k channel by n trials design matrix C. 490 

Separate design matrices were constructed to track the locations of the blue and red discs across 491 

trials (i.e., we reconstructed the locations of the blue and red discs separately, then later sorted 492 

these reconstructions according to cue condition). The relationship between the data and the 493 

predicted channel responses C is given by a general linear model of the form: 494 

 495 = +  

 496 

where B is a m electrode by n trials training data matrix, W is an m electrode by k channel weight 497 

matrix, and N is a matrix of residuals (i.e., noise).  498 

To estimate W, we constructed a “training” data set containing an equal number of trials 499 

from each stimulus location (i.e., 45-360° in 45° steps) condition. We first identified the location 500 

φ with the fewest r repetitions in the full data set after EOG artifact removal. Next, we 501 

constructed a training data set Btrn (m electrodes by n trials) and weight matrix Ctrn (n trials by k 502 

channels) by randomly selecting (without replacement) 1:r trials for each of the eight possible 503 

stimulus locations (ignoring cue condition; i.e., the training data set contained a mixture of 504 

neutral and valid trials). The training data set was used to compute a weight for each channel Ci 505 

via least-squares estimation: 506 
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 507 = , ( , , )  

 508 

where Ctrn,i is an n trial row vector containing the predicted responses of spatial channel i during 509 

each training trial.  510 

After estimating the weight matrix W, we next estimated a set of spatial filters V that 511 

capture the underlying channel responses while accounting for correlated variability between 512 

electrode sites (i.e., the noise covariance; Kok et al. 2017):  513 

 514 

= ∑∑  

 515 

where Σi is the regularized noise covariance matrix for channel i and estimated as: 516 

 517 

=  1− 1 ∈ ∈  

 518 

where n is the number of training trials and εi is a matrix of residuals: 519 

 520 ∈ = − ,  

 521 

Estimates of εi were obtained by regularization-based shrinkage using an analytically 522 

determined shrinkage parameter (see Blankertz et al. 2011; Kok et al. 2017). An optimal spatial 523 

filter vi was estimated for each channel Ci, yielding an m electrode by k filter matrix V. Next, we 524 
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constructed a “test” data set Btst (m electrodes by n trials) containing data from all trials not 525 

included in the training data set and estimated trial-by-trial channel responses Ctst (k channels x n 526 

trials) from the filter matrix V and the test data set: 527 

 528 =  

 529 

Trial-by-trial channel responses were interpolated to 360°, circularly shifted to a common 530 

center (0°, by convention), and sorted by category membership. As in Experiments 1 and 2, 531 

reconstructions were shifted and aligned so that any bias would manifest as a shift toward 532 

Category B (clockwise). Finally, to ensure internal reliability this entire analysis was repeated 50 533 

times, and unique (randomly chosen) subsets of trials were used to define the training and test 534 

data sets during each permutation. The results were then averaged across permutations. 535 

Eye Movement Control Analyses – Experiments 2 and 3. Systematic biases in eye position can 536 

contribute to orientation and location performance (e.g., Quax et al., 2019). We did not collect 537 

eye position data from Experiment 1 (fMRI). However, different tasks were used to train and test 538 

the encoding model, which can be an effective way of mitigating the effects of eye movements 539 

on stimulus decoding (Mostert et al., 2018). We also collected electrooculogram (EOG) data 540 

during Experiments 2 and 3 (EEG). To examine whether eye position varied as a function of 541 

stimulus position during these experiments, we regressed trial-by-trial horizontal EOG 542 

recordings (in μV) onto the orientation of a to-be-categorized stimulus (Experiment 2) or the 543 

location of a to-be-categorized disc (Experiment 3). In both experiments, we identified and 544 

excluded trials contaminated by large horizontal EOG artifacts (≥ 40 μV, which corresponds to a 545 

horizontal displacement of 2.5° assuming a voltage threshold of 16 μV per degree; Lins et al., 546 
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1993), but smaller variations in eye positions – for example, along the inner stimulus aperture – 547 

may have escaped detection. Using Experiment 2 as an example, we considered two possibilities. 548 

First, participants may have foveated the inner aperture of the stimulus at a polar location 549 

matching its orientation. To illustrate, participants could foveate the inner aperture of a 45° 550 

stimulus at a polar angle of 45° or 225°; likewise, they could foveate the inner aperture of a 168° 551 

stimulus at a polar angle of 168° or 348°. Second, participants may have foveated the inner 552 

aperture of each stimulus matching the center of the category it belonged to. We tested these 553 

possibilities by calculating predicted horizontal eye positions under the assumption that 554 

participants foveated the inner stimulus aperture at locations matching its orientation or the 555 

center of the relevant category. Specifically, we converted records of stimulus orientation (or the 556 

center of the category to which the stimulus belonged) to polar format and scaled the resulting 557 

estimates by the radius of the inner stimulus aperture, then regressed these estimates onto 558 

horizontal EOG activity (in μV). If there is a systematic relationship between eye position and 559 

either stimulus orientation or category at any point during a trial, then this analysis should yield 560 

regression coefficients reliably greater than 0 μV. Identical analyses were used to examine 561 

systematic relationships between horizontal eye position and stimulus location in Experiment 3.  562 

  563 

  564 
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Results 565 

Experiment 1 - fMRI 566 

We trained eight human volunteers to categorize a set of orientations into two groups, Category 1 567 

and Category 2. The stimulus space comprised a set of 15 oriented stimuli, spanning 0-168° in 568 

12° increments (Figure 1A-B). For each participant, we randomly designated one of these 15 569 

orientations as a category boundary such that the seven orientations anticlockwise to the 570 

boundary were assigned membership in Category 1 and the seven orientations clockwise to the 571 

boundary were assigned membership in Category 2. Each participant completed a one-hour 572 

training session prior to scanning. Each participant’s category boundary was kept constant across 573 

all behavioral training and scanning sessions. Many participants self-reported that they learned 574 

the rule delineating the categories in one or two 5-minute blocks of trials. Consequently, task 575 

performance measured during scanning was extremely high, with errors and slow responses 576 

present only for exemplars immediately adjacent to the category boundary (Figure 1C-D). 577 

During each scanning session, participants performed the category discrimination task and an 578 

orientation model estimation task where they were required to report the identity of a target letter 579 

embedded within a rapid stream presented at fixation while a task-irrelevant grating flickered in 580 

the background. Data from this task were used to compute an unbiased estimate of orientation 581 

selectivity for each voxel in visual areas V1-hV4v/V3A (see below).  582 

 We first examined whether category training increased the similarity of activation 583 

patterns evoked by exemplars from the same category (i.e., acquired similarity). We tested this 584 

by training a linear decoder (support vector machine) to discriminate between activation patterns 585 

associated with exemplars at the center of each category (48° from the boundary), then used the 586 

trained classifier to predict the category membership of exemplars immediately adjacent to the 587 
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category boundary (±12°; Figure 2A). This analysis was performed separately for the orientation 588 

mapping and category discrimination tasks. We reasoned that if category training homogenizes 589 

activation patterns evoked by members of the same category, then decoding performance should 590 

be superior during the category discrimination task relative to the orientation mapping task. This 591 

is precisely what we observed (Figure 2B). For example, near-boundary decoding performance 592 

in V1 was reliably above chance during the category discrimination task (p < 0.0001, false-593 

discovery-rate-corrected bootstrap test), but not during the orientation mapping task when the 594 

category boundary was irrelevant and the oriented stimulus was unattended (p = 0.38). 595 

Importantly, the absence of robust decoding performance during the orientation mapping task 596 

cannot be attributed to poor signal, as a decoder trained and tested on activation patterns 597 

associated with exemplars at the center of each category (Figure 2C) yielded above-chance 598 

decoding during both behavioral tasks (Figure 2D; M = 0.58 and 0.69 for the mapping and 599 

discrimination tasks, respectively; p < 0.01, bootstrap test). Collectively, these results suggest 600 

that category training can alter population-level responses at very early stages of the visual 601 

processing hierarchy. 602 

To better understand how category training influences orientation-selective activation 603 

patterns in early visual cortical areas, we used an inverted encoding model (Brouwer & Heeger, 604 

2011) to generate model-based reconstructed representations of stimulus orientation from these 605 

patterns. For each visual area (e.g., V1), we first modelled voxel-wise responses measured during 606 

the orientation mapping task as a weighted sum of idealized orientation channels, yielding a set 607 

of weights that characterize the orientation selectivity of each voxel (Figure 3A). In the second 608 

phase of the analysis, we reconstructed trial-by-trial representations of stimulus orientation by 609 

combining these weights with the observed pattern of activation across voxels measured during 610 
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each trial of the category discrimination task, resulting in single-trial reconstructed channel 611 

response function that contains a representation of stimulus orientation for each ROI on each trial 612 

(Figure 3B). Finally, we sorted trial-by-trial reconstructions according to category membership 613 

such that any bias would manifest as a clockwise (rightward) shift of the orientation 614 

representation towards the center of Category 2 and quantified biases towards this category using 615 

a curve-fitting analysis (Methods).  616 

Note that stimulus orientation was irrelevant during the orientation mapping task used for 617 

model weight estimation. We therefore reasoned that voxel-by-voxel responses evoked by each 618 

oriented stimulus would be largely uncontaminated by its category membership. Indeed, the 619 

logic of our analytical approach rests on the assumption that orientation-selective responses are 620 

quantitatively different during the orientation mapping and category discrimination tasks: if 621 

identical category biases are present in both tasks then the orientation weights computed using 622 

data from either task will capture that bias and reconstructed representations of orientation will 623 

not exhibit any category shift. This is precisely what we observed when we used a cross-624 

validation approach to reconstruct stimulus representations separately for the orientation 625 

mapping and category discrimination tasks (Figure 4). 626 

As shown in Figure 5, reconstructed representations of orientation in visual areas V1, V2, 627 

and V3 were systematically biased away from physical stimulus orientation and towards the 628 

center of the appropriate category (shifts of 22.13°, 26.65°, and 34.57°, respectively; P < 0.05, 629 

bootstrap test, false-discovery-rate [FDR] corrected for multiple comparisons across regions; see 630 

Figure 6 for separate reconstructions of Category 1 and Category 2 orientations and Figure 7 for 631 

participant-by-participant reconstructions plotted by visual area). Similar, though less robust 632 

biases were also evident in hV4v and V3A (mean shifts of 9.73° and 6.45°, respectively; p > 633 
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0.19). A logistic regression analysis established that categorical biases in V1-V3 were strongly 634 

correlated with variability in overt category judgments (Figure 8). That is, trial-by-trial category 635 

judgments were more strongly associated with the responses of orientation channels near the 636 

center of each category rather than those near the physical orientation of the stimulus. 637 

Importantly, because the location of the boundary separating categories 1 and 2 was randomly 638 

selected for each participant, it is unlikely that categorical biases shown in Figure 5 reflect 639 

intrinsic biases in stimulus selectivity in early visual areas (e.g., due to oblique effects; Sun et al., 640 

2013).  641 

The category biases shown in Figure 5 may be the result of an adaptive process that 642 

facilitates task performance by enhancing the discriminability of physically similar but 643 

categorically distinct stimuli. Consider a hypothetical example where an observer is tasked with 644 

discriminating between two physically similar exemplars on opposite sides of a category 645 

boundary. Discriminating between these alternatives should be challenging as each exemplar 646 

evokes a similar and highly overlapping response pattern. However, discrimination performance 647 

could be improved if the responses associated with each exemplar are made more separable via 648 

acquired distinctiveness following training (or equivalently, an acquired similarity between 649 

exemplars adjacent to the category boundary and exemplars near the center of each category). 650 

Similar changes would be less helpful when an observer is tasked with discriminating between 651 

physically and categorically distinct exemplars, as each exemplar already evokes a dissimilar and 652 

non-overlapping response. From these examples, a simple prediction can be derived: categorical 653 

biases in reconstructed representations of orientation should be largest when participants are 654 

shown exemplars adjacent to the category boundary and progressively weaker when participants 655 

are shown exemplars further away from the category boundary.  656 
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We tested this possibility by sorting stimulus reconstructions according to the angular 657 

distance between stimulus orientation and the category boundary (Figure 9). As predicted, 658 

reconstructed representations of orientations adjacent to the category boundary were strongly 659 

biased by category membership, with larger biases for exemplars nearest to the category 660 

boundary (μ = 42.62°, 24.16°, and 20.12° for exemplars located 12°, 24°, and 36° from the 661 

category boundary, respectively; FDR-corrected bootstrap p < 0.0015), while reconstructed 662 

representations of orientations at the center of each category exhibited no signs of bias (μ = -663 

3.98°, p = 0.79; the direct comparison of biases for exemplars adjacent to the category boundary 664 

and in the center of each category was also significant; p < 0.01). Moreover, the relationship 665 

between average category bias and distance from the category boundary was well-approximated 666 

by a linear trend (slope = -14.38°/step; r2 = 0.96). Thus, category biases in reconstructed 667 

representation are largest under conditions where they would facilitate behavioral performance 668 

and absent under conditions where they would not.  669 

 Category-selective signals have been identified in multiple brain areas, including portions 670 

of lateral occipital cortex, inferotemporal cortex, posterior parietal cortex, and lateral prefrontal 671 

cortex (Sigala & Logothetis, 2002; Freedman et al., 2011; Freedman & Assad, 2006; Folstein et 672 

al., 2012; Davis & Poldrack, 2013; Pourtois et al., 2008; Mack et al., 2013). We identified 673 

category selective information in many of these same regions using a whole-brain searchlight-674 

based decoding analysis where a classifier was trained to discriminate between exemplars from 675 

Category 1 and Category 2 (independently of stimulus orientation; Figure 10 and Methods). 676 

Next, we used the same inverted encoding model described above to reconstruct representations 677 

of stimulus orientation from activation patterns measured in each area during each of the 678 

orientation mapping and category discrimination tasks (reconstructions were computed using a 679 
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“leave-one-participant-out” cross-validation routine to ensure that reconstructions were 680 

independent of the decoding analysis used to define category-selective ROIs). We were able to 681 

reconstruct representations of stimulus orientation in many of these regions during the category 682 

discrimination task, but not during the orientation mapping task (where stimulus orientation was 683 

task-irrelevant; Figure 11). This is perhaps unsurprising as representations in many mid-to-high 684 

order cortical areas are strongly task-dependent (e.g., Silver et al., 2005).  As our analytical 685 

approach requires an independent and unbiased estimate of each voxel’s orientation selectivity 686 

(e.g., during the orientation mapping task), this meant that we were unable to probe categorical 687 

biases in reconstructed representations in these regions.  688 

Experiment 2 - EEG 689 

 Due to the sluggish nature of the hemodynamic response, the category biases shown in 690 

Figures 5 and 9 could reflect processes related to decision making or response selection rather 691 

than stimulus processing. In a second experiment, we evaluated the temporal dynamics of 692 

category biases using EEG. Specifically, we reasoned that if the biases shown in Figures 5 and 9 693 

reflect processes related to decision making, response selection, or motor planning, then these 694 

biases should manifest only during a period shortly before the participants’ response. 695 

Conversely, if the biases are due to changes in how sensory neural populations encode features, 696 

they should be evident during the early portion of each trial. To evaluate these alternatives, we 697 

recorded EEG while a new group of 28 volunteers performed variants of the orientation mapping 698 

and categorization tasks used in the fMRI experiment. On each trial, participants were shown a 699 

large annulus of iso-oriented bars that flickered at 30 Hz (i.e., 16.67 ms on, 16.67 ms off; Figure 700 

12A). During the orientation mapping task, participants detected and reported the identity of a 701 

target letter (an X or a Y) that appeared in a rapid series of letters over the fixation point. 702 
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Identical displays were used during the category discrimination task, with the caveat that 703 

participants were asked to report the category of the oriented stimulus while ignoring the letter 704 

stream.  705 

The 30 Hz flicker of the oriented stimulus elicits a standing wave of frequency-specific 706 

sensory activity known as a steady-state visually-evoked potential (SSVEP, Vialatte et al., 2010; 707 

Figure 12B). The coarse spatial resolution of EEG precludes precise statements about the cortical 708 

source(s) of these signals (e.g., V1, V2, etc.). However, to focus on visual areas (rather than 709 

parietal or frontal areas) we deliberately entrained stimulus-locked activity at a relatively high 710 

frequency (30 Hz). Our approach was based on the logic that coupled oscillators can only be 711 

entrained at high frequencies within small local networks, while larger or more distributed 712 

networks can only be entrained at lower frequencies due to conduction delays (Breakspear et al., 713 

2010). Indeed, a topographic analysis showed that evoked 30 Hz activity was strongest over a 714 

localized region of occipitoparietal electrode sites. (Figure 12C). As in Experiment 1, 715 

participants learned to categorize stimuli with a high degree of accuracy, with errors and slow 716 

responses present only for exemplars adjacent to a category boundary (Figure 12D-E) 717 

We computed the power and phase of the 30 Hz SSVEP response across each 3,000 ms 718 

trial and then used these values to reconstruct a time-resolved representation of stimulus 719 

orientation (Garcia et al., 2013). Our analysis procedure followed that used in Experiment 1: In 720 

the first phase of the analysis, we rank-ordered scalp electrodes by 30 Hz power (based on a 721 

discrete Fourier transform spanning the 3000 ms trial epoch, averaged across all trials of both the 722 

orientation mapping and category discrimination tasks). Responses measured during the 723 

orientation mapping task were used to estimate a set of orientation weights for the 32 electrodes 724 

with the strongest SSVEP signals (i.e., those with the highest 30 Hz power; see Figure 12C) at 725 
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each timepoint. In the second phase of the analysis, we used these timepoint-specific weights and 726 

corresponding responses measured during each trial of the category discrimination task across all 727 

electrodes to compute a time-resolved representation of stimulus orientation (Figure 13A-B). We 728 

reasoned that if the categorical biases shown in Figures 5 and 9 reflect processes related to 729 

decision making or response selection, then they should emerge gradually over the course of 730 

each trial. Conversely, if the categorical biases reflect changes in sensory processing, then they 731 

should manifest shortly after stimulus onset. To test this possibility, we computed a temporally 732 

averaged stimulus reconstruction over an interval spanning 0 to 250 ms after stimulus onset 733 

(Figure 14B). A robust category bias was observed (M = 23.35°; p = 0.014; bootstrap test) 734 

suggesting that the intent to categorize a stimulus modulates how neural populations in early 735 

visual areas respond to incoming sensory signals.  736 

Importantly, the bandpass filter used to isolate 30 Hz activity will distort temporal 737 

characteristics of the raw EEG signal by some amount. We estimated the extent of this distortion 738 

by generating a 3 second, 30 Hz sinusoid with unit amplitude (plus 1 second of pre-and post-739 

signal zero padding) and running it through the same filters used in our analysis path. We then 740 

computed the time at which the filtered signal reach 25% of maximum. For an instantaneous 741 

filter, this should occur at exactly 1 second (due to the pre- and post-signal zero-padding). We 742 

estimated a signal onset of ~877 ms, or 123 ms prior to the start of the signal. Therefore, if 743 

reconstruction amplitude is greater than zero at time t, then we can conclude that the pattern of 744 

scalp activity used to generate the stimulus reconstruction contained reliable orientation 745 

information at time t ± 125 ms. The same logic applies to estimates of reconstruction bias as the 746 

reconstructions are based on data filtered using the same parameters. Importantly, we also 747 

verified that there was no categorical bias in stimulus reconstructions prior to stimulus onset 748 
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(Figure 14), nor were categorical biases present when we reconstructed stimulus representations 749 

using data from the orientation mapping and category discrimination tasks separately (Figure 750 

15).  751 

Ruling out contributions from eye movements. We identified and removed trials contaminated by 752 

large EOG artifacts (blinks and eye movements greater than ~2°). However, small and consistent 753 

eye movement patterns could nevertheless contribute to the orientation reconstructions reported 754 

here. We examined this possibility by testing whether participants foveated the inner aperture of 755 

the stimulus at polar locations matching its orientation (Figure 16A) or at polar locations 756 

matching the center of the appropriate category (A vs B; Figure 16B; see Methods for details). 757 

No systematic differences in eye position were observed as a function of stimulus orientation or 758 

category membership (Figure 16), suggesting that eye movements were not a major contributor 759 

to orientation-specific reconstructions. 760 

Experiment 3 - EEG 761 

 The results of Experiments 1 and 2 suggest that category learning can bias stimulus-762 

specific representations encoded by occipitoparietal cortical areas. However, an alternative 763 

explanation is that the biases shown in Figures 5, 9, and 13 reflect mechanisms of response 764 

selection or decision making independent of categorical processing. Experiment 3 examined this 765 

possibility by examining categorical biases in stimulus-specific memory representations while 766 

participants performed a delayed match-to-category (DMC) task. A schematic of the task is 767 

shown in Figure 17A-B. At the beginning of each trial a sample disc rendered in one of 12 768 

possible stimulus locations (15-345° polar angle in 30° along the perimeter of an imaginary 769 

circle). Half of the disc positions were assigned membership in Category 1, while the remaining 770 

half of disc positions were assigned membership in Category 2 (Figure 17A). Participants 771 
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remembered the position of the sample disc over a blank delay, then judged whether a probe disc 772 

was rendered in a position matching the category of the sample disc. The location of the category 773 

boundary was randomly determined for each participant, and response feedback (correct vs. 774 

incorrect) was provided after every trial. Like Experiment 2, participants were not trained on the 775 

DMC task prior to testing and learned to associate specific positions with specific categories 776 

through feedback. Before completing the DMC task, participants also completed a spatial 777 

working memory task. Display and stimulus geometry were identical during the spatial memory 778 

task and the DMC task. On each trial a sample disc was rendered in one of the same 12 positions 779 

used during the DMC task. After a short delay, participants recalled the location of the sample 780 

disc via mouse click.  781 

 Following earlier work (e.g., Foster et al., 2016; Samaha et al., 2016; Ester et al., 2018; 782 

Nouri & Ester, 2019), we used spatiotemporal patterns of induced alpha-band (8-12 Hz) activity 783 

over occipitoparietal electrode sites to track the contents of spatial working memory during the 784 

recall and DMC tasks. Specifically, we modeled sample-by-sample estimates of alpha band 785 

activity recorded during the spatial recall task as a combination of 12 location filters, each with 786 

an idealized tuning curve (a cosine raised to the 12th power). The result of this step is a set of 787 

weights that characterizes the location preferences of each scalp electrode. Next, we used these 788 

weights and spatiotemporal patterns of alpha-band activity recorded during the DMC task to 789 

compute an expected response for each location filter, yielding a time-resolved estimate of 790 

stimulus position. Trial-by-trial response functions were shifted to a common center (0° by 791 

convention), averaged, and arranged such that any category bias would manifest as a clockwise 792 

or positive shift towards the center of Category 2.  793 
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 As expected, a robust category bias was observed during the delay period of the DMC 794 

task (Figure 17C), though unlike Experiment 2 the bias seemed to emerge gradually over the 795 

course of the delay period. To quantify this bias, we averaged channel responses from period 796 

0.25 to 2.0 sec after onset of the sample display and fit the resulting function with an 797 

exponentiated cosine (Quantification of Bias in Orientation Representations, Methods). Mean 798 

reconstruction centers were reliably greater than 0° (M = 10.55°; p = 0.002, bootstrap test), 799 

indicating a robust bias towards the center of the relevant category. Importantly, this bias cannot 800 

be explained by mechanisms associated with decision making and response selection: 801 

participants could not plan or implement a response until the probe stimulus was presented at the 802 

end of the delay period. This result further suggests that the results of Experiments 1 and 2 803 

cannot be wholly explained by mechanisms of response selection or bias.  804 

Assessing contributions from eye movements. We identified and removed electrooculogram 805 

artifacts from the data via independent components analysis. However, small and consistent eye 806 

movement patterns opaque to ICA could nevertheless contribute to the location reconstructions 807 

reported here. We examined this possibility by regressing time-resolved estimates of horizontal 808 

EOG activity onto remembered stimulus locations. As shown in Figure 18, the regression 809 

coefficients linking eye position with remembered locations were indistinguishable from 0 for 810 

the duration of each trial, suggesting that eye movements were not a major determinant of 811 

location reconstructions.  812 
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Discussion 813 

 Our findings suggest that category learning shapes information processing at the earliest 814 

stages of the visual system. The results of Experiment 1 showed that representations of a to-be-815 

categorized stimulus encoded by population-level activity in early visual cortical areas were 816 

systematically biased by their category membership. These biases were correlated with overt 817 

category judgments and were largest for exemplars adjacent to the category boundary. The 818 

results of Experiments 2 and 3 demonstrate that similar biases are present in orientation- and 819 

location-specific reconstructions computed by human scalp EEG data, and further suggest that 820 

our findings cannot be explained by response bias, motor planning, or eye movements. 821 

The categorical biases reported here are strongly task dependent, and therefore must 822 

reflect changes in responses caused by transient top-down factors rather than long-term changes 823 

in feature or location selectivity. However, the effects of these top down modulations are 824 

fundamentally different from task-dependent modulations reported elsewhere. In one example, 825 

Ester et al. (2016) asked participants to attend the orientation or luminance of a peripheral 826 

grating and found both multiplicative and additive enhancements of orientation-specific 827 

reconstructions during the attend orientation condition relative to the attend luminance condition, 828 

but no evidence for a shift like the one reported here. In a different study, Byers and Serences 829 

(2014) examined changes in orientation-specific reconstructions before and after participants 830 

underwent extensive training (10 1-hour sessions) in a challenging orientation discrimination 831 

task. We observed changes in the amplitude (i.e., signal-to-noise ratio) of orientation-specific 832 

reconstructions following training, but no evidence for a shift like the one reported in the current 833 

study. In other studies, Scolari et al. (2012; 2014) examined changes in orientation-specific 834 

reconstructions when participants performed fine-grained and coarse-grained orientation 835 



 

 39 

discrimination tasks. Participants viewed two oriented gratings in sequence and judged whether 836 

they were identical. During one experiment participants were cued to how the second grating 837 

might differ from the first (clockwise vs. counterclockwise rotation), while in a second 838 

experiment they were not. During the fine-grained discrimination task, the authors observed a 839 

modest shift in orientation-specific reconstructions towards “off-target” neural populations that 840 

maximally discriminated between two oriented stimuli, but only when participants were cued to 841 

expect a clockwise or counterclockwise rotation. While this type of modulation is desirable while 842 

performing a fine-discrimination task, it is qualitatively different than the shifts we report in the 843 

current experiment, as participants have no way of anticipating what orientation will be 844 

presented on each trial, nor the difference between that orientation and the category boundary. 845 

Moreover, the shifts reported by Scolari et al. (2012) during fine discriminations were relatively 846 

modest – at most few degrees. We report an opposite pattern of findings, where shifts are largest 847 

for oriented exemplars immediately adjacent to the category boundary. Thus, while other studies 848 

have documented task-dependent changes in orientation-specific reconstructions, those studies 849 

have failed to reveal shifts in reconstructed representations (Ester et al., 2016; Byers & Serences 850 

2014) or have revealed modest shifts that follow different patterns from those reported here 851 

(Scolari et al. 2012).  852 

Several mechanisms may be responsible for our findings. One possibility is that the 853 

orientation preferences of single-units (or populations of units) are systematically shifted towards 854 

the center of each category during the category discrimination task, much in the same way that 855 

neurons in the rodent auditory system exhibit emergent selectivity for categorically different 856 

stimuli (e.g., Xin et al., 2019)  or in the same way that the spectral preferences of neural 857 

populations are biased by feature-based attention (David et al., 2008; Cukur et al., 2012). These 858 
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shifts are relatively small at the single unit level but could be amplified by a read-out 859 

mechanisms that integrate the responses of large neural populations. A second possibility is that 860 

participants strategically apply gain to neural populations that maximally discriminate between 861 

to-be-categorized exemplars during the category discrimination task. Here there are no changes 862 

in the spectral preferences of single units, but the responses of neurons that respond to stimuli 863 

near the category boundary are amplified. These alternatives are not mutually exclusive; nor is 864 

this an exhaustive list. Our data cannot resolve these possibilities. For example, several different 865 

patterns of single-unit gain changes and/or tuning shifts can produce identical responses in a 866 

single fMRI voxel, and different patterns of single-voxel modulation could produce categorical 867 

biases in multivariate stimulus reconstructions (see, e.g., Sprague et al., 2018 for a detailed 868 

discussion of this issue). Ultimately, targeted experiments that combine non-invasive 869 

measurements of brain activity with careful psychophysical measurements and detailed model 870 

simulations will be needed to conclusively identify the mechanisms responsible for the category 871 

biases we have reported here.  872 

Our findings appear to conflict with results from nonhuman primate research which 873 

suggests that sensory cortical areas do not encode categorical information. However, there is 874 

reason to suspect that mechanisms of category learning might be qualitatively different in human 875 

and non-human primates. For example, our participants learned to categorize stimuli based on 876 

performance feedback after approximately 10 minutes of training. In contrast, macaque monkeys 877 

typically require six months or more of training using a similar feedback scheme to reach a 878 

similar level of performance, and this extensive amount of training may influence how neural 879 

circuits code information (e.g., Itthipurripat et al., 2017; Birman & Gardner, 2015). Moreover, 880 

there is growing recognition that the contribution(s) of sensory cortical areas to performance on a 881 
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visual task are highly susceptible to recent history and training effects (Itthipurripiat et al., 2017, 882 

Chen et al., 2016; Liu & Pack, 2017). In one example (Liu & Pack, 2017), extensive training was 883 

associated with a functional substitution of human visual area V3a for MT+ in discriminating 884 

noisy motion patches. Thus, training effects may help explain why previous electrophysiological 885 

experiments have found category-selective responses in association but not sensory cortical 886 

areas.  887 

Studies of categorization in non-human primates have typically employed variants of a 888 

delayed match to category task, where monkeys are shown a sequence of two exemplars 889 

separated by a blank delay interval and asked to report whether the category of the second 890 

exemplar matches the category of the first exemplar. The advantage of this task is that it allows 891 

experimenters to decouple category-selective signals from activity related to decision making, 892 

response preparation, and response execution. However, this same advantage also precludes 893 

examinations of whether and/or how top-down category-selective signals interact with bottom-up 894 

stimulus-specific signals. We made no effort to decouple category-selective and decision-related 895 

signals in Experiments 1-2, and thus the category biases observed in those studies could reflect 896 

mechanisms of decision making, response selection, or motor planning. The results of 897 

Experiment 3 conflict with this interpretation by demonstrating that robust category biases are 898 

present during the memory period of a delayed match-to-category task (Freedman & Assad, 899 

2006).  900 

Previous studies have identified cortical modules selective for faces (Kanwisher et al., 901 

1997), locations (Epstein & Kanwisher, 1998), actions (Astafiev et al., 2004; Huth et al., 2012), 902 

bodies (Downing et al., 2001); animacy (Konkle & Caramazza, 2013) and size (Konkle & 903 

Caramazza, 2013). Other category distinctions (e.g., tools vs. cars) lack specialized processing 904 
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modules but can be decoded from multivoxel patterns in multiple occipitotemporal regions (e.g., 905 

Folstein et al., 2012). Our findings complement these studies by demonstrating that learning a 906 

novel and arbitrary category rule is correlated with rapid and reversible changes in stimulus-907 

specific information processing at even earlier stages of the cortical visual processing hierarchy, 908 

including V1 (see also Brouwer & Heeger, 2009; 2013). Category-dependent changes in early 909 

visual areas may contribute to more complex forms of category selectivity exhibited by upstream 910 

cortical areas, including portions of lateral occipital and inferotemporal cortex. This possibility 911 

awaits further scrutiny.  912 

To summarize, we have shown that learning a novel and arbitrary category rule based on 913 

a simple visual feature (orientation or location) correlates with rapid and reversible changes in 914 

sensory and mnemonic representations encoded by regions in early occipitoparietal cortex. These 915 

changes correlate with participants’ overt category judgments, are largest for exemplars adjacent 916 

to a category boundary, and cannot be explained by decision making or motor preparation. 917 

Collectively, these results provide novel and important evidence suggesting that category 918 

learning induces rapid-yet-reversable changes in information processing at early stages of the 919 

cortical visual processing hierarchy.  920 

  921 
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 1025 

Figure 1. Overview of Experiment 1. (A) Participants viewed displays containing a circular 1026 
aperture of iso-oriented bars. On each trial, the bars were assigned one of 15 unique orientations 1027 
from 0-168°. (B) We randomly selected and designated one stimulus orientation as a category 1028 
boundary (black dashed line), such that the seven orientations counterclockwise from this value 1029 
were assigned to Category 1 (red lines) and the seven orientations clockwise from this value 1030 
were assigned to Category 2 (blue lines). (C) After training, participants rarely miscategorized 1031 
orientations. (D) Response latencies are significantly longer for oriented exemplars near the 1032 
category boundary (RT = response time; shaded regions in C-D are ±1 within-participant 1033 
S.E.M.). 1034 
  1035 
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 1036 
 1037 
Figure 2. Category Decoding Performance. (A) We trained classifiers on activation patterns 1038 
evoked by exemplars at the center of each category boundary during the orientation mapping and 1039 
category discrimination task (blue lines), then used the trained classifier to predict the category 1040 
membership of exemplars adjacent to the category boundary (red lines). (B) Decoding accuracy 1041 
was significantly higher during the category discrimination task relative to the orientation 1042 
mapping task (p = 0.01), suggesting that activation patterns evoked by exemplars adjacent to the 1043 
category boundary became more similar to activation patterns evoked by exemplars at the center 1044 
of each category during the categorization task. The absence of robust decoding performance 1045 
during the orientation mapping task cannot be attributed to poor signal or a uniform enhancement 1046 
of orientation representations by attention, as a decoder trained and tested on activation patterns 1047 
associated with exemplars at the center of each category (C) yielded above-chance decoding 1048 
during both behavioral tasks (D). Decoding performance was computed from activation patterns 1049 
in V1. Error bars depict ±1 S.E.M. 1050 
 1051 
  1052 
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 1053 
 1054 
Figure 3. Inverted Encoding Model. (A) In the first phase of the analysis, we estimated an 1055 
orientation selectivity profile for each voxel retinotopically organized V1-hV4/V3a using data 1056 
from an independent orientation mapping task. Specifically, we modeled the response of each 1057 
voxel as a set of 15 hypothetical orientation channels, each with an idealized response function. 1058 
(B) In the second phase of the analysis, we computed the response of each orientation channel 1059 
from the estimated orientation weights and the pattern of responses across voxels measured 1060 
during each trial of the category discrimination task. The resulting reconstructed channel 1061 
response function (CRF) contains a representation of the stimulus orientation (example; 24 deg), 1062 
which we quantified via a curve-fitting procedure. 1063 
  1064 
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 1065 
 1066 
Figure 4. Reconstructions of stimulus orientation during the orientation mapping task 1067 
(blue) and the category discrimination task (red). Reconstructions were computed using a 1068 
leave-one-run-out cross validation approach where data from N-1 runs were used to estimate 1069 
channel weights and data from the remaining run were used to estimate channel responses. This 1070 
procedure was iterated until all runs had been used to estimate channel responses and the results 1071 
were averaged over permutations. No categorical biases were observed in any visual area for 1072 
either task. Shaded regions depict ±1 within-participant S.E.M. a.u., arbitrary units. 1073 
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 1074 

 1075 
Figure 5. Reconstructed representations of Orientation in Early Visual Cortex. The vertical 1076 
bar at 0° indicates the actual stimulus orientation presented on each trial. Channel response 1077 
functions (CRFs) from Category 1 and Category 2 trials have been arranged and averaged such 1078 
that any categorical bias would manifest as a clockwise (rightward) shift in the orientation 1079 
representation towards the center of Category B. Shaded regions are ±1 within-participant S.E.M 1080 
(see Methods). Note change in scale between visual areas V1-V3 and hV4-V3A. a.u., arbitrary 1081 
units. 1082 
  1083 
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 1084 
 1085 
Figure 6. Stimulus Reconstructions during Category 1 and Category 2 trials. Shaded regions 1086 
are ±1 within-participant S.E.M. a.u., arbitrary units. 1087 
  1088 
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 1089 
 1090 
Figure 7. Participant-level Stimulus Reconstructions. Each panel plots a reconstructed 1091 
representation of stimulus orientation for a given participant (columns) and visual area (rows). 1092 
Dashed blue lines are the estimated peak of each reconstruction (obtained via curve-fitting). 1093 
Ordinate units are arbitrary. 1094 
  1095 
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 1096 
 1097 
Figure 8. Categorical Biases predict Choice Behavior. Each plot shows a logistic regression of 1098 
each orientation channel’s response onto trial-by-trial variability in category judgments. A 1099 
positive coefficient indicates a positive relationship between an orientation channel’s response 1100 
and the correct category judgment (i.e., Category B), while a negative coefficient indicates a 1101 
negative relationship between an orientation channel’s response and correct category judgment 1102 
(i.e., Category A). Red and blue horizontal lines at the top of each plot depict orientation 1103 
channels whose estimated β coefficients are significantly below or above zero, respectively 1104 
(FDR-corrected permutation test; p < 0.05). Shaded regions are ±1 within-participant S.E.M. 1105 
  1106 



 

 56 

Figure 9. Category Biases Scale Inversely with Distance from the Category Boundary. (A) 1107 
The reconstructions shown in Fig. 3 sorted by the absolute angular distance between each 1108 
exemplar and the category boundary. In our case, the 15 orientations were bisected into two 1109 
groups of 7, with the remaining orientation serving as the category boundary. Thus, the 1110 
maximum absolute angular distance between each orientation category and the category 1111 
boundary was 48°. Participant-level reconstructions were pooled and averaged across visual 1112 
areas V1, V2, and V3 as no differences were observed across these regions. Shaded regions are 1113 
±1 within-participant S.E.M. (B) shows the amount of bias for exemplars located 1, 2, 3, or 4 1114 
steps from the category boundary (quantified via a curve-fitting analysis). Error bars are 95% 1115 
confidence intervals. a.u., arbitrary units. 1116 
  1117 
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 1118 

 1119 
Figure 10. Cortical Areas Supporting Robust Decoding of Category Information. We 1120 
trained a linear support vector machine to discriminate between activation patterns associated 1121 
with Category A and Category B exemplars (see Searchlight Classification Analysis; Methods). 1122 
The trained classifier revealed robust category information in multiple visual, parietal, temporal, 1123 
and prefrontal cortical areas, including many regions previously associated with categorization 1124 
(e.g., posterior parietal cortex and lateral prefrontal cortex). 1125 
  1126 



 

 58 

 1127 
 1128 
Figure 11. Stimulus Reconstructions in Visual, Parietal, and Frontal cortical areas during 1129 
the Orientation Mapping and Categorization Tasks. During the orientation mapping task, 1130 
participants detected and reported the identity of a target presented in a stream of letters at 1131 
fixation. During the categorization experiment, participants categorized stimulus orientation into 1132 
two discrete groups. Shaded regions are ±1 within-participant S.E.M. IPL, inferior parietal 1133 
lobule; IPS, intraparietal sulcus; sPCS, superior precentral sulcus; IT, inferotemporal cortex, 1134 
IFG, inferior frontal gyrus. a.u., arbitrary units. 1135 
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 1136 
 1137 
Figure 12. Summary of Experiment 2. (A) Participants viewed displays containing an aperture 1138 
of iso-oriented bars flickering at 30 Hz. (B) The 30 Hz flicker entrained a frequency-specific 1139 
response known as a steady-state visually-evoked potential (SSVEP). (C) Evoked 30 Hz power 1140 
was largest over occipitoparietal electrode sites. We computed stimulus reconstructions (Fig. 7) 1141 
using the 32 scalp electrodes with the highest power. The scale bar indicates the proportion of 1142 
participants (out of 27) for which each electrode site was ranked in the top 32 of all 128 scalp 1143 
electrodes. (D-E) Participants categorized stimuli with a high degree of accuracy; incorrect and 1144 
slow responses were observed only for exemplars adjacent to a category boundary. Shaded 1145 
regions are ±1 within-participant S.E.M.  1146 
 1147 
  1148 
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 1149 

 1150 
Figure 13. Category Biases Emerge Shortly after Stimulus Onset. (A) Time-resolved 1151 
reconstruction of stimulus orientation. Dashed vertical lines at time 0.0 and 3.0 seconds mark 1152 
stimulus on- and offset, respectively. (B) Average channel response function during the first 250 1153 
ms of each trial. The reconstructed representation exhibits a robust category bias (p < 0.01; 1154 
bootstrap test). a.u., arbitrary units. 1155 
 1156 
  1157 
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 1158 
 1159 
Figure 14. Stimulus- and category information are absent in pre-trial EEG activity. Time-1160 
averaged reconstruction computed over an interval spanning -250 to 0 ms relative to stimulus 1161 
onset. The center of the reconstruction was statistically indistinguishable from 0° (p = 0.234; 1162 
bootstrap test) 1163 
 1164 
 1165 

 1166 
 1167 
  1168 
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 1169 
 1170 
Figure 15. Reconstructions of stimulus orientation during the orientation mapping task (A) 1171 
and the category discrimination task (B) during Experiment 2. Vertical dashed lines at time 1172 
0.0 and 3.0 mark the start and end of each trial, respectively. Reconstructions were computed 1173 
using a leave-one-run-out cross validation approach where data from N-1 runs were used to 1174 
estimate channel weights and data from the remaining run were used to estimate channel 1175 
responses. This procedure was iterated until all runs had been used to estimate channel responses 1176 
and the results were averaged over permutations. Units of response are arbitrary. 1177 
 1178 
  1179 
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 1181 

 1182 
 1183 
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 1197 

Figure 16. No systematic biases in eye position during orientation categorization 1198 
(Experiment 2). We regressed trial-by-trial records of stimulus orientation (A) or category (B) 1199 
onto horizontal EOG activity. Thus, positive coefficients reflect a systematic relationship 1200 
between stimulus orientation (or category) and eye position. No such biases were observed. 1201 
Black vertical dashed lines at 0.0 and 3.0 depict the start and end of each trial. Shaded regions 1202 
depict the 95% within-participant confidence interval of the mean. 1203 
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Figure 17. Design and Results of Experiment 3. (A) Possible stimulus locations. The 1207 
orientation of the category boundary (red dashed line) was randomly determined for each 1208 
participant (example shown). (B) Delayed match-to-category (DMC) task. Participants 1209 
remembered the position of a sample disc over a blank delay, then judged whether the location of 1210 
a probe disc was drawn from the same location category or a different location category. In this 1211 
example, the categories are defined by the boundary shown in panel A. (C) Location-specific 1212 
reconstructions computed during the DMC task. Vertical dashed lines at 0.0 and 2.0 sec mark the 1213 
onset of the sample and probe epochs, respectively. Participants could not prepare a response 1214 
until the onset of the probe display, yet a robust category bias was observed during the delay 1215 
period. This suggests that category biases observed in Experiments 1 and 2 are not solely due to 1216 
mechanisms of response selection.  1217 
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 1220 

Figure 18. No systematic biases in eye position during location categorization (Experiment 1221 
3). We regressed trial-by-trial records of stimulus location (A) or category (B) onto horizontal 1222 
EOG activity. Thus, positive coefficients reflect a systematic relationship between stimulus 1223 
orientation (or category) and eye position. No such biases were observed. Black vertical dashed 1224 
lines at 0.0 and 3.0 depict the start and end of each trial. Shaded regions depict the 95% within-1225 
participant confidence interval of the mean. 1226 

 1227 


