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Chapter 1

Introduction

A course on manifolds differs from most other introductory graduate mathematics
courses in that the subject matter is often completely unfamiliar. Most beginning
graduate students have had undergraduate courses in algebra and analysis, so that
graduate courses in those areas are continuations of subjects they have already be-
gun to study. But it is possible to get through an entire undergraduate mathematics
education, at least in the United States, without ever hearing the word “manifold.”

One reason for this anomaly is that even the definition of manifolds involves
rather a large number of technical details. For example, in this book the formal def-
inition does not come until the end of Chapter 2. Since it is disconcerting to embark
on such an adventure without even knowing what it is about, we devote this intro-
ductory chapter to a nonrigorous definition of manifolds, an informal exploration of
some examples, and a consideration of where and why they arise in various branches
of mathematics.

What Are Manifolds?

Let us begin by describing informally how one should think about manifolds. The
underlying idea is that manifolds are like curves and surfaces, except, perhaps, that
they might be of higher dimension. Every manifold comes with a specific nonneg-
ative integer called its dimension, which is, roughly speaking, the number of inde-
pendent numbers (or “parameters”) needed to specify a point. The prototype of an
n-dimensional manifold is n-dimensional Euclidean space Rn, in which each point
literally is an n-tuple of real numbers.

An n-dimensional manifold is an object modeled locally on Rn; this means that
it takes exactly n numbers to specify a point, at least if we do not stray too far from
a given starting point. A physicist would say that an n-dimensional manifold is an
object with n degrees of freedom.

Manifolds of dimension 1 are just lines and curves. The simplest example is
the real line; other examples are provided by familiar plane curves such as circles,

1J.M. Lee, Introduction to Topological Manifolds, Graduate Texts in Mathematics 202,
DOI 10.1007/978-1-4419-7940-7_1, © Springer Science+Business Media, LLC 2011



2 1 Introduction

Fig. 1.1: Plane curves. Fig. 1.2: Space curve.

parabolas, or the graph of any continuous function of the form y D f .x/ (Fig. 1.1).
Still other familiar 1-dimensional manifolds are space curves, which are often de-
scribed parametrically by equations such as .x;y;z/ D .f .t/;g.t/;h.t// for some
continuous functions f;g;h (Fig. 1.2).

In each of these examples, a point can be unambiguously specified by a single
real number. For example, a point on the real line is a real number. We might identify
a point on the circle by its angle, a point on a graph by its x-coordinate, and a point
on a parametrized curve by its parameter t . Note that although a parameter value
determines a point, different parameter values may correspond to the same point, as
in the case of angles on the circle. But in every case, as long as we stay close to some
initial point, there is a one-to-one correspondence between nearby real numbers and
nearby points on the line or curve.

Manifolds of dimension 2 are surfaces. The most common examples are planes
and spheres. (When mathematicians speak of a sphere, we invariably mean a spheri-
cal surface, not a solid ball. The familiar unit sphere in R3 is 2-dimensional, whereas
the solid ball is 3-dimensional.) Other familiar surfaces include cylinders, ellipsoids,
paraboloids, hyperboloids, and the torus, which can be visualized as a doughnut-
shaped surface in R3 obtained by revolving a circle around the z-axis (Fig. 1.3).

In these cases two coordinates are needed to determine a point. For example,
on a plane we typically use Cartesian or polar coordinates; on a sphere we might
use latitude and longitude; and on a torus we might use two angles. As in the 1-
dimensional case, the correspondence between points and pairs of numbers is in
general only local.
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Fig. 1.3: Doughnut surface.

The only higher-dimensional manifold that we can easily visualize is Euclidean
3-space (or parts of it). But it is not hard to construct subsets of higher-dimensional
Euclidean spaces that might reasonably be called manifolds. First, any open subset
of Rn is an n-manifold for obvious reasons. More interesting examples are obtained
by using one or more equations to “cut out” lower-dimensional subsets. For exam-
ple, the set of points .x1;x2;x3;x4/ in R4 satisfying the equation

.x1/
2C .x2/

2C .x3/
2C .x4/

2 D 1 (1.1)

is called the (unit) 3-sphere. It is a 3-dimensional manifold because in a neigh-
borhood of any given point it takes exactly three coordinates to specify a nearby
point: starting at, say, the “north pole” .0;0;0;1/, we can solve equation (1.1) for x 4,
and then each nearby point is uniquely determined by choosing appropriate (small)
.x1;x2;x3/ coordinates and setting x4 D .1� .x1/2� .x2/2� .x3/2/1=2. Near other
points, we may need to solve for different variables, but in each case three coordi-
nates suffice.

The key feature of these examples is that an n-dimensional manifold “looks like”
Rn locally. To make sense of the intuitive notion of “looks like,” we say that two
subsets of Euclidean spaces U � Rk , V � Rn are topologically equivalent or home-
omorphic (from the Greek for “similar form”) if there exists a one-to-one corre-
spondence ' W U ! V such that both ' and its inverse are continuous maps. (Such
a correspondence is called a homeomorphism.) Let us say that a subset M of some
Euclidean space Rk is locally Euclidean of dimension n if every point of M has a
neighborhood in M that is topologically equivalent to a ball in R n.

Now we can give a provisional definition of manifolds. We can think of an n-
dimensional manifold (n-manifold for short) as a subset of some Euclidean space
Rk that is locally Euclidean of dimension n. Later, after we have developed more
machinery, we will give a considerably more general definition; but this one will get
us started.
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Fig. 1.4: Deforming a doughnut into a coffee cup.

Why Study Manifolds?

What follows is an incomplete survey of some of the fields of mathematics in which
manifolds play an important role. This is not an overview of what we will be dis-
cussing in this book; to treat all of these topics adequately would take at least a
dozen books of this size. Rather, think of this section as a glimpse at the vista that
awaits you once you’ve learned to handle the basic tools of the trade.

Topology

Roughly speaking, topology is the branch of mathematics that is concerned with
properties of sets that are unchanged by “continuous deformations.” Somewhat more
accurately, a topological property is one that is preserved by homeomorphisms.

The subject in its modern form was invented near the end of the nineteenth cen-
tury by the French mathematician Henri Poincaré, as an outgrowth of his attempts
to classify geometric objects that appear in analysis. In a seminal 1895 paper titled
Analysis Situs (the old name for topology, Latin for “analysis of position”) and a
series of five companion papers published over the next decade, Poincaré laid out
the main problems of topology and introduced an astonishing array of new ideas for
solving them. As you read this book, you will see that his name is written all over
the subject. In the intervening century, topology has taken on the role of providing
the foundations for just about every branch of mathematics that has any use for a
concept of “space.” (An excellent historical account of the first six decades of the
subject can be found in [Die89].)

Here is a simple but telling example of the kind of problem that topological tools
are needed to solve. Consider two surfaces in space: a sphere and a cube. It should
not be hard to convince yourself that the cube can be continuously deformed into
the sphere without tearing or collapsing it. It is not much harder to come up with
an explicit formula for a homeomorphism between them (as we will do in Chapter
2). Similarly, with a little more work, you should be able to see how the surface of
a doughnut can be continuously deformed into the surface of a one-handled coffee
cup, by stretching out one half of the doughnut to become the cup, and shrinking
the other half to become the handle (Fig. 1.4). Once you decide on an explicit set
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Fig. 1.5: Turning a sphere inside out (with a crease).

of equations to define a “coffee-cup surface” in R3, you could in principle come
up with a set of formulas to describe a homeomorphism between it and a torus.
On the other hand, a little reflection will probably convince you that there is no
homeomorphism from a sphere to a torus: any such map would have to tear open a
“hole” in the sphere, and thus could not be continuous.

It is usually relatively straightforward (though not always easy!) to prove that two
manifolds are topologically equivalent once you have convinced yourself intuitively
that they are: just write down an explicit homeomorphism between them. What is
much harder is to prove that two manifolds are not homeomorphic—even when it
seems “obvious” that they are not as in the case of a sphere and a torus—because
you would need to show that no one, no matter how clever, could find such a map.

History abounds with examples of operations that mathematicians long believed
to be impossible, only to be proved wrong. Here is an example from topology. Imag-
ine a spherical surface colored white on the outside and gray on the inside, and imag-
ine that it can move freely in space, including passing freely through itself. Under
these conditions you could turn the sphere inside out by continuously deforming it,
so that the gray side ends up facing out, but it seems obvious that in so doing you
would have to introduce a crease somewhere. (It is possible to give precise math-
ematical definitions of what we mean by “continuously deforming” and “creases,”
but you do not need to know them to get the general idea.) The simplest way to
proceed would be to push the northern hemisphere down and the southern hemi-
sphere up, allowing them to pass through each other, until the two hemispheres had
switched places (Fig. 1.5); but this would introduce a crease along the equator. The
topologist Stephen Smale stunned the mathematical community in 1958 [Sma58]
when he proved it was possible to turn the sphere inside out without introducing
any creases. Several ways to do this are beautifully illustrated in video recordings
[Max77, LMM95, SFL98].

The usual way to prove that two manifolds are not topologically equivalent is by
finding topological invariants: properties (which could be numbers or other mathe-
matical objects such as groups, matrices, polynomials, or vector spaces) that are pre-
served by homeomorphisms. If two manifolds have different invariants, they cannot
be homeomorphic.

It is evident from the examples above that geometric properties such as circum-
ference and area are not topological invariants, because they are not generally pre-
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served by homeomorphisms. Intuitively, the property that distinguishes a sphere
from a torus is the fact that the latter has a “hole,” while the former does not. But it
turns out that giving a precise definition of what is meant by a hole takes rather a lot
of work.

One invariant that is commonly used to detect holes in a manifold is called the
fundamental group of the manifold, which is a group (in the algebraic sense) at-
tached to each manifold in such a way that homeomorphic manifolds have isomor-
phic fundamental groups. Different elements of the fundamental group represent in-
equivalent ways that a “loop,” or continuous closed path, can be drawn in the man-
ifold, with two loops considered equivalent if one can be continuously deformed
into the other while remaining in the manifold. The number of such inequivalent
loops—in some sense, the “size” of the fundamental group—is one measure of the
number of holes possessed by the manifold. A manifold in which every loop can
be continuously shrunk to a single point has the trivial (one-element) group as its
fundamental group; such a manifold is said to be simply connected. For example,
a sphere is simply connected, but a torus is not. We will prove this rigorously in
Chapter 8; but you can probably convince yourself intuitively that this is the case
if you imagine stretching a rubber band around part of each surface and seeing if
it can shrink itself to a point. On the sphere, no matter where you place the rubber
band initially, it can always shrink down to a single point while remaining on the
surface. But on the surface of a doughnut, there are at least two places to place the
rubber band so that it cannot be shrunk to a point without leaving the surface (one
goes around the hole in the middle of the doughnut, and the other goes around the
part that would be solid if it were a real doughnut).

The study of the fundamental group occupies a major portion of this book. It
is the starting point for algebraic topology, which is the subject that studies topo-
logical properties of manifolds (or other geometric objects) by attaching algebraic
structures such as groups and rings to them in a topologically invariant way.

One of the most important problems of topology is the search for a classification
of manifolds up to topological equivalence. Ideally, for each dimensionn, one would
like to produce a list of n-dimensional manifolds, and a theorem that says every
n-dimensional manifold is homeomorphic to exactly one on the list. The theorem
would be even better if it came with a list of computable topological invariants that
could be used to decide where on the list any given manifold belongs. To make the
problem more tractable, it is common to restrict attention to compact manifolds,
which can be thought of as those that are homeomorphic to closed and bounded
subsets of some Euclidean space.

Precisely such a classification theorem is known for 2-manifolds. The first part
of the theorem says that every compact 2-manifold is homeomorphic to one of the
following: a sphere, or a doughnut surface with n � 1 holes, or a connected sum of
n � 1 projective planes. The second part says that no two manifolds on this list are
homeomorphic to each other. We will define these terms and prove the first part of
the theorem in Chapter 6, and in Chapter 10 we will use the technology provided by
the fundamental group to prove the second part.
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For higher-dimensional manifolds, the situation is much more complicated. The
most delicate classification problem is that for compact 3-manifolds. It was already
known to Poincaré that the 3-sphere is simply connected (we will prove this in
Chapter 7), a property that distinguished it from all other examples of compact 3-
manifolds known in his time. In the last of his five companion papers to Analysis
Situs, Poincaré asked if it were possible to find a compact 3-manifold that is simply
connected and yet not homeomorphic to the 3-sphere. Nobody ever found one, and
the conjecture that every simply connected compact 3-manifold is homeomorphic to
the 3-sphere became known as the Poincaré conjecture. For a long time, topologists
thought of this as the simplest first step in a potential classification of 3-manifolds,
but it resisted proof for a century, even as analogous conjectures were made and
proved in higher dimensions (for 5-manifolds and higher by Stephen Smale in 1961
[Sma61], and for 4-manifolds by Michael Freedman in 1982 [Fre82]).

The intractability of the original 3-dimensional Poincaré conjecture led to its
being acknowledged as the most important topological problem of the twentieth
century, and many strategies were introduced for proving it. Surprisingly, the strat-
egy that eventually succeeded involved techniques from differential geometry and
partial differential equations, not just from topology. These techniques require far
more groundwork than we are able to cover in this book, so we are not able to treat
them here. But because of the significance of the Poincaré conjecture in the general
theory of topological manifolds, it is worth saying a little more about its solution.

A major leap forward in our understanding of 3-manifolds occurred in the 1970s,
when William Thurston formulated a much more powerful conjecture, now known
as the Thurston geometrization conjecture. Thurston conjectured that every compact
3-manifold has a “geometric decomposition,” meaning that it can be cut along cer-
tain surfaces into finitely many pieces, each of which admits one of eight highly uni-
form (but mostly non-Euclidean) geometric structures. Since the manifolds with ge-
ometric structures are much better understood, the geometrization conjecture gives
a nearly complete classification of 3-manifolds (but not yet complete, because there
are still open questions about how many manifolds with certain non-Euclidean ge-
ometric structures exist). In particular, since the only compact, simply connected
3-manifold with a geometric decomposition is the 3-sphere, the geometrization con-
jecture implies the Poincaré conjecture.

The most important advance came in the 1980s, when Richard Hamilton intro-
duced a tool called the Ricci flow for proving the existence of geometric decompo-
sitions. This is a partial differential equation that starts with an arbitrary geometric
structure on a manifold and forces it to evolve in a way that tends to make its ge-
ometry increasingly uniform as time progresses, except in certain places where the
curvature grows without bound. Hamilton proposed to use the places where the cur-
vature becomes very large during the flow as a guide to where to cut the manifold,
and then try to prove that the flow approaches one of the eight uniform geometries
on each of the remaining pieces after the cuts are made. Hamilton made significant
progress in implementing his program, but the technical details were formidable,
requiring deep insights from topology, geometry, and partial differential equations.
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In 2003, Russian mathematician Grigori Perelman figured out how to overcome
the remaining technical obstacles in Hamilton’s program, and completed the proof
of the geometrization conjecture and thus the Poincaré conjecture. Thus the greatest
challenge of twentieth century topology has been solved, paving the way for a much
deeper understanding of 3-manifolds. Perelman’s proof of the Poincaré conjecture
is described in detail in the book [MT07].

In dimensions 4 and higher, there is no hope for a complete classification: it was
proved in 1958 by A. A. Markov that there is no algorithm for classifying manifolds
of dimension greater than 3 (see [Sti93]). Nonetheless, there is much that can be said
using sophisticated combinations of techniques from algebraic topology, differen-
tial geometry, partial differential equations, and algebraic geometry, and spectacular
progress was made in the last half of the twentieth century in understanding the va-
riety of manifolds that exist. The topology of 4-manifolds, in particular, is currently
a highly active field of research.

Vector Analysis

One place where you have already seen some examples of manifolds is in elemen-
tary vector analysis: the study of vector fields, line integrals, surface integrals, and
vector operators such as the divergence, gradient, and curl. A line integral is, in
essence, an integral over a 1-manifold, and a surface integral is an integral over a
2-manifold. The tools and theorems of vector analysis lie at the heart of the classical
Maxwell theory of electromagnetism, for example.

Even in elementary treatments of vector analysis, topological properties play a
role. You probably learned that if a vector field is the gradient of a function on some
open domain in R3, then its curl is identically zero. For certain domains, such as
rectangular solids, the converse is true: every vector field whose curl is identically
zero is the gradient of a function. But there are some domains for which this is not
the case. For example, if r D p

x2Cy2 denotes the distance from the z-axis, the
vector field whose component functions are .�y=r 2;x=r2;0/ is defined everywhere
in the domain D consisting of R3 with the z-axis removed, and has zero curl. It
would be the gradient of the polar angle function � D tan �1.y=x/, except that there
is no way to define the angle function continuously on all of D.

The question of whether every curl-free vector field is a gradient can be rephrased
in such a way that it makes sense on a manifold of any dimension, provided the
manifold is sufficiently “smooth” that one can take derivatives. The answer to the
question, surprisingly, turns out to be a purely topological one. If the manifold is
simply connected, the answer is yes, but in general simple connectivity is not nec-
essary. The precise criterion that works for manifolds in all dimensions involves the
concept of homology (or rather, its closely related cousin cohomology), which is an
alternative way of measuring “holes” in a manifold. We give a brief introduction to
homology and cohomology in Chapter 13 of this book; a more thorough treatment
of the relationship between gradients and topology can be found in [Lee02].
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Geometry

The principal objects of study in Euclidean plane geometry, as you encountered
it in secondary school, are figures constructed from portions of lines, circles, and
other curves—in other words, 1-manifolds. Similarly, solid geometry is concerned
with figures made from portions of planes, spheres, and other 2-manifolds. The
properties that are of interest are those that are invariant under rigid motions. These
include simple properties such as lengths, angles, areas, and volumes, as well as
more sophisticated properties derived from them such as curvature. The curvature of
a curve or surface is a quantitative measure of how it bends and in what directions;
for example, a positively curved surface is “bowl-shaped,” whereas a negatively
curved one is “saddle-shaped.”

Geometric theorems involving curves and surfaces range from the trivial to the
very deep. A typical theorem you have undoubtedly seen before is the angle-sum
theorem: the sum of the interior angles of any Euclidean triangle is � radians. This
seemingly trivial result has profound generalizations to the study of curved surfaces,
where angles may add up to more or less than � depending on the curvature of the
surface. The high point of surface theory is the Gauss–Bonnet theorem: for a closed,
bounded surface in R3, this theorem expresses the relationship between the total
curvature (i.e., the integral of curvature with respect to area) and the number of holes
the surface has. If the surface is topologically equivalent to an n-holed doughnut
surface, the theorem says that the total curvature is exactly equal to 4� � 4�n. In
the case nD 1 this implies that no matter how a one-holed doughnut surface is bent
or stretched, the regions of positive and negative curvature will always precisely
cancel each other out so that the total curvature is zero.

The introduction of manifolds has allowed the study of geometry to be carried
into higher dimensions. The appropriate setting for studying geometric properties
in arbitrary dimensions is that of Riemannian manifolds, which are manifolds on
which there is a rule for measuring distances and angles, subject to certain natu-
ral restrictions to ensure that these quantities behave analogously to their Euclidean
counterparts. The properties of interest are those that are invariant under isome-
tries, or distance-preserving homeomorphisms. For example, one can study the re-
lationship between the curvature of an n-dimensional Riemannian manifold (a local
property) and its global topological type. A typical theorem is that a complete Rie-
mannian n-manifold whose curvature is everywhere larger than some fixed positive
number must be compact and have a finite fundamental group (not too many holes).
The search for such relationships is one of the principal activities in Riemannian
geometry, a thriving field of contemporary research. See Chapter 1 of [Lee97] for
an informal introduction to the subject.
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Algebra

One of the most important objects studied in abstract algebra is the general linear
group GL.n;R/, which is the group of n�n invertible real matrices, with matrix
multiplication as the group operation. As a set, it can be identified with a subset of
n2-dimensional Euclidean space, simply by stringing all the matrix entries out in a
row. Since a matrix is invertible if and only if its determinant is nonzero, GL.n;R/
is an open subset of Rn2

, and is therefore an n2-dimensional manifold. Similarly,
the complex general linear group GL.n;C/ is the group of n�n invertible complex
matrices; it is a 2n2-manifold, because we can identify Cn2

with R2n
2
.

A Lie group is a group (in the algebraic sense) that is also a manifold, together
with some technical conditions to ensure that the group structure and the manifold
structure are compatible with each other. They play central roles in differential ge-
ometry, representation theory, and mathematical physics, among many other fields.
The most important Lie groups are subgroups of the real and complex general lin-
ear groups. Some commonly encountered examples are the special linear group
SL.n;R/ � GL.n;R/, consisting of matrices with determinant 1; the orthogonal
group O.n/ � GL.n;R/, consisting of matrices whose columns are orthonormal;
the special orthogonal group SO.n/ D O.n/\ SL.n;R/; and their complex ana-
logues, the complex special linear group SL.n;C/ � GL.n;C/, the unitary group
U.n/� GL.n;C/, and the special unitary group SU.n/D U.n/\SL.n;C/.

It is important to understand the topological structure of a Lie group and how its
topological structure relates to its algebraic structure. For example, it can be shown
that SO.2/ is topologically equivalent to a circle, SU.2/ is topologically equivalent
to the 3-sphere, and any connected abelian Lie group is topologically equivalent to a
Cartesian product of circles and lines. Lie groups provide a rich source of examples
of manifolds in all dimensions.

Complex Analysis

Complex analysis is the study of holomorphic (i.e., complex analytic) functions. If
f is any complex-valued function of a complex variable, its graph is a subset of
C2 D C � C, namely f.z;w/ W w D f .z/g. More generally, the graph of a holo-
morphic function of n complex variables is a subset of C n� C D CnC1. Because
the set C of complex numbers is naturally identified with R2, and therefore the n-
dimensional complex Euclidean space Cn can be identified with R2n, we can con-
sider graphs of holomorphic functions as manifolds, just as we do for real-valued
functions.

Some holomorphic functions are naturally “multiple-valued.” A typical example
is the complex square root. Except for zero, every complex number has two distinct
square roots. But unlike the case of positive real numbers, where we can always
unambiguously choose the positive square root to denote by the symbol

p
x, it is
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u

x

u2 D x

Fig. 1.6: Graph of the two branches of the real square root.

not possible to define a global continuous square root function on the complex plane.
To see why, write z in polar coordinates as z D re i� D r.cos�C i sin�/. Then the
two square roots of z can be written

p
r ei�=2 and

p
r ei.�=2C�/. As � increases from

0 to 2� , the first square root goes from the positive real axis through the upper half-
plane to the negative real axis, while the second goes from the negative real axis
through the lower half-plane to the positive real axis. Thus whichever continuous
square root function we start with on the positive real axis, we are forced to choose
the other after having made one circuit around the origin.

Even though a “two-valued function” is properly considered as a relation and
not really a function at all, we can make sense of the graph of such a relation in
an unambiguous way. To warm up with a simpler example, consider the two-valued
square root “function” on the nonnegative real axis. Its graph is defined to be the
set of pairs .x;u/ 2 R � R such that u D ˙p

x, or equivalently u2 D x. This is a
parabola opening in the positive x direction (Fig. 1.6), which we can think of as the
two “branches” of the square root.

Similarly, the graph of the two-valued complex square root “function” is the set
of pairs .z;w/ 2 C2 such that w2 D z. Over each small disk U � C that does not
contain 0, this graph has two branches or “sheets,” corresponding to the two possible
continuous choices of square root function on U (Fig. 1.7). If you start on one sheet
above the positive real axis and pass once around the origin in the counterclockwise
direction, you end up on the other sheet. Going around once more brings you back
to the first sheet.

It turns out that this graph in C2 is a 2-dimensional manifold, of a special type
called a Riemann surface: this is essentially a 2-manifold on which there is some
way to define holomorphic functions. Riemann surfaces are of great importance in
complex analysis, because any holomorphic function gives rise to a Riemann surface
by a procedure analogous to the one we sketched above. The surface we constructed
turns out to be topologically equivalent to a plane, but more complicated functions
can give rise to more complicated surfaces. For example, the two-valued “function”
f .z/ D ˙p

z3� z yields a Riemann surface that is homeomorphic to a plane with
one “handle” attached.
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y

U

w D p
rei.�=2C�/

w D p
rei�=2

w

x

Fig. 1.7: Two branches of the complex square root.

One of the fundamental tasks of complex analysis is to understand the topological
type (number of “holes” or “handles”) of the Riemann surface of a given function,
and how it relates to the analytic properties of the function.

Algebraic Geometry

Algebraic geometers study the geometric and topological properties of solution sets
to systems of polynomial equations. Many of the basic questions of algebraic geom-
etry can be posed very naturally in the elementary context of plane curves defined by
polynomial equations. For example: How many intersection points can one expect
between two plane curves defined by polynomials of degrees k and l? (Not more
than kl , but sometimes fewer.) How many disconnected “pieces” does the solution
set to a particular polynomial equation have (Fig. 1.8)? Does a plane curve have any
self-crossings (Fig. 1.9) or “cusps” (points where the tangent vector does not vary
continuously—Fig. 1.10)?

But the real power of algebraic geometry becomes evident only when one focuses
on polynomials with coefficients in an algebraically closed field (one in which ev-
ery polynomial decomposes into a product of linear factors), because polynomial
equations always have the expected number of solutions (counted with multiplicity)
in that case. The most extensively studied case is the complex field; in this context
the solution set to a system of complex polynomials in n variables is a certain ge-
ometric object in Cn called an algebraic variety, which (except for a small subset
where there might be self-crossings or more complicated kinds of behavior) is a
manifold. The subject becomes even more interesting if one enlarges C n by adding
“ideal points at infinity” where parallel lines or asymptotic curves can be thought of
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Fig. 1.8: A plane curve with disconnected pieces.

Fig. 1.9: A self-crossing. Fig. 1.10: A cusp.

as meeting; the resulting set is called complex projective space, and is an extremely
important manifold in its own right.

The properties of interest are those that are invariant under projective transfor-
mations (the natural changes of coordinates on projective space). One can ask such
questions as these: Is a given variety a manifold, or does it have singular points
(points where it fails to be a manifold)? If it is a manifold, what is its topological
type? If it is not a manifold, what is the topological structure of its singular set,
and how does that set change when one varies the coefficients of the polynomials
slightly? If two varieties are homeomorphic, are they equivalent under a projective
transformation? How many times and in what way do two or more varieties inter-
sect?

Algebraic geometry has contributed a prodigious supply of examples of man-
ifolds. In particular, much of the recent progress in understanding 4-dimensional
manifolds has been driven by the wealth of examples that arise as algebraic vari-
eties.
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Computer Graphics

The job of a computer graphics program is to generate realistic images of 3-
dimensional objects, for such applications as movies, simulators, industrial design,
and computer games. The surfaces of the objects being modeled are usually repre-
sented as 2-dimensional manifolds.

A surface for which a simple equation is known—a sphere, for example—is easy
to model on a computer. But there is no single equation that describes the surface of
an airplane or a dinosaur. Thus computer graphics designers typically create models
of surfaces by specifying multiple coordinate patches, each of which represents a
small region homeomorphic to a subset of R2. Such regions can be described by
simple polynomial functions, called splines, and the program can ensure that the
various splines fit together to create an appropriate global surface. Analyzing the
tangent plane at each point of a surface is important for understanding how light
reflects and scatters from the surface; and analyzing the curvature is important to
ensure that adjacent splines fit together smoothly without visible “seams.” If it is
necessary to create a model of an already existing surface rather than one being de-
signed from scratch, then it is necessary for the program to find an efficient way to
subdivide the surface into small pieces, usually triangles, which can then be repre-
sented by splines.

Computer graphics programmers, designers, and researchers make use of many
of the tools of manifold theory: coordinate charts, parametrizations, triangulations,
and curvature, to name just a few.

Classical Mechanics

Classical mechanics is the study of systems that obey Newton’s laws of motion. The
positions of all the objects in the system at any given time can be described by a
set of numbers, or coordinates; typically, these are not independent of each other
but instead must satisfy some relations. The relations can usually be interpreted as
defining a manifold in some Euclidean space.

For example, consider a rigid body moving through space under the influence of
gravity. If we choose three noncollinear pointsP ,Q, andR on the body (Fig. 1.11),
the position of the body is completely specified once we know the coordinates of
these three points, which correspond to a point in R9. However, the positions of the
three points cannot all be specified arbitrarily: because the body is rigid, they are
subject to the constraint that the distances between pairs of points are fixed. Thus,
to position the body in space, we can arbitrarily specify the coordinates of P (three
parameters), and then we can specify the position of Q by giving, say, its latitude
and longitude on the sphere of radius dPQ, the fixed distance between P and Q
(two more parameters). Finally, having determined the position of the two points P
and Q, the only remaining freedom is to rotate R around the line PQ; so we can
specify the position of R by giving the angle � that the plane PQR makes with
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Fig. 1.11: A rigid body in space.

some reference plane (one more parameter). Thus the set of possible positions of
the body is a certain 6-dimensional manifoldM � R9.

Newton’s second law of motion expresses the acceleration of the object—that
is, the second derivatives of the coordinates of P , Q, R—in terms of the force of
gravity, which is a certain function of the object’s position. This can be interpreted as
a system of second-order ordinary differential equations for the position coordinates,
whose solutions are all the possible paths the rigid body can take on the manifold
M .

The study of classical mechanics can thus be interpreted as the study of ordinary
differential equations on manifolds, a subject known as smooth dynamical systems.
A wealth of interesting questions arise in this subject: How do solutions behave over
the long term? Are there any equilibrium points or periodic trajectories? If so, are
they stable; that is, do nearby trajectories stay nearby? A good understanding of
manifolds is necessary to fully answer these questions.

General Relativity

Manifolds play a decisive role in Einstein’s general theory of relativity, which de-
scribes the interactions among matter, energy, and gravitational forces. The central
assertion of the theory is that spacetime (the collection of all points in space at all
times in the history of the universe) can be modeled by a 4-dimensional manifold
that carries a certain kind of geometric structure called a Lorentz metric; and this
metric satisfies a system of partial differential equations called the Einstein field
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equations. Gravitational effects are then interpreted as manifestations of the curva-
ture of the Lorentz metric.

In order to describe the global structure of the universe, its history, and its pos-
sible futures, it is important to understand first of all which 4-manifolds can carry
Lorentz metrics, and for each such manifold how the topology of the manifold in-
fluences the properties of the metric. There are especially interesting relationships
between the local geometry of spacetime (as reflected in the local distribution of
matter and energy) and the global topological structure of the universe; these rela-
tionships are similar to those described above for Riemannian manifolds, but are
more complicated because of the introduction of forces and motion into the picture.
In particular, if we assume that on a cosmic scale the universe looks approximately
the same at all points and in all directions (such a spacetime is said to be homo-
geneous and isotropic), then it turns out there is a critical value for the average
density of matter and energy in the universe: above this density, the universe closes
up on itself spatially and will collapse to a one-point singularity in a finite amount of
time (the “big crunch”); below it, the universe extends infinitely far in all directions
and will expand forever. Interestingly, physicists’ best current estimates place the
average density rather near the critical value, and they have so far been unable to
determine whether it is above or below it, so they do not know whether the universe
will go on existing forever or not.

String Theory

One of the most fundamental and perplexing challenges for modern physics is to
resolve the incompatibilities between quantum theory and general relativity. An ap-
proach that some physicists consider very promising is called string theory, in which
manifolds appear in several different starring roles.

One of the central tenets of string theory is that elementary particles should be
modeled as vibrating submicroscopic 1-dimensional objects, called “strings,” in-
stead of points. This approach promises to resolve many of the contradictions that
plagued previous attempts to unify gravity with the other forces of nature. But in
order to obtain a consistent string theory, it seems to be necessary to assume that
spacetime has more than four dimensions. We experience only four of them di-
rectly, because the dimensions beyond four are so tightly “curled up” that they are
not visible on a macroscopic scale, much as a long but microscopically narrow 2-
dimensional cylinder would appear to be 1-dimensional when viewed on a large
enough scale. The topological properties of the manifold that appears as the “cross-
section” of the curled-up dimensions have such a profound effect on the observable
dynamics of the resulting theory that it is possible to rule out most cross-sections a
priori.

Several different kinds of string theory have been constructed, but all of them
give consistent results only if the cross-section is a certain kind of 6-dimensional
manifold known as a Calabi–Yau manifold. More recently, evidence has been un-
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covered that all of these string theories are different limiting cases of a single un-
derlying theory, dubbed M-theory, in which the cross-section is a 7-manifold. These
developments in physics have stimulated profound advancements in the mathemat-
ical understanding of manifolds of dimensions 6 and 7, and Calabi–Yau manifolds
in particular.

Another role that manifolds play in string theory is in describing the history
of an elementary particle. As a string moves through spacetime, it traces out a 2-
dimensional manifold called its world sheet. Physical phenomena arise from the
interactions among these different topological and geometric structures: the world
sheet, the 6- or 7-dimensional cross-section, and the macroscopic 4-dimensional
spacetime that we see.

It is still too early to predict whether string theory will turn out to be a useful
description of the physical world. But it has already established a lasting place for
itself in mathematics.

Manifolds are used in many more areas of mathematics than the ones listed here,
but this brief survey should be enough to show you that manifolds have a rich as-
sortment of applications. It is time to get to work.




