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Functional Consequences of Synaptic Plasticity in 
Sensory Systems 
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Theunissen 
 
We present a model showing that relevant sensory information becomes 
efficiently encoded in sensory areas that exhibit two widespread spike timing-
dependent phenomena: synaptic and excitability plasticity.  Our model 
predicts neural networks represent surprising stimulus features relevant to 
post-sensory tasks.  We show two supporting electrophysiological results in 
the urethane-anesthetized male zebra finch.  First, neurons throughout the 
auditory pathway are excited more by surprising stimuli than by stimulus 
changes, suggesting that excitatory synapses in general are strengthened by 
surprise.  Second, neurons in auditory areas immediately presynaptic to the 
song system represent only surprising features of birdsong, while auditory 
areas presynaptic to less specialized forebrain areas also represent surprising 
features of environmental sounds.  Our model is not specific to birdsong, and 
may therefore illuminate how neurons in general specialize at encoding task-
related information efficiently. 
 
Neuroscientists characterize most general-purpose auditory1, visual2 and 
somatosensory3 neurons as change detectors.  Change-detecting sensory neurons 
are generally modeled using center-surround receptive fields4 with balanced 
inhibitory and excitatory components5 in order to be able to ignore broad, slow 
changes in the intensity of natural stimuli6, which is efficient because there are 
ample opportunities to encode these extensive, persistent features.  Difference-
detecting, center-surround receptive fields are therefore seen as being useful in 
reducing the redundancy in the neural representation of natural stimuli7, which 
tend to be highly correlated8-10. 
 
However, in a recent paper11 we showed that neurons in Caudal Lateral 
Mesopallium (CLM, an auditory forebrain area specialized at representing 
conspecific song12) of the male zebra finch are best described not with a 
derivative code but with a surprise code.  Surprise is defined as the minus 
logarithm of the stimulus probability given knowledge of the recent stimulus 
history and given knowledge of the statistics of the stimulus class (see Equation 3 
in Methods and Figure 1 c).  In surprise codes the firing probability is modeled 
using a surprise-Spectro-Temporal Receptive Field (surprise-STRF, see Figure 1 
f) convolved with a representation of the stimulus surprise.  Some changes in the 
stimulus are predictable, and predictable changes cause spikes in a derivative code 
but not a surprise code (e.g., compare the stronger representation of predictable 
stimulus changes such as those from 0.84 - 0.9 s in the derivative representation 
of Figure 1 b to their surprise representation in Figure 1 c). 
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Figure 1: Stimulus Representations and Associated STRFs a) 
Spectrogram of a sample of zebra finch song.  b) Split, absolute derivative 
of the spectrogram: louder-than-context entries appear in the top half of 
the representation labeled “loud” and quieter-than-context entries appear 
in the bottom half, labeled “quiet”.  See Methods and Equation 8 for more 
details.  c) Surprise representation of the spectrogram: surprise of every 
stimulus element is proportional to its unexpectedness.  See Methods and 
Equation 3.  Quieter- and louder-than-expected elements are likewise 
separated.  Predictable intra-syllable changes have a weaker representation 
than in b).  d) Classical-STRF of a CLM neuron, obtained by reverse 
correlation to the spectrogram.  e) Derivative-STRF of the same neuron, 
obtained from reverse correlation to the split, absolute derivative.  f) 
Surprise-STRF of the same neuron, obtained from reverse correlation to 
stimulus surprise. 
 

In our earlier study11, we found PSTHs in CLM are described 40% better (p = 5 * 
10-7) using a surprise-STRF (which assumes firing probabilities are proportional 
to surprise) than using a derivative-STRF.  This prediction improvement is due to 
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the fact that CLM neurons fire less to expected stimulus changes than to the 
intrinsically unpredictable elements of zebra finch song, yielding a sparser, more 
efficient neural code than the derivative code. 
 
The existence of surprise coding in CLM leaves three questions unanswered.  
First, if neurons encode unexpected events, then why is CLM not driven best by 
totally random artificial stimuli (such as white noise), which violate expectations 
maximally?  Second, if having costs proportional to the logarithm of probabilities 
is the most efficient way to represent a stimulus13, why is surprise coding found 
mostly in the secondary forebrain, but less in the primary auditory forebrain and 
not in the auditory midbrain11?  Third, how do neural networks implement 
surprise codes?   
 
We show here that these three questions can be answered simultaneously using a 
model incorporating two established spike timing dependent plasticity (STDP) 
phenomena.  The first phenomenon is that if two synaptically-connected neurons 
fire action potentials within approximately 40 ms of each other, the strength of the 
synapse will increase if the presynaptic neuron fires first but decrease if the 
postsynaptic neuron fires first.  This form of STDP has been demonstrated in 
many animal systems14, 15 including the zebra finch forebrain16.  The second 
phenomenon is that the presynaptic neuron becomes globally more excitable 
under conditions which cause the synapse to strengthen, but if the synapse is 
weakened through STDP the presynaptic neuron becomes less excitable17-20.  
While some STDP details are still not known (e.g. we have just begun to 
understand how synaptic strength and excitability saturate21), the qualitative 
aspects of these two STDP phenomena are sufficient to provide a model capable 
of answering the three questions posed above.   
 

Results 

1. Qualitative Model 
 
In this section we explain how, under STDP, sensory neurons with surprising 
content that drives a postsynaptic area become more excitable than neurons with 
redundant sensory information.  By definition of surprise, neurons with surprising 
content fire at the first possible indication of a stimulus feature (see Discussion). 
Suppose these surprising neurons also elicit action potentials in a downstream 
brain area.  Then neurons with surprising, task-relevant (i.e. relevant to the 
postsynaptic area) content fire before both the postsynaptic neurons they drive 
and peer sensory neurons with un-surprising content.  Under the two STDP rules 
mentioned above (synapse strength and excitability plasticity), surprising, task-
relevant neurons become more excitable and have stronger excitatory synapses; 
neurons encoding redundant task-relevant information become less excitable and 
come to have weaker excitatory synapses.  Here, being redundant to the 
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postsynaptic task is defined to mean that the postsynaptic targets consistently fire 
due to inputs from surprising neurons before the redundant neurons fire. 
 
In summary, sensory areas that have neurons responding to both surprising and 
predictable content should find their surprising neurons become more excitable 
while their predictable neurons become less excitable.  However, the trend to 
enhance surprise depends on action potentials in an area postsynaptic to (and 
driven by) that sensory area, without which STDP mechanisms would not apply, 
since there would be no stimulus-locked postsynaptic spikes.  Section 4 in Results 
demonstrates reliance on postsynaptic activity in vivo.   
 
Electrophysiological recordings in all sensory areas with these two forms of 
plasticity should therefore reveal mostly action potentials with (as much as 
possible given the scope of available neural computation) surprising content 
relevant to the tasks in postsynaptic areas.  Whichever neurons have the most 
surprising relevant content will have the highest firing rates and therefore will 
contribute more action potentials to the neural code. 
 

2. Quantitative Model 
 
To double-check that these two STDP rules contribute to surprise coding, we 
simulated small sensory neural networks (see Methods) that had mixtures of 
surprise- derivative- and intensity-coding sensory neurons.  All three types drove 
common postsynaptic targets.  We found that the surprise-coding neurons were 
the only ones whose activity stays consistently strong under STDP (see Figure 2), 
which is expected, since neurons with surprising content fire before the other 
sensory neurons.  Firing before other neurons engages the mechanisms of STDP, 
which cause neurons to become more excitable if they fire consistently before 
their postsynaptic targets.   
 
As can be seen in Figure 2, our results are largely insensitive to noise, number of 
neurons, or synaptic connectivity; although in general, the more synapses 
connecting the sensory and post-sensory areas the faster surprise emerges as the 
dominant coding scheme. 
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Figure 2: Summary of Simulation Results Top: Simulation schematics.  
Neurons from a sensory area have random classical-, derivative- or surprise-
STRFs with fixed latency and are exposed to a zebra finch song.  The sensory 
area drives a post-sensory area with neurons with STDP plasticity.  The 
synapse strength and excitability in the sensory area are modified once per 
presentation epoch according to the synapse STDP rule (top right, see 
Equation 4 in Methods) and an excitability rule where excitability changes in 
an amount proportional to the mean synapse strength change and to a 
homeostatic factor which keeps the total number of spikes fired in the sensory 
area constant (see Methods).  Main panel: 10-simulation ranges of firing rates 
of classical-, derivative- and surprise-neurons given different numbers of 
neurons (at left) and different connectivity fractions (top).  In most cases, 
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surprise-bearing neurons eventually are the only active group, although in 
early stages often derivative-bearing neurons have slightly increased firing 
rates as well. 

 

3. Surprise Consistently Excites in Vivo 
 
Aside from the prediction that surprising neurons should have their excitability 
increased, our model states that surprising content should cause neurons to form 
strong excitatory synapses, and thus surprising events should (more often than 
not) result in an increase in firing rates.  This prediction is an alternative to the 
hypothesis that sensory neurons act as general change detectors, which would 
suggest that all stimulus changes (and not just surprising ones) should result in 
increasing firing rates.  This second hypothesis, that sensory neurons detect either 
increases or decreases in the stimulus intensity compared to a spatially- or 
temporally-close reference, is implicit in the concept of the center-surround 
receptive field, which we wish to refine. 
 
While changes and surprise are often highly correlated (compare Figures 1 b and 
1 c), we can test whether sensory neurons tend to be more excited by changes or 
by surprises by quantifying the positive components of derivative-STRFs, (see 
Figure 1 e) and surprise-STRFs (see Figure 1 f).  We estimated classical-, 
derivative- and surprise-STRFs to conspecific song in four auditory areas of the 
urethane-anesthetized male zebra finch (see Methods): 142 neurons in 
Mesencephallicus Lateralis Dorsalis (MLd – the auditory midbrain), 58 neurons 
in Ovoidalis (Ov – the auditory thalamus), 188 neurons in Field L (the primary, 
general-purpose forebrain auditory area) and 37 neurons in Caudal Lateral 
Mesopallium (CLM, a secondary auditory area specializing in the encoding of 
conspecific birdsong12).  We then assessed the prevalence of negative coefficients 
in these classical-, derivative- and surprise-STRFs in two ways. First, we 
characterized the percentage of the filter that was positive (see Figure 3 a and 
Equation 5 in Methods; also compare the mostly positive surprise-STRF in Figure 
1 f to the more negative derivative-STRF in Figure 1 e).  Second, we compared 
the performance penalty for cross-validated predictions when negative 
coefficients are forbidden (see Figure 3 b and Equation 6 in Methods).  The 
derivative representation used to generate Figure 3 was the same as that used in 
our earlier paper11 and can be obtained from Equation 7 with d = 1 ms (see 
Methods). 
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Figure 3: Prevalence of Negative Coefficients a) The % positive metric (see 
Equation 5) for classical-, derivative- and surprise-STRFs in all four sensory 
areas.  Key: “Spectrogram” = classical-STRF, “δ/δt Spectrogram” = 
derivative-STRF (see Methods and Equation 7 with d = 1 ms), “Surprise” = 
surprise-STRF.  Each neuron is represented with a line joining the % positive 
for the three STRF types.  Positive slopes indicate surprise-STRFs with more 
positive coefficients than derivative-STRFs or derivative-STRFs with more 
positive coefficients than classical-STRFs.  b) The % penalty metric (see 
Equation 6) for classical-, derivative- and surprise-STRFs in all four sensory 
areas.  Negative slopes indicate smaller functional importance of negative 
coefficients in surprise-STRFs than in derivative-STRFs, or of derivative-
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STRFs than in classical-STRFs.  12 derivative representations other than the 
temporal derivative were used, but surprise-STRFs always had significantly 
fewer and less functionally important negative coefficients in every area (see 
Methods). 

 
 
The absence of functionally-important negative coefficients in a derivative-STRF 
would have indicated that neurons generally increase their firing rate in response 
to both predictable and surprising stimulus changes.  Both “On” and “Off” 
derivative-detecting neurons (as well as neurons with mixtures of “On” and “Off” 
character) should all have exclusively non-negative derivative-STRF coefficients; 
“On” activity is represented by positive coefficients in the top panel of the 
derivative-STRF and “Off” activity is represented by positive coefficients in the 
bottom panel of the derivative-STRF (see Figure 1 e). 
 
Instead, as shown in Figure 3 a, surprise-STRFs have more positive coefficients 
(see Equation 5 in Methods) than derivative- or classical-STRFs in all four 
auditory regions.  Therefore, it is more correct to say these neurons fire in 
response to surprise than in response to “On” or “Off” stimulus changes.  This 
difference between surprise- and derivative-STRFs is statistically significant (p 
values are 3 * 10-6, 0.02, 1 * 10-9, and 4 * 10-6, in MLd, Ov, Field L and CLM, 
respectively, one-tailed binomial test).  These negative coefficients are also less 
functionally important in surprise-STRFs than in derivative-STRFs (see Equation 
6 in Methods) as shown in Figure 3 b; these differences are highly significant (p 
values are 3 * 10-24, 4 * 10-7, 4 * 10-15, and  6 * 10-6, in MLd, Ov, Field L and 
CLM, respectively).  We also tested 12 other stimulus derivative representations, 
such as the one shown in Figure 1 b, to investigate the possibility that some other 
stimulus derivative representation might result in STRFs with as many positive 
coefficients as surprise-STRFs (see Methods).  However, we did not find any 
stimulus derivative representation that has fewer (or less functionally important) 
negative coefficients than the surprise representation.   

4. Evidence of Post-Sensory Influence on the Neural Code 
in Vivo 
 
An essential component in our model is activity of neurons postsynaptic to the 
sensory area in question.  An irrelevant stimulus (i.e. one that does not evoke a 
stimulus-related response in any area postsynaptic to the sensory area) will 
engage neither synaptic nor excitability plasticity in a stimulus-dependent way, 
therefore the excitability and synaptic strengths of sensory neurons will not be 
influenced by this stimulus’ statistics.   
 
The zebra finch auditory system provides a rare opportunity to test the importance 
of post-sensory activity in the modification of the neural code.  While the areas 
MLd, Ov and Field L encode all auditory stimuli used by higher areas, CLM is 
presynaptic to areas leading to the song production system, which are activated 
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primarily by conspecific song12.  (See Figure 4, right column for a diagram of the 
connectivity of the four auditory areas discussed here.)  Since the postsynaptic 
targets of CLM neurons are activated by birdsong, the surprise code CLM uses 
should reflect expectations of birdsong.  In contrast, every auditory response in 
the forebrain passes through Field L, so we expect the surprise code in Field L 
reflects the statistics of all sounds that have an impact on any zebra finch behavior 
mediated by forebrain neurons.   
 
Using our definition of relevance, only birdsong is relevant to CLM, while any 
sound that can influence behavior is relevant to Field L.  Thus the surprise code in 
Field L should reflect the statistics not only of song, but also of natural 
environmental sounds.  Since Ov and MLd are both presynaptic to Field L, these 
areas too should treat environmental sounds as being relevant, as Field L is 
postsynaptic to Ov, which is in turn postsynaptic to MLd (see Backpropagation in 
Discussion). 
 
Our prediction therefore is that the expectations implicit in the surprise code (i.e. 
the corpus of stimuli used to estimate P(S|D) of Equation 3, Methods) of MLd, Ov 
and Field L come from both birdsong and environmental sounds since both these 
classes of stimuli modulate firing in postsynaptic areas, whereas CLM’s 
expectations are derived from birdsong alone.  To test this prediction, we 
quantified the surprise of a group of random ripple stimuli (“modulation-limited 
noise” or ML noise22) given either expectations of conspecific song alone, or 
expectations of song and a standard corpus of environmental sounds23 (see 
Methods for how surprise was calculated based on expectations of song & 
environmental sounds). 
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Figure 4: Effects of Postsynaptic Modification  Histograms of the 
prediction improvement of surprise-STRFs in response to ML noise when 
expectations are based on a corpus of song & environmental sounds 
instead of being based on song alone.  Counts of the negative and positive 
histogram entries are also shown.  At right is a connectivity diagram of 
relevant zebra finch auditory areas.  In the three areas feeding into general 
auditory processing (MLd, Ovoidalis and Field L), there is significant 
evidence that the surprise code had been tuned to represent environmental 
sounds as well as birdsong, as is seen in the bias of the histogram towards 
positive values.  In CLM (the area presynaptic to song-specific areas), no 
evidence exists for modifications from environmental sounds. 

 
As seen in the histograms of Figure 4, a surprise code based on song alone 
predicts worse than a code based on song and environmental sounds in MLd, Ov 
and Field L, but there is no significant difference in CLM.  Mean differences in 
prediction scores between the song & environmental expectations and the song-
alone expectations are MLd: 18% (p = 2 * 10-18, two tailed Wilcoxon signed rank 
test), Ov: 20% (p = 2 * 10-10), Field L: 19% (p = 1 * 10-21) and CLM: 4.9% (p = 
0.6).  The only area whose expectations are not significantly modified by 
environmental sounds is CLM; not only is the distribution of prediction 
improvements statistically indistinguishable from 0 (see Figure 4, bottom 
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histogram), the CLM distribution has a significantly lower median than Field L, 
Ov or MLd (two sided Wilcoxon rank sum test, p = 2 * 10-4, p = 2 * 10-5, p = 6 * 
10-8 respectively).  Therefore, in every area except CLM, expectations formed 
from environmental sounds significantly influence the surprise-based neural code. 
 
For completeness, we also compared expectations of environmental sounds alone 
to expectations of the mixture of song and environmental sounds above.  We 
found that, omitting song from the training corpus, predictions to ML noise went 
down in MLd, Ov, Field L and CLM by 7.1% (p = 3 * 10-17), 1.9% (p = 0.3), 
4.3% (p = 1 * 10-7) and 10% (p = 2 * 10-4) respectively.  The prediction decrease 
in CLM was significantly larger than that in Field L (p = 0.007, two-tailed 
Wilcoxon rank sum test), indicating that song expectations are more important in 
CLM than in Field L. 
 
In summary, there is significant influence of birdsong seen in CLM, Field L and 
MLd while Ov shows a smaller, statistically insignificant influence from song.  
The surprise codes of MLd, Ov and Field L (but not CLM) show influence from 
environmental sounds, consistent with our prediction that since no auditory area 
downstream of CLM encodes environmental sounds, CLM’s surprise code should 
not be influenced by environmental sound statistics. 

Discussion 
 
In the Introduction, three questions were raised.  First, why do areas successfully 
modeled with a surprise code not respond robustly to random (and thus 
unpredictable), artificial, behaviorally-irrelevant stimuli?  Second, if surprise-
coding is a good strategy, why is there a variety of neural codes in the avian 
auditory processing stream?  Third, how might networks of neurons come to use a 
surprise code? 
 
To answer the first question, we showed that synaptic and excitability plasticity 
together can increase the firing rates of neurons which happen to carry the most 
surprising information relevant to a postsynaptic task.  Stimulus features 
irrelevant to any task in postsynaptic areas will not engage these plasticity 
mechanisms.  
 
To answer the second question, our method of surprise selection can act only on 
the variety of stimulus-response functions already present in the sensory area.  
The earliest-firing neurons with content that happens to be task relevant have their 
excitability increased, and these surprising-as-possible neurons become 
postsynaptic targets for sensory areas further upstream.  From metabolic studies24, 

25, we know that only a small fraction of sensory neurons contribute a significant 
number of spikes to the neural code.  From synaptic surveys, we know that a 
small subset of forebrain neurons have exceptionally strong synapses, and this 
subset tends to connect to other neurons with strong synapses26. If the small 
fraction of neurons that are functionally active and strongly interconnected 
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coincides with the small fraction of neurons that are most surprising (which is 
likely under our model, since surprising neurons alone have their excitability 
consistently increased and their synapses strengthened), then we have uncovered a 
possible explanation for why so many sensory neurons do not spike often24, 25, 27.  
They have stimulus-response relationships which do not contribute novel or 
needed information to a postsynaptic area, and thus they had their excitability 
decreased (and did not become targets of strong excitatory synapses) to the point 
that now they are nearly silent. 
 
To answer the third question, we provided four main points in support of a 
mechanism whereby STDP causes sensory areas to contain spikes with mostly 
task-relevant, surprising stimulus information.  First, we described qualitatively 
that (by definition) surprising, relevant neurons will be the first to contain 
indicators of stimulus features relevant to postsynaptic areas, so under STDP 
surprising neurons should have stronger synapses and should become more 
excitable.  Second, we showed in a numerical model that a sensory network with 
mixed surprising and un-surprising content has all but its surprising neurons 
become less excitable, meaning that the spikes in a sensory area with STDP will 
tend to be allocated to neurons with stimulus-response relationships that contain 
relevant surprising information.  Third, we showed evidence in vivo of the 
consistent excitation associated with surprising features by showing that the 
surprise-STRF has more positive coefficients than any derivative-STRF we found.  
Fourth, we showed that in vivo sensory neurons upstream of song-specific regions 
have a surprise code based on statistics of song, while areas presynaptic to general 
forebrain areas (in which both song and environmental sounds are important) 
have a surprise code based on both song and environmental sounds. 
 

Backpropagation 
 
Our model implies a form of backpropagation28 in that information about what is 
relevant to a downstream task is propagated upstream.  Presynaptic neurons with 
useful content increase their firing rates, thus becoming more relevant to neurons 
even further upstream.  This form of backpropagation requires no unknown 
physiological mechanism, and may help reconcile the gulf between multi-layered 
perceptrons, which require backpropagation for efficient training, and multi-
layered biological neurons, where no suitable correspondence to backpropagation 
had until now been found29. 
 
Backpropagation might be critically important to the maintenance of relevant 
surprise detection.  Excitability plasticity does not last longer than one week in 
vivo even though the changes in behavior produced by excitability plasticity can 
last much longer19.  We propose relevant surprise detection is initially mediated in 
part by excitability plasticity, which in turn helps strengthen excitatory synapses 
from presynaptic neurons with surprising content, seen in Section 3 of Results.  
Synaptic plasticity can last years, spanning multiple time scales and physical 
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mechanisms21, 30, therefore this type of backpropagation explains how behavior 
initially mediated by excitability plasticity outlives excitability plasticity. 

BOS Selectivity 
 
An unexpected benefit of our model is that we may be able to explain the 
sensitivity of area HVC to the bird’s own song (BOS).  HVC is a songbird area 
noted for its selectivity to BOS31.  HVC is postsynaptic to the rest of the auditory 
system and immediately presynaptic to the motor areas used in song generation.  
Since the postsynaptic targets of HVC are activated nearly exclusively during the 
production of song, our model would suggest that HVC should fire predominantly 
to stimuli that predict firing in the song system, and thus should have selectivity 
to BOS. 

Surprise and Overall Firing Rates 
 
Our analysis relies on the relationship between surprise and primacy.  The first 
reliable indicators of any stimulus feature must be surprising (in terms of having 
low probability given the stimulus history and given knowledge of the stimulus 
class’ typical behavior); otherwise they are ipso facto not the earliest reliable 
indicator.  STDP has been shown in simulation to cause neurons to fire as early as 
possible32.  Let us examine the equivalence of surprise and primacy with more 
mathematical precision.  Suppose that the excitability of a sensory neuron follows 
this rule: 
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Here act is the activity, or average firing rate, of the neuron, PInc is the near-past 
averaged probability of an event occurring which increases the excitability of the 
neuron (such as firing before a postsynaptic neuron) and PDec is the probability of 
an event which decreases the excitability of the neuron, i.e., the probability that 
the sensory neuron fires a spike shortly after a postsynaptic feature detector.  
Since act in Equation 1 is governed by the ratio of PInc to PDec, act will tend 
towards a stable asymptote based on the neuron’s function in its circuit, and will 
be stable both to multiplicative increases to both PInc and PDec and to external 
perturbations (as has been demonstrated in the tadpole retinotectal system33).  
 
If PInc is equal to a constant C1 (related to synaptic efficiency) times the firing rate 
R, and PDec is equal to a similar constant C2 times the firing rate R times P(S|D) 
(which is the probability that the event is predictable given the stimulus history, 
thus the probability that the sensory neuron fires after a stimulus-savvy 
postsynaptic neuron, see Methods near Equation 3), then Equation 1 reduces to 
the following: 
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Here, k3 is the sum of all constants on the second line.  Equation 2 shows that 
neural activity under the above assumptions should become linearly related to - 
P(S|D): the minus log of the stimulus probability given the recent stimulus 
history.  In other words, it is predicted that under STDP if the excitability of a 
neuron follows the form of Equation 1, its firing rate will become proportional to 
–log(P(S|D)) which is surprise11, and downstream neurons should also develop 
firing rates proportional to surprise. 

The Role of Feedback 
 
The connectivity diagram at the right of Figure 4 lacks feedback connections 
(axons traveling upstream from their presynaptic stimulating sensory areas).  We 
did not include them in our model, but under STDP they should also perform the 
role of training more peripheral neurons to ignore sensory content that is 
predictable, as follows.  If a stimulus feature can be predicted in a less-peripheral 
area but not in a more-peripheral area, then the firing of the less-peripheral neuron 
becomes the earliest indication of the presence of that stimulus feature, and 
upstream neurons encoding for the predictable feature become redundant and 
therefore less excitable.  Thus feedback connections should help squelch the 
representation of predictable stimulus elements in more peripheral areas, a 
cortical function that has been hypothesized before34. 
 

Application to Other Fields 
 
We have shown that sensory systems with two known STDP rules will tend to 
represent surprising sensory content that is relevant to postsensory tasks. Not only 
do we see our model as a general method of how plastic sensory brain areas come 
to process sensory data efficiently, but also the same principles may apply to 
Pavlovian conditioning, cognitive functions and motor planning tasks: the first 
neurons able to accomplish the desired computations become more active, and 
their synapses become more excitatory.   
 
If the evolutionary purpose of STDP is indeed to enhance the activity of the 
fastest possible neural mechanisms capable of performing a task, then our finding 
should help the following areas of study.  Searches for specific synaptic biological 
phenomena could be guided by their presumed function; for example if Equation 
1 held then emphasizing surprise would be the result.  Neuromimetic computing 
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could make use of the abstraction that STDP results in relevant surprise coding, 
and possibly artificial STDP neural networks could be trained more quickly than 
by modeling every spike.  Finally, since the role of plastic neural tissue seems to 
be determined by presynaptic and postsynaptic activity, it may be possible to use 
a paired stimulation paradigm to re-train pieces of human cortex to recover lost 
cognitive abilities or to develop new ones. 

Methods 
 

Quantifying Surprise 
 

To estimate the surprise in conspecific song, we used an identical 
quantification of surprise to that in an earlier paper11.  
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Here D is the Domain (the recent stimulus history relevant to determining the 
likelihood of S), S is the stimulus intensity whose surprise is being considered, 
SML is the most likely stimulus given D, and P(S|D) stands for the conditional 
probability of S given D and depends on the knowledge of statistical dependencies 
in the sounds from a representative corpus of 59 unfamiliar conspecific songs.  
Surprise, SML, S, and D are all functions of frequency and time.  As long as P(S|D) 
is unimodal, S can be recovered from Surprise.  D includes latencies between 4 
and 7 ms prior to S and frequencies within 625 Hz of S. 
 
We quantified the surprise of the random modulation-limited noise (ML noise) 
stimulus in three ways: once with P(S|D) obtained from the corpus of 59 zebra 
finch songs, once from both the song corpus and a selection from the Pittsburgh 
Natural Sounds23, and once with the environmental sounds alone.  We included 
the shortest 36 environmental sounds so that the total duration of the 
environmental sounds (241 s) was approximately twice as long as the duration of 
the 59 zebra finch songs (117 s) because cochlear filters have been shown to be 
optimized for mixtures of animal vocalizations and environmental sounds in a 1:2 
ratio35.  The names of the environmental sounds we used were: 
breaking_branches, breaking_branches2, breaking_twigs, Chewing, Doorclose, 
fire, footsteps, Glass break, Hammer, Horse Galloping, Knocking, Ocean, 
Pourwatr, rain, Rain2, Rattle Snake, ripples, River, rubbing_twings, rustle, Sand 
Paper, scratching_branch, shaking_tree, Shuffling Cards, squeeky_floor, stream, 
Tear Paper, Thunder, Turnpage, walking_snow+twigs, walking_snow, Water 
Bubbling, Water Draining, Water Drippng, Water Drops, and Wind.   
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Quantitative Model 
 
For section 2 of Results, we set up a “sensory layer” of neurons whose activity is 
driven by a zebra finch song and a “post-sensory” area whose activity is driven by 
excitatory synapses from neurons in the sensory layer.  Neurons in the sensory 
layer had inputs proportional to the outputs of random classical-STRFs, 
derivative-STRFs (see Equation 7, with d = 1 ms and Figure 1 e) or surprise-
STRFs (see Equation 3 and Figure 1 f), all with a constant latency.  Since we 
believe timing is critical to determining which neurons become active, we 
eliminated timing discrepancies by forcing all model neurons to have identical 
latency.  We allowed the excitability and synaptic strengths of the sensory layer to 
become modified by STDP, based on the expected firing times of sensory neurons 
relative to their postsynaptic targets.  Rather than simulate spikes (which was 
computationally impractical for the noise levels we desired) we calculated 
analytically the firing probability over time for every neuron, both in the sensory 
area and in the post-sensory area, and then used a mean-field STDP 
approximation in discreet-time epochs. 
 
Epochs consisted of the following steps.  The firing probability of sensory 
neurons was set to be proportional to the random STRF convolved with the 
stimulus (one representative birdsong) in the form of a spectrogram, derivative 
spectrogram or surprise spectrogram.  These firing rates where then rectified, and 
the average firing rate was set to a constant.  The time-dependent firing rates of 
the post-sensory neurons were then determined by taking the sum of the firing 
rates of sensory neurons weighted by synaptic strengths, and adding a 1 ms 
latency to account for synaptic delay and integration.  For each synapse, the net 
“mean field” effect of STDP was estimated by the dot product of the cross-
correlation of presynaptic and postsynaptic firing rates with the following time-
dependent STDP rule (plotted in the upper-right of Figure 2): 
 

 

! 

Change t( ) =
t 0.1ms( )

t
2 + 2ms( )

2( )
  (4) 

 
The actual change applied to each synapse was multiplying the current synaptic 
strength by 

! 

1+ " Change •CC( )  where ε is a learning rate, Change is as in 
Equation 4 and CC is the cross-correlation of pre- and postsynaptic firing rates.  
The excitability of each sensory neuron was also multiplied by the product of all 
synaptic change factors, then adjusted so that no neuron had a firing rate above 50 
Hz.  All excitabilities were scaled to keep the mean firing rate in the sensory area 
constant of 0.5 Hz, our estimate of a typical mean firing rate24.  The mean firing 
rate of each class of sensory neuron (Surprise, Derivative or Spectrogram) was 
stored at the end of every epoch.   
 
We did not use our postulated method of weighting exciting and depressing 
events (see Equation 1) for two reasons: it has not yet been experimentally 
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demonstrated, and we did not wish to imply that our finding that our main finding 
(relevant surprise detection increases excitability) requires this specific, untested 
assertion.   
 
We explored a large parameter range to show that our main finding is robust.  We 
investigated networks with 320, 400, 800, 1600, 3200 and 4000 total neurons.  
For all our simulations there were three times as many neurons in the sensory 
layer as in the post-sensory layer.   Initial synapse strength was set to be random, 
and the chance that any particular synapse existed between a given sensory 
neuron and a given post-sensory neuron in any given simulation was 1 in 6 (a 
relatively dense interconnectivity), 1 in 12 or 1 in 24 (a relatively sparse 
connectivity).  We ran each simulation 10 times with different initial random 
synapse connectivity and strength, and reported the entire 10-simulation range of 
firing rates as a function of number of elapsed epochs in Figure 2. 
 

Surprise and Excitation 

Positive Metrics 
 
STRFPAK version 5.2 (available for download at http://strfpak.berkeley.edu) was 
used to calculate classical-, derivative- and surprise-STRFs.  We used two 
methods of assessing the degree to which surprise-STRFs are more positive than 
derivative-STRFs: a % positive measure (see Figure 3 a) and a functional 
importance measure (see Figure 3 b).  The % positive measure was computed as 
follows: 
 

 

! 

% Positive =

S ft

ft

"

S ft

ft

"
  (5) 

 
where Sft is STRF coefficient at latency t and frequency band f.  The % Positive is 
thus restricted to being between -100% (for a STRF composed entirely of 
nonpositive coefficients) and 100% (for a STRF composed entirely of 
nonnegative coefficients).   
 
Our second method of assessing the importance of negative coefficients is to 
determine the decrease in prediction scores to validation data when negative 
coefficients are disallowed.  STRFPAK version 5.2 includes the option of setting 
negative STRF coefficients to 0 for predictions on validation data.  To assess the 
functional importance of negative coefficients, we used a % penalty metric as 
follows: 
 

 

! 

% Penalty =
FitNorm " FitNoNeg

FitNorm
 (6) 
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FitNorm is the regular predicted information fit score36 and FitNoNeg is the prediction 
score once negative coefficients have been zeroed out.   
 

Other Derivative Representations 
 
To control for the possibility that the form of the spectrogram derivative used was 
not the one which generates minimal negative coefficients, we searched for (but 
could not find) a different stimulus derivative representation in which derivative-
STRFs have fewer negative coefficients (by either metric, see Equations 5 and 6) 
than surprise-STRFs.  The remainder of this section documents the specifics of 
the derivative representations which all had significantly more negative 
coefficients than the surprise-STRF using either metric. 
 
We investigated the following 12 other derivative representations: 9 different 
temporal derivative representations where the time step of the derivative ranged 
from 2ms to 10 ms (the default derivative representation has a 1 ms time step), a 
spectral derivative, a joint spectro-temporal derivative, and a difference-from-
mean-domain derivative.   
 
The 10 total time derivatives were calculated as follows: 
 

 

! 

Der =
S(t) " S(t " d) if S(t) " S(t " d) > 0, 0 otherwise

S(t) " S(t " d) if S(t) " S(t " d) < 0, 0 otherwise
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$ 

% 
% 

& 

' 

( 
( 
 (7) 

 
Der is the split absolute derivative, with louder-than-context entries in the top half 
and quieter-than-context entries in the bottom half (see Figure 1 b for an 
example); t is time.  The parameter d controls the duration of the derivative 
baseline, and varied from 1 ms to 10 ms.   
 
Similarly, the spectral derivative was the difference in intensity between a given 
spectrogram frequency band and the band of immediately lower frequency, split 
so that increases and decreases in intensity as a function of frequency appear as 
positive entries in separate sections of the double-tall stimulus representation.   
 
The joint spectro-temporal derivative was formed by taking the split spectral 
derivative of the split temporal derivative with a 1 ms baseline (see Equation 7 
with d = 1 ms), and results in a quadruple-tall stimulus representation where 75% 
of the entries are 0: e.g. the top section has nonzero entries only when the present 
spectrogram band is more intense both than the spectrogram band of immediately 
lower frequency and the spectrogram band of the same frequency 1 ms in the past. 
 
The difference-from-mean-domain derivative (shown in Figure 1 b) was 
calculated as follows: 
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! 

S "D if S "D > 0, 0 otherwise

S "D if S "D < 0, 0 otherwise
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Here, S is the stimulus intensity at a particular time and frequency and D is the 
mean value of the stimulus in the domain used to predict how surprising S is for 
the surprise representation (a rectangle with latency range 4 – 7 ms and frequency 
range within 625 Hz of S, see above near Equation 3).  
 
In all areas the surprise-STRF was more positive than all of the derivative-STRFs, 
both in terms of positive percentage (Equation 5, p values are less than or equal to 
3 * 10-6, 0.04, 1 * 10-4, and 0.001 in MLd, Ov, Field L and CLM, respectively, 
one-tailed binomial test) and in terms of prediction penalty when negative 
coefficients are removed (Equation 6, p values are less than or equal to 1 * 10-21, 2 
* 10-5, 2 * 10-7, and 0.01 in MLd, Ov, Field L and CLM, respectively). 
 
We were justified in using a one-tailed binomial test because in all 104 
independent tests (2 metrics * 4 areas * 13 derivative representations), negative 
coefficients are more prevalent in derivative- than in surprise-STRFs, almost 
always with a high degree of significance, thus there is an a priori reason to 
expect surprise-STRFs to be more positive.   
 
As an aside, we double-checked our earlier finding that in CLM surprise-STRFs 
outperform derivative-STRFs11 by comparing the prediction accuracy of the best 
derivative-STRF for CLM each neuron (determined post hoc, outside of any 
regularization framework) to the prediction accuracy of the surprise-STRF.  This 
comparison is statistically unfair against the surprise-STRF for two reasons.  First, 
selecting the best from 13 different derivative representations gives significantly 
more flexibility to the computations the derivative-STRFs could perform (thus 
matching the idiosyncrasies of each neuron). Second, one noisy measurement (the 
prediction score of the surprise-STRF) is compared to the maximum, not the 
mean, of 13 noisy measurements (the 13 different derivative-STRF prediction 
scores), so noise works in favor of high derivative-STRF scores.  Nonetheless, in 
CLM the surprise-STRF still out-performs the best derivative-STRF consistently, 
by an average of 10%, p = 0.005 (Wilcoxon signed rank test). 

Neurophysiological Recordings 
 

Neural data were obtained from 57 adult male zebra finches.  All subjects 
were reared in a colony in natural family groups, and were not exposed to any of 
the songs used as a stimulus prior to the neurophysiological recordings session.  
Single-unit responses were obtained with extracellular tungsten electrodes in 
urethane-anesthetized birds.  The location of the recordings was verified with 
standard histological techniques: for CLM, n = 37; Field L, n = 188; Ovoidalis, 
n=58 and MLd, n = 142.  46 subjects underwent simultaneous recording in either 
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in both Field L and MLd (n = 29) or in both CLM and Field L (n = 17); the 
remaining 11 underwent recording in Ovoidalis exclusively.  (*** MORE 
OVOIDALIS METHODS HERE IF THIS PUBLISHED BEFORE NOOPUR”S 
PAPER ***) 

 
Sounds were played from a loudspeaker placed 15 cm in front of the animal, and 
sound levels had peak intensity of 70 dB SPL.  All neurons in CLM were in the 
lateral subdivision.  Neurons in Field L were sampled from all sub-regions (L1, 
L2a, L2b, and L3).  Data from 46 (*** ALL 57 IF NOOPUR’S PAPER 
PUBLISHED FIRST ***) of these birds were also used in previously published 
work11, and additional information on stimulus design, neurophysiological 
recordings and histological techniques can be found in previous studies22, 37, 38 
(*** Insert ref to Noopur’s paper here too once it’s published ***).  All 
experimental procedures were approved by the Animal Care and Use Committee 
of UC Berkeley.  
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