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How different is local cortical circuitry from a random network? To answer this question, we probed synaptic
connections with several hundred simultaneous quadruple whole-cell recordings from layer 5 pyramidal neurons in the
rat visual cortex. Analysis of this dataset revealed several nonrandom features in synaptic connectivity. We confirmed
previous reports that bidirectional connections are more common than expected in a random network. We found that
several highly clustered three-neuron connectivity patterns are overrepresented, suggesting that connections tend to
cluster together. We also analyzed synaptic connection strength as defined by the peak excitatory postsynaptic
potential amplitude. We found that the distribution of synaptic connection strength differs significantly from the
Poisson distribution and can be fitted by a lognormal distribution. Such a distribution has a heavier tail and implies
that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic
connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more
clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger
connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should
be investigated further.
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Introduction

Understanding cortical function requires unraveling syn-
aptic connectivity in cortical circuits, that is, establishing the
wiring diagrams. Although smaller wiring diagrams can be
reconstructed using electron microscopy [1], reconstruction
on the scale of a cortical column is impossible with current
technology (but see [2] for a promising approach). Even if
such a possibility were within reach, synaptic connectivity
likely varies from animal to animal and within one animal
over time. Therefore, a reasonable approach is to describe
synaptic connectivity statistically, or probabilistically. Such
statistical description may be based on random sampling of
connections with multineuron recordings [3,4,5]. For exam-
ple, electrophysiological recordings from neuronal pairs
showed that the probability of connection is often low
[3,5,6,7,8,9,10,11], suggesting that the network is sparse. Such
statistical approaches may create the impression that synaptic
connectivity in local cortical circuits is random. This view is
consistent with previous suggestions [12,13,14], but hard to
reconcile with cortical functionality, which must rely on
specificity of connections [15,16,17,18].

In general, statistical sampling of connections does not
imply that the underlying network has random connectivity.
Indeed, statistical sampling has already revealed several
nonrandom features in cortical connectivity. In particular,
specific connectivity patterns exist between different classes
in the local circuit [3,19,20]. Within one putatively homoge-
neous class, the number of reciprocally connected pairs is
greater than expected in a random network [5,6,11].
Distribution of the number of synapses per connection is

non-Poisson and has low variance [6,21]. At the same time, the
distribution of the connection strength is broad [5,6,10,11].
But many questions remain unanswered: Are there non-
random features in patterns involving more than two
neurons? What is the distribution of synaptic connection
strength? Are synaptic connection strengths correlated?
Recently, new approaches for network connectivity analysis

have been developed and various nonrandom features were
discovered in natural and man-made networks. In particular,
many networks are scale-free, that is, the number of
connections per node (node degree) often follows a power-
law distribution [22]. Also, many networks exhibit the small-
world property, that is, high local clustering of connections in
combination with a short path between any two nodes [23,24].
In addition, probability of connection between nodes
depends on how many connections they have [25]. Although
local cortical networks may possess these properties, existing
connectivity data are not sufficient for such analyses. These
data are obtained by random sampling of connections and
call for other approaches. One such approach is to explore
local structures in network connectivity by studying the
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distribution of few-node connectivity patterns, or motifs
[26,27]. Another such approach is analyzing the utilization
(or, in this case, the strength) of connections [28,29,30].

In this paper, we apply a combination of statistical methods
to a large dataset from hundreds of simultaneous quadruple
whole-cell recordings from visual cortex in developing rats.
Our results confirm previous indications of nonrandomness
and point out several new ones. In particular, we show that
the distribution of connection strengths between pyramidal
neurons is non-Poisson and find correlations in the strength
of the connections sharing pre- or postsynaptic neurons.
Also, we find several overrepresented three-neuron connec-
tivity patterns, or motifs. Surprisingly, we find that some few-
neuron motifs can play an important role in the dynamics of
layer 5 local cortical networks because they are composed of
exceptionally strong connections. This suggests a novel view
of the local cortical network, in which a skeleton of stronger
connections is immersed in a sea of weaker ones.

Results

We studied connectivity among thick tufted layer 5
neurons in rat visual cortex with quadruple whole-cell
recordings (Figure 1A and 1B). Thick tufted layer 5 pyramidal
neurons are important projection neurons from the cerebral
cortex to subcortical areas [9,31,32]. Synaptic connection
strengths were assessed by evoking action potentials in each
of the four cells and measuring the averaged peak excitatory
postsynaptic potential (EPSP) amplitudes in the other three
cells (see Figure 1C and Materials and Methods). Results of
these measurements for a sample quadruple recording are
shown in Figure 1D. Each arrow indicates a detected
connection with the corresponding connection strengths.

The dataset contained a total of 816 quadruple recording
attempts (some of these attempts contained data for only two
or three neurons, if whole-cell configuration was not
successfully established with all four cells). As previously
reported [5], the rate of connectivity was p = 11.6% (931
connections out of 8,050 possible connections), which is
similar to that reported for rat somatosensory cortex layers 5
[6,9] and 2/3 [11], as well as those previously reported for rat
visual cortical layers 5 [3,10] and 2/3 [11].

Two-Neuron Patterns
We started by assessing how well a randomly connected

network [33] describes our dataset. In this model, the
existence of a connection between any two neurons is
independently chosen with a uniform probability p
(Figure 2A). We test the predictions of this model by
classifying all simultaneously recorded pairs of neurons into
three classes: unconnected, unidirectionally connected, and
bidirectionally connected. Given connection probability p
and total number of pairs N, the expected number of
unconnected pairs should be N(1! p)2. The expected number
of unidirectionally connected pairs should be 2Np(1! p), and
the expected number of bidirectionally connected pairs
should be Np2. We find that the actual number of bidirec-
tionally connected pairs is four times that of the expected
numbers (p , 0.0001) (Figure 2B). The observed over-
representation of reciprocally connected layer 5 neurons
confirms previous reports [5,6]. Such overrepresentation has
also been observed in layer 2/3 of the rat visual cortex [11].
However, whether projections between layers observe this
pattern remains an open question.
Can the overrepresentation of reciprocal connections

reflect an experimental artifact? Indeed, such overrepresen-

Figure 1. Illustration of a Quadruple Whole-Cell Recording

(A) Dodt contrast image showing four thick-tufted L5 neurons before patching on.
(B) Fluorescent image of the same four cells in whole-cell configuration.
(C) Average EPSP waveform measured in the postsynaptic neuron (bottom) while evoking action potentials in the presynaptic neuron (top).
(D) Diagram of detected synaptic connections and their strengths for this quadruple recording.
DOI: 10.1371/journal.pbio.0030068.g001
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tation could arise from a nonuniform probability of
connection for different neurons. For example, connection
probability may depend on interneuron distance. To control
for this artifact, we measured distances between neurons in
recordings where labeling was performed successfully. We

found that the probability of connection does not depend
systematically on the interneuron distance (p = 0.21, chi
square test) (Figures 3, S1, and S2). This is not surprising
because most neurons were located closer than the span of
their dendritic (and especially axonal) arbors. Our result is
consistent with Holmgren et al.’s study [11], which found only
a small (22%) decrease in connection probability up to 50 lm,
with a more significant drop (44%) up to 100 lm for layer 2/3
pyramidal neurons.
Another source of nonuniformity in connection proba-

bility may be axonal arbors being cut off differentially,
depending on the depth of the recorded neuron from the
slice surface. (The recording depths were from 10 to 100 lm.)
To explore such a possibility we measured the dependence of
the connection probability on the recording depth. Neither
connection probability, nor strength of connection was found
to depend systematically on the recording depth (see
Figure S3). In addition, for every successfully labeled tissue
we measured the distance from the average cell position to
the nearest axonal cut point (see Figure S3). Again no strong
trends in connection probability or connection strength were
found. These results show that the cutting artifact is unlikely
to explain observed nonrandom features.
We also considered the possible artifact of connection

probability varying with age. We found a weak decline in
connection probability and EPSP amplitude (consistent with
Reyes and Sakmann [34]) within the range used in experi-
ments (P12–P20; see Figure S4). Yet, such a decline is
insufficient to account for the observed nonrandomness. To
demonstrate this, we repeated most of the analysis on a subset

Figure 2. Two-Neuron Connectivity Patterns Are Nonrandom

(A) Null hypothesis is generated by assuming independent proba-
bilities of connection.
(B) Reciprocal connections are four times more likely than predicted
by the null hypothesis (p , 0.0001, Monte Carlo simulation to test for
overrepresentation). Numbers on top of bars are actual counts. Error
bars are standard deviations estimated by bootstrap method.
DOI: 10.1371/journal.pbio.0030068.g002

Figure 3. Probability of Connection among Adjacent Neurons Does Not Depend Strongly on the Interneuron Distance

(A) Relative location of labeled neurons in the plane of the section. Positive direction of y-axis is aligned with apical dendrite. Potentially
presynaptic neuron is located at the origin. Red—bidirectionally connected pairs; blue—unidirectionally connected pairs; green—unconnected
pairs.
(B) Histogram showing the numbers of pairs in the three classes as a function of distance between neurons (Euclidian distance was calculated
from relative X, Y, Z coordinates).
(C) Probability of connection versus interneuron distance. Error bars are 95% confidence intervals estimated from binomial distribution.
DOI: 10.1371/journal.pbio.0030068.g003
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of the data from 14 to 16-d-old animals when the majority of
measurements were performed (see Figure S5). We found that
bidirectional connections are also overrepresented in this
subset of data. Results of other analyses that will be described
later in the paper are also confirmed on this subset
(Figure S5).

Finally, it is possible that some extreme degree of
inhomogeneity in connections probability is able to explain
the observed overrepresentation of reciprocal pairs, but this
would probably reflect large local inhomogeneity in cortical
connectivity patterns—possibly differences between sub-
classes [6,35], rather than experimental artifacts—and is in
line with the main conclusions of this paper.

Three-Neuron Patterns
We extended our analysis by comparing the statistics of

three-neuron patterns to those expected by chance [26,27].
We classify all triplets into 16 classes and count the number of
triplets in each class. In order to avoid reporting over-
represented three-neuron patterns just because they contain
popular two-neuron patterns, we have revised the null
hypothesis[26,27]. The control distribution was obtained
numerically by constructing random triplets where constit-
uent pairs are chosen independently, but with the same
probability of bidirectional and unidirectional connections
as in data (Figure 4A). For example, the actual probability of a
unidirectional connection is (according to Figure 2B) 495/
(3312 þ 495 þ 218) = 0.123. Then the probability of
unidirectional connection from A to B is 0.123/2 = 0.0615,
the same as from B to A (see Figure 4A). The probability of
bidirectional connection is (according to Figure 2B) 218/
(3312 þ 495 þ 218) = 0.0542. The probability of finding the
particular triplet class in Figure 4A by chance is the product
of the probabilities of finding the three constituent pairs and
a factor to account for permutations of the three neurons.
The ratio of the observed counts and the expected counts for
each class are plotted in Figure 4B. The actual counts are
given as numbers on top of the bars. Although triplets from
several of these patterns have been reported previously [9,10],
small numbers of recordings have precluded statistical
analysis.

According to Figure 4B, several triplet patterns are
overrepresented. Is this overrepresentation statistically sig-
nificant? Because we look for overrepresentation in many
pattern classes at the same time, the raw p-values (Figure 4C)
overestimate the true significance (underestimate the true p-
value). To correct the raw p-values, one has to apply a
multiple-hypothesis testing procedure. We chose to correct
the p-values by applying a step-down min-P-based multiple-
hypothesis testing correction procedure (see Materials and
Methods). The corrected p-values (Figure 4C) give the
probability of mistakenly reporting at least one of the
patterns as overrepresented when it is not.

Two-neuron correlations are summarized by saying that if
neuron A synapses onto neuron B, then the probability of B
synapsing onto A is several times greater than chance. Three-
neuron correlations are summarized roughly by saying that if
A connects with B and B connects with C (regardless of
direction), the probability of connection between A and C is
several times greater than chance. Interestingly, similar
results have been obtained in the analysis of the Caenorhabditis
elegans wiring diagram [36], which was reconstructed from

serial section electron microscopy [1]. Because different
techniques have different biases, the similarity of results
suggests that correlations in synaptic connectivity represent a
general property of neuronal circuits. Such property may
represent evolutionary conservation from invertebrates to
mammals or convergence driven by similar computational
constraints.
Although individual connectivity patterns containing more

than three neurons could not be analyzed statistically for the
existing dataset (Table S1), we found a 70% overrepresenta-
tion of ‘‘chain’’ quadruplets (patterns number 21 23 24 26 28
29 31 32 33 34 35 38 39 41 43 as defined in Figure S6, p=0.004)
relative to the null hypothesis requiring that a random matrix
has the actual proportion of triplet classes.

Distribution of Synaptic Connection Strengths
Next, we turned our attention to the distribution of

synaptic connection strengths as characterized by EPSP
amplitude (Figure 5A). We estimated the probability density
function by binning connection strengths and dividing the
number of occurrences in each bin by the bin size. Since
there are many more weak connections than strong ones, we

Figure 4. Several Three-Neuron Patterns Are Overrepresented as
Compared to the Random Network

(A) Null hypothesis for three-neuron patterns assumes independent
combinations of connection probabilities of two kinds of two-neuron
patterns.
(B) Ratio of actual counts (numbers above bars) to that predicted by
the null hypothesis. Error bars are standard deviations estimated by
bootstrap method.
(C) Raw (open bars) and multiple-hypothesis testing corrected (filled
bars) p-values. p-values above 0.5 are not shown.
DOI: 10.1371/journal.pbio.0030068.g004
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chose bins whose sizes increase linearly with the connection
strength at the bin center. In other words, bin sizes are
uniform on the log scale. The estimated density function is
independent of the chosen bin size since the bin size is
divided out.

The obtained distribution has a mean of 0.77 mV and a
heavy tail, that is, a greater number of strong synaptic
connections than expected for either the exponential
distribution (Figure 5A) or the normal distribution (not
shown). There are significantly more connections with
strengths above 1 mV than expected by best exponential or
normal fit (p , 0.0001; see Materials and Methods). We find
that the dataset is best fit by a lognormal distribution, which
has a bell shape when plotted on a semilog scale (Figure 5B).
Although our measurements were performed in developing
animals, experiments in mature animals have also revealed
large single EPSPs (.5 mV) [37].

The overrepresentation of strong synaptic connections is
likely to have important implications for the cortical network
dynamics. This is because strong connections are few but
powerful. For example, although synaptic connections with
strength above 1.2 mV constitute only 17% of all connections,
they contribute about half of the total synaptic weight (Figure

5C and 5D). This estimate was obtained by multiplying the
number of synaptic connections by the connection strengths
(assuming equal presynaptic firing rates).

Correlation of Connection Strengths in Two-Neuron
Patterns
Next, we analyzed the correlations between the strengths of

the synaptic connections in two-neuron patterns. We find
that the synaptic strengths of the bidirectional connections
are on average stronger than the unidirectional synaptic
connections (mean 0.95 mV versus 0.61 mV, p = 3.1 3 10!7,
Student’s t-test) in agreement with [6]. The distribution of
connection strengths for the bidirectional connections is
expanded toward stronger connections compared to that of
unidirectional connections (Figure 6A; note the semilog
scale). Furthermore, the strengths of the two connections in
a bidirectional pair are moderately but significantly corre-
lated with each other (Figure 6B). To control for possible
systematic variations between different quadruplets, we
looked at correlations in the strength of synaptic connections
that shared no pre- and postsynaptic neurons and found no
significant correlation (Figure 6C). Could the correlation in
connection strength result from nearby neurons having

Figure 5. Distribution of Synaptic Connection Strength Has a Heavy Tail

(A) Estimated probability density function in log–log space, with both lognormal fit (p[w] = 0.426exp[!(ln[w] þ 0.702)2/(2 3 0.9355)2]/w) and
exponential fit (p[w] = 1.82exp[!1.683w]). Notice that the lognormal fit has a heavier tail than the exponential distribution. Error bars are
standard deviations estimated by bootstrap method (not shown when narrower than the dot). The numbers on top on the dots are the actual
counts (not shown when more than 50).
(B) Estimated probability density distribution in semilog space, with the lognormal fit. The lognormal function shows up as a normal function in
the semilog space.
(C) Empirical cumulative density function for both the probability distribution of synaptic strengths and the synaptic contribution (normalized
product of probability and connection strength). They are generated directly from the data rather than the fits. The vertical line illustrates the
fact that 17% of the synaptic connections contribute to half of the total synaptic strengths.
(D) Probability density function of synaptic connection strengths p(w) fitted by a lognormal function and the synaptic contribution defined as
the product of the strength, w, and p(w). The total areas under both curves are normalized to 1.
DOI: 10.1371/journal.pbio.0030068.g005
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stronger connections? We do not think so because the
strengths of bidirectional connections do not depend
strongly on the distance between neurons (Figure 6D).

Another way to characterize correlations in connection
strengths is by analyzing the overrepresentation of the
bidirectional motif for different synaptic-strength thresholds.
For every threshold value, we modify the dataset by keeping
only those synaptic connections that exceed this threshold. In
a unidirectionally connected pair, connection is kept only if
its strength exceeds the threshold. In a bidirectionally
connected pair, if both connections exceed the threshold,
they are both kept. If only one of the connections exceeds the
threshold, the pair becomes unidirectionally connected. Then
we predict the numbers of bidirectional synaptic connections
that exceed threshold by using the null model assuming
independent probability, as was done for two-neuron
patterns. The actual number of bidirectional connections
exceeding the threshold is compared with the predicted. We
find that, as the threshold is raised, the ratio of actual to

expected number of bidirectional connections monotonically
increases (Figure 7). This shows that reciprocity of connec-
tions is greater for stronger connections.

Three-Neuron Patterns with Strong Connections
We also analyzed the overrepresentation of three-neuron

patterns as a function of threshold. Because of small numbers
of patterns in some classes, we have grouped highly
connected patterns (boxed patterns in Figure 8) together
and calculated the measured counts relative to random for
different thresholds. Similar to the two-neuron motifs,
overrepresentation of the highly connected motifs gets more
dramatic as the threshold is raised (Figure 8). Although the
numbers of overrepresented three-neuron patterns are small,
they may contribute to the neuronal dynamics in nontrivial
ways, for example, by supporting recurrent activity. Further-
more, the contribution of three-neuron patterns depends on
the chosen connection strength threshold. The relative
fraction of overrepresented patterns in the network of

Figure 6. Bidirectionally Connected Pairs Contain Connections That Are Stronger and Correlated

(A) Synaptic connections in bidirectionally connected pairs are on average stronger than those in unidirectionally connected pairs. The
probability density distribution for both the reciprocal (red solid, p(w) = 0.41exp(!(ln wþ 0.60)2/(23 0.9762)/w) and nonreciprocal (blue dashed,
p(w) = 0.47exp(!(ln wþ 0.81)2/(23 0.8342)/w) connections are shown.
(B) In bidirectionally connected pairs synaptic connection strengths are moderately but significantly correlated (R = 0.36, p , 0.0001).
(C) Scatter plot of the strength of synaptic connections that shared no pre- and postsynaptic neurons in the same quadruple recording. There
might be other connections in the quadruplet besides these two connections. No significant correlation is observed (R = 0.068, p = 0.48). All
correlations calculated using Pearson’s R method in log space.
(D) Average connection strength for bidirectional connections does not vary systemically with interneuron distance (one-way ANOVA,
p = 0.068). Numbers on top of data points are the number of connections. Error bars are standard errors of the mean.
DOI: 10.1371/journal.pbio.0030068.g006
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stronger connections is much greater than that in the
network of weaker connections.

In addition, we analyzed the strengths of synaptic con-
nections made onto the same neuron, synaptic connections

coming out of the same neuron, and synaptic connections
onto and out of the same neuron (Figure S7). These strengths
are weakly correlated. Correlations in the strength of
incoming or outgoing connections may suggest, although
not conclusively prove, the presence of neurons with
particularly strong connections. Such neurons may be
analogous to ‘‘network hubs,’’ or nodes with particularly
large numbers of connections (degrees), which are known to
exist in other networks [22,38].

Discussion

We showed that synaptic connectivity in the local network
of layer 5 pyramidal neurons is highly nonrandom. The
network consists of sparse synaptic connections that tend to
cluster together in the form of overrepresented patterns, or
motifs. The distribution of connection strengths has a
significant tail; strong connections are few but powerful and
even more clustered than the weak ones. These results suggest
that the network may be viewed as a skeleton of stronger
connections in a sea of weaker ones (Figure 9). Interestingly,
the existence of few but powerful synaptic connections makes
analyzing the network with few-neuron connectivity patterns
a reasonable first step. Indeed one could have thought that,
since each neuron receives inputs from thousands of others
collectively determining its dynamics, analysis of few-neuron
motifs is akin to ‘‘searching under the street light.’’ Yet, the
finding of a heavy tail in the connection strength distribution
suggests that a lot of power is due to a few connections.
Therefore, our analysis has illuminated a significant part of

Figure 7. Stronger Connections Are More Likely Reciprocal than Weaker
Ones

Overrepresentation of bidirectionally connected motifs gets more
dramatic for higher threshold of connection strength (counts differ
from random with p , 0.001 for all thresholds, Monte Carlo
simulation). Significance of monotonicity is assessed by applying
the Kolmogorov-Smirnov test (p, 3.5310!10 for all successive pairs).
Numbers on top of dots show the counts of actual pairs.
DOI: 10.1371/journal.pbio.0030068.g007

Figure 8. Stronger Connections Are More Clustered than Weaker Ones

Relative overrepresentation of highly connected three-neuron motifs
monotonically increases as the threshold is raised (counts differ from
random p , 0.001 for all thresholds, Monte Carlo simulation).
Significance of monotonicity is assessed by applying the Kolmogorov-
Smirnov test (p ,3.5 3 10!10 for all successive pairs). Numbers
show the actual triplet counts. For the second to highest threshold,
two instances of pattern 12 and one instance of pattern 16 survive.
For the highest threshold, one instance each of pattern 12 and 15
survive (one of the connections in pattern 16 drops out and it
becomes pattern 15).
DOI: 10.1371/journal.pbio.0030068.g008

Figure 9. Statistically Reconstructed Network of 50 Layer 5 Pyramidal
Neurons Illustrates That Stronger Connections form a Skeleton Immersed
in a Sea of the Weaker Ones

Details of statistical reconstruction are given in Materials and
Methods. For illustrative purposes, neurons are arranged so that
strongly interconnected nodes are close by. Dotted arrows are weak
(,1 mV) unidirectional connections; solid arrows are weak bidirec-
tional connections. Red arrows are strong (.1 mV) unidirectional
connections with arrow size indicating the strength. Red arrows with
double lines are strong bidirectional connections.
DOI: 10.1371/journal.pbio.0030068.g009
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the local cortical architecture, especially if the stronger
connections are distributed uniformly among neurons.
Naturally, this description is not complete, and future studies
should investigate whether stronger synaptic connections are
distributed among neurons uniformly or belong preferen-
tially to ‘‘hub’’ neurons. Also, studies involving larger
networks of neurons will be needed to provide a more
complete understanding of the network structure and
function.

Although broad distribution of synaptic connections
strength has been seen in the cortex [6,11] and in the
cerebellum [39], heavy-tailed distributions have not been
suggested as suitable fits previously. For example, in the feed-
forward projection from granule to Purkinje cells in the
cerebellum, the distribution was fitted by a truncated
Gaussian distribution, argued to be optimal for information
storage [40]. It would be interesting to see if analogous theory
could be developed to explain the lognormal distribution
seen among the layer 5 pyramid recurrent connections.
Another relevant observation is that of mini-EPSC ampli-
tudes [41], which were fitted by a Poisson distribution based
on a binomial model of the data. In this case, however, we are
looking at direct unitary connections between pairs of
neurons rather than individual synapses, and such direct
connections between nearby cortical neurons are typically
comprised of multiple individual synapses [6,21,34,42].
Evoked and spontaneous release may also produce different
synaptic strength distributions because the underlying
molecular mechanisms are different. Alternatively, the
lognormal distribution could depend on network activity
patterns not present in dissociated cultures.

To illustrate the possible impact of the skeleton of strong
connections on the network dynamics, let us consider a local
network of layer 5 neurons occupying the 300 lm3 300 lm
area. According to Peters et al. [43], there are 4,480 thick
tufted layer 5 neurons under 1 mm2 of cortex, and therefore
400 thick tufted neurons in the considered network. With a
connection probability of 0.11, each neuron receives inputs
from 44 others. If distribution of connection strength is
uniform among neurons, then each neuron has only about
2–3 connections in the greater than 2-mV range. If the
corresponding 2–3 presynaptic neurons fire simultaneously,
they may drive the postsynaptic neuron to fire. This suggests
that a sparse skeleton of strong connections may drive the
dynamics of the network. An exceptionally strong connection
(.10 mV) may alone drive a postsynaptic neuron to fire.
Suprathreshold EPSPs have been observed previously with
paired recordings [37,44,45] and with calcium imaging [46].
However, such connections occur with a very low probability
(about 1/1000, estimated from lognormal distribution), mean-
ing that there are only about 20 of such connections in the
considered network and that therefore most neurons do not
have them. Finally, inhibitory neurons may make it more
difficult to drive a postsynaptic neuron to fire and need to be
investigated.

Because the highly influential, strong, and reliable (Figure
S8) synaptic connections in the network are few in number,
their exact connectivity pattern and properties might there-
fore be important and make firing patterns of the involved
cortical neurons highly reproducible. This may be manifested
in the simultaneous activation of several neurons in
organized patterns during spontaneous and evoked activity

that has been observed in cortical slices [47,48,49,50] and
elsewhere [51,52,53,54]. Unfortunately, most current exper-
imental studies rely on random sampling of neurons
appropriate for studying the properties of average connec-
tions rather than the particularly strong connections. It might
be important in the future to devise methods to selectively
study particularly strong connections, because of their
anticipated large influence on network dynamics [35,49].
Although stronger connections are likely to be important

for network dynamics, weaker connections need to be
considered as well. Collectively, they could affect the
dynamics of the network significantly and might carry out
computations with a population code. The weaker connec-
tions may be a potent driving force if firing is correlated
between neurons. In addition, weaker connections may serve
as a potential reserve for cortical plasticity. Indeed, weaker
connections could be strengthened easily through a variety of
activity-dependent learning rules (see below for an example).
In neurobiological literature, synaptic connections have

been classified previously by their impact into ‘‘drivers’’ and
‘‘modulators’’ [55]. Drivers are less numerous and produce
stronger impact than modulators. We stopped short of calling
stronger connections among layer 5 pyramidal neurons
drivers, and weaker connections modulators, for two reasons.
First, previously drivers and modulators have been used to
describe inputs arising from a priori different subsets of
neurons, such as different pathways. Second, we do not find a
clearly bimodal distribution of connections strength, suggest-
ing that the distinction between stronger and weaker
connections is not clearly defined enough to warrant two
separate classes.
Next, we consider how observed distributions of synaptic

strength and correlations between them might have arisen.
Although it is possible that the neurons bound by stronger
connections form a distinct subclass defined by perhaps
distinct long-range projection patterns, or different channel
densities and/or gene expression patterns, it is also possible
that the distributions arise as a natural consequence of
activity-dependent plasticity rules.
The lognormal distribution of synaptic connection

strength may be explained by a random multiplicative
process, which has been extensively studied previously
[56,57,58,59]. The idea behind this is demonstrated below.
Suppose a synaptic connection changes its strength multi-
plicatively after ith plasticity episode. This can be expressed
as

wi ¼ Fiwi!1; ð1Þ

where wi is the synaptic connection strength after ith
plasticity episode, and Fi is the fractional change in synaptic
strength induced by that episode. Then it is easy to see that

log wn ¼ log w0 þ
Xn

i¼1

log Fi; ð2Þ

where wn is the current synaptic connection strength, w0 is
the initial synaptic connection strength, and Fis are the
fractional changes in synaptic connection strength. If we
assume all Fis to be independent and identically distributed
with finite mean and variance, then by applying central limit
theorem, log wn should obey a Gaussian distribution, which
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implies that wn obeys a lognormal distribution. For a more
rigorous treatment, a decay term has to be added to make the
distribution stationary, which is analogous to the Gompertz
stochastic growth model in ecology [56,59] (also see
Appendix S1). In a network, the fractional change in synaptic
connection strengths due to long-term potentiation (LTP)
would have complex dependencies both on current synaptic
connection strength and on correlated activity in the
network. In a previous study of layer 5 pyramidal cells, we
found only a weak—although statistically significant—de-
pendence of the percentage amount of LTP on the pre-LTP
EPSP amplitude so that fractional synaptic change due to
LTP was in effect approximately constant for most synaptic
strengths [5]. Studies in other brain areas have found a more
marked negative dependency [60,61,62]. However, this neg-
ative dependency could be counterbalanced by the stronger
correlation between presynaptic and postsynaptic firing
patterns introduced by a stronger synaptic connection.
Regardless, it is curious that a simple independency assump-
tion, together with synaptic decay, reproduces the observed
distribution, despite the complex interactions in the network.
How this is achieved warrants further investigation.

Can the overrepresentation of bidirectional connections
and the correlation in the reciprocal connection strength
arise from known learning rules? For example, the synaptic
connections studied in this paper are known to obey a
temporally asymmetric spike-timing-dependent plasticity
rule [5,8], in which the strength of a synaptic connection
changes according to the timing of pre- and postsynaptic
spikes. If a presynaptic spike shortly precedes a postsynaptic
spike, the synaptic connection is strengthened. Conversely, if
a presynaptic spike follows a postsynaptic spike, the synaptic
connection is weakened. Simulations have shown that in a
recurrent network, if effects of spike pairs are assumed to
sum linearly, this rule leads to underrepresentation of
bidirectional motifs, instead of the overrepresentation
observed here [63], because the firing statistics are exactly
reversed for the reciprocal synaptic connections. However,
for highly correlated firing of pre- and postsynaptic cells,
depending on the relative durations and amplitudes of the
long-term potentiation and long-term depression temporal
windows, more potentiation than depression may be trig-
gered for connections going both ways [64,65]. Furthermore,
nonlinear spike interactions are known to operate at those
synapses. In particular, the spike-timing-dependent plasticity
rule becomes temporally symmetric if the pre- and post-
synaptic neurons fire at higher than 50 Hz [5]. Whether these
factors can explain this discrepancy, or additional factors
need to be considered, remains to be studied.

In a wide range of networks, there is a power-law
relationship between the numbers of connections a particular
node has (its degree) and the abundance of such nodes [66].
These networks have been termed scale-free networks [22]. In
particular, such a power-law distribution of the number of
connections a neuron makes has been reported in C. elegans
[22]. Here, we have not studied the degree distribution
because of the lack of adequate data (such as, for example, the
full connectivity diagram for the cortical network). We
instead analyzed the strengths of the connections and found
a lognormal distribution of synaptic connection strengths,
which has a heavy tail, similar to the power-law distribution.
Similar distributions have been observed in many non-

biological networks [67,68]. In the biological setting, using
an in silico model of metabolic flow in yeast, Almaas et al. [28]
found that network use is highly uneven and dominated by
several ‘‘hot links’’ that represent high-activity interactions
that are embedded into a web of less active interactions. Such
heavy-tailed distribution for connection strengths has also
been suggested based on experimental data for metabolic
flow and gene regulation networks [29,30]. Therefore, a
heavy-tailed distribution for connection strengths along with
clustering of stronger connections into a backbone might
represent a novel universal feature of many networks, in
addition to the power-law distribution of number of
connections commonly discussed. Such an arrangement
would give the stronger links a larger role in the network
and might represent a hierarchal organizational scheme of
the network structure [38].
In conclusion, the statistics of connectivity in a local

network of layer 5 tufted pyramidal neurons are highly
nonrandom and bear similarities to other biological net-
works. The cortical network is best visualized as a skeleton of
stronger connections in a sea of weaker connections. These
findings are likely to have important implications for cortical
dynamics.

Materials and Methods

Electrophysiology. The dataset used for this study was originally
used for the study of long-term plasticity, and the methods were
previously described in detail [5,69]. Briefly, acute visual cortical
slices were cut from rats aged P12–P20. Rats were anesthetized with
isoflurane, decapitated, and the brain was rapidly removed to ice-cold
artificial cerebrospinal fluid (in mM: NaCl, 126; KCl, 3; MgCl2, 1;
NaH2PO4, 1; CaCl2, 2.5; NaHCO3, 25; dextrose, 25; osmolality 320
mOsm, bubbled with 95% O2/5% CO2 [pH 7.4]). Slices were used after
at least 1 h of incubation, and up to 11 h after slicing. Recordings
were done at 32–34 8C.

Whole-cell recording pipettes (5–10 MX, 1–2 lm diameter) were
filled with (in mM): KCl, 20; (K)Gluconate, 100; (K)HEPES, 10;
(Mg)ATP, 4; (Na)GTP, 0.3; (Na)Phosphocreatine, 10; and 0.1% w/v
biocytin, adjusted with KOH to pH 7.4, and with sucrose to 290–300
mOsm. Thick tufted L5 neurons were identified at 400Xmagnification
using IR-DIC optics (Olympus BX-50; Olympus, Melville, New York,
United States). To ensure that arborizations of recorded L5 neurons
were minimally damaged during dissection, slices were used only if L5
apical dendrites were approximately parallel with the slice surface and
could be traced most or all of the way to the pial surface. Gigaohm
seals were then established on four neurons, after which break-
throughs were performed in quick succession. In some cases, one or
two breakthroughs failed, thus yielding triple or double recordings;
connections found in these cases were included in the dataset. Signals
were amplified with AxoPatch 200B, AxoPatch-1B, and AxoClamp 2B
amplifiers (Axon Instruments, Foster City, California, United States)
and filtered at 5 kHz. Acquisition was done at 10 kHz using MIO-16E
boards (National Instruments, Austin, Texas, United States) and
custom software running on Igor Pro (WaveMetrics, Lake Oswego,
Oregon, United States) on Macintosh computers (Apple Computer,
Cupertino, California, United States). Recordings were terminated if
membrane potential changed more than 8 mV or input resistance
(measured from 250-ms-long 25 pA hyperpolarizing pulses preceding
each trace) changed more than 30% from the baseline.

Measurement of synaptic connection strengths. We assessed
connectivity by averaging ten or more traces. Synaptic connection
strength was calculated by averaging the peak EPSP amplitudes
(measured using a 1-ms-long window centered on the peak of the
averaged EPSP trace) from 45 to 60 responses obtained during a 10-
to 15-min-long baseline period just after breakthrough. In some cases
(less than 5%), the EPSP amplitude was determined from fewer than
45 responses (although never fewer than 10 responses), typically
because the recordings failed. The standard deviation of EPSP
amplitude is within 0.04–1.4 mV and depends weakly on the mean
EPSP amplitude (see Figure S8). As the averaged EPSP waveforms
were time-locked to the presynaptic spike, the signal-to-noise ratio
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was good enough to allow for detection of synaptic connections with
strengths as low as 0.01 mV. However, as only ten traces were
averaged to determine connectivity, we might have missed con-
nections with very low release probability.

Analysis and statistics. To evaluate correlations in synaptic
connection strength, Pearson’s R is calculated using the following
standard formula:

R ¼

X
XY !
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X
X

Y
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where X and Y are vectors of paired samples and N is the total
number of pairs. The p-value score of significance is calculated based
on Fisher’s z-score calculated from R. For synaptic connection
strengths of reciprocally connected pairs, assignment of connection
strengths as X and Y would be arbitrary. Therefore, the R value
calculated should not depend on the assignment. We use each pair of
X, Y values twice when calculating the R score. For each pair Xi, Yi, the
pair constructed by flipping the order also entered in the formula;
therefore, N is twice the total number of pairs. When calculating the
p-value, the number N is taken to be the total number of pairs instead
of twice the total number, so as not to overestimate the significance.
The correlation scores and p-values calculated this way agree with
those calculated from a reshuffling procedure by randomly assigning
each neuron as either X or Y and using each pair only once.

To analyze the distribution of synaptic connection strength, we
generated fits to the data, by using a mean-square error-based
procedure from the MATLAB curve-fitting toolbox in the log–log
space. To test whether the experimental distribution has a longer tail
than the exponential or Gaussian distribution, we chose a threshold
T, and counted the number of experimental observations with higher
value than T, and denoted it by n, out of a total of N observations. We
then calculated the p-value as the probability of generating more than
n observations with values larger than T out of N observations from
the null distributions.

To assess the monotonicity in Figures 7 and 8, we used the
Kolmogorov-Smirnov test. For each threshold of synaptic connection
strength, we generated an ensemble of 1,000 random matrix sets with
matched connection statistics as described in the Motif finding
section below. We then computed the distribution of ratios between
occurrence counts in the random ensemble and the observed
occurrence counts for motif(s) of interest. These ratios are the
inverses of the ratios plotted in Figures 2 and 4 in order to avoid
division by zero. We then tested for monotonicity between successive
pairs of distributions with the Kolmogorov-Smirnov test.

To generate bootstrap distributions for a dataset with N
observations, we drew an ensemble of 1,000 trials of N samples each
from the dataset with replacement and computed the appropriate
statistic on each trial. The statistics from these trials formed the
bootstrap distribution. Mean and standard deviations were then
computed on the bootstrap distribution of the chosen statistic.

Motif finding. To find overrepresented motifs, we used a statistic
based on how the observed counts compare with the expected counts
from the null hypothesis. For the null hypothesis, we generated
B = 1,000 sets of random connection matrices. Each set contained as
many matrices as the number of quadruplets in experimental data.
The randomization procedure is as follows: In the two-neuron case,
the probability that neuron A is connected with neuron B is the same
as experimentally measured, and the connection from B to A is
treated independently. In the three-neuron case, each neuron pair is
treated as one unit, and the probabilities of having one-way and
bidirectional connections within the pair are the same as measured.
But how the three pairs form a triplet is random. In the four-neuron
case, a 903 90 matrix of connections was generated. The fractional
counts for each triplet motif to total triplet counts from this big
matrix were matched to experiment data using a simulated annealing
procedure (see [36]). To generate each random connection matrix in
each of the B = 1,000 sets of matrices, we randomly picked four
neurons from this 903 90 random connection matrix to form a 43 4
random connection matrix. This procedure matches the probability
of observing a triplet motif to experimental data while randomizing
how triplets combine to form quadruplets.

For each motif, we counted the number of its occurrences in
measured data and in each set of random matrices. The p-value for
this motif is the fraction of random matrices with occurrence counts

above or below the observed occurrence counts. This tests for
significant deviation from random, including both overrepresenta-
tion and underrepresentation.

Since we are testing for many motifs simultaneously, we applied
the step-down min-P-based algorithm for multiple-hypothesis correc-
tion [70,71,72]. This procedure ensures weak control for the family-
wise error rate, which is defined as the probability of at least one type
I error (stating that a pattern is overrepresented when it is not)
among the family of hypotheses (all motifs). Weak control refers to
the fact that type I error is controlled under the complete null hy-
pothesis when all the null hypotheses are assumed to be false. Strong
control, which is not used here, would control type I error rate under
any combination of true and false null hypotheses, but is harder to
achieve. The idea behind the step-down procedures is to order
hypotheses according to the raw p-values in ascending order. Then
for a chosen cutoff p-value, the hypotheses are considered succes-
sively. For each hypothesis, we test for the possibility of committing at
least one type I error for the subset of hypotheses with lower or equal
raw p-values. Further tests depend on the outcomes of earlier ones. As
soon as one fails to reject a null hypothesis, no further hypotheses are
rejected. The real procedure combines the testing for all cutoff p-
values into one procedure, as described in more detail below.

First, we test for M motifs with an ensemble R of B random matrix
sets, R = fRb,b 2 f1,. . .,Bgg generated as described above. For each
motif i 2 f1,. . .,Mg, we calculate the mean occurrence counts over the
ensemble and denote it with !cRi (step 1). Second, we calculate the raw
p-values p&i for each motif i for the two-sided statistic T, defined as the
absolute value of the difference between the observed counts c and
the mean ensemble counts, T ¼ jc! !cRi j. We calculate the proportion
of sets of random matrices in the ensemble with a larger or equal
value for statistic T than observed.

p&i ¼
#fb : TR

i;b . Tigþ#fb : TR
i;b ¼ Tig=2

B
ð4Þ

for i = 1,. . ., M (step 2). Third, we then order the raw p-values such
that p&k1 . p&k2 . . . .. p&kM (step 3). Fourth, for each Rb,b 2 f1,. . .,Bg and
each motif ki,i 2 f1,. . .,Mg, we repeat step 4: count its number of
occurrences cki ;b in Rb, calculate T ¼ jcki ;b ! !cRki jand the p-value, pki ;b , as
in step 2, and then compute qki ;b ¼ minl¼k1 ;... ;ki pl;b, the successive
minima of the raw p-values (step4). Fifth, the corrected p-values ~pk1 are
estimated by calculating the proportion of sets of random matrices in
the ensemble in which qki ;b is smaller than or equal to the observed
p-value p&k1 .

~pki ¼
#fb : qki ;b , p&kigþ#fb : qki ;b ¼ p&kig=2

B
ð5Þ

for i = 1,. . .,M (step 5). Finally, we enforce the monotonicity
constraints by successively setting ~pki to maxð~pki!1 ;~pki Þ for i = 2,. . .,M
(step 6).

Statistical reconstruction of the network. To generate Figure 9,
links were assigned randomly among 50 nodes with the experimen-
tally measured probability of unidirectional and bidirectional
connections. Strengths of connections were drawn from the
experimentally measured distribution. Then we manually adjusted
the connections to have roughly similar probability of occurrence of
three-neuron motifs. In constructing this diagram, we assumed that
each individual cell has the same distribution of strong and weak
synaptic connections. This assumption could be violated if some cells
have many stronger synaptic connections while others have few or
none. Whether this is the case should be investigated in future
studies. This figure is for illustration purposes only.

Positions of recorded neurons. To investigate the dependence of
connectivity on pairwise distances, we measured the relative
coordinates of the recorded cells from slices prepared by biocytin
histochemistry after recordings. Distances were not corrected for
tissue shrinkage. Since we were most interested in the relationship
between connectivity and distance, an equal amount of shrinkage for
all slices would not affect our results. Some inhomogeneities of
shrinkage were likely, but we did not expect the shrinkage factor to
vary greatly across slices.

During recording sessions, the approximate relative positions of
cells and the positions of recorded quadruplets in the slice were kept
in notes. In most cases, these drawings allowed unambiguous
identification of recorded cells, and cell positions were then
measured on those cases after identification of the recorded cells. If
a quadruplet was totally unconnected, drawings were not provided.
However, totally unconnected cells did not have to be identified, and
the assignment was made randomly. In some cases, some of the cells
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in the quadruplet were not well stained. If positions of at least three
cells out of the quadruplet could be recovered, the positions of those
cells were recorded.

We defined the position of each cell as the three-dimensional
coordinate of the axonal initial segment and measured it using the
Neurolucida system (MicroBrightField, Williston, Vermont, United
States). We estimate the measurement error to be less than 2 lm in X
and Y positions and less than 3 lm in Z positions, based on repeated
measurements of the same quadruplets. In about 10% of the cases,
the initial segment of the axon was obscured by other cells and could
not be positively identified, and the cell position was instead
measured from the middle of the base of the cell body. In these
cases, the measurement error could be as large as 3 lm in X and Y and
5 lm in Z. For each slice, we also estimated the average position of the
main apical dendrites of the quadruplet around 300 lm away. The
positive direction for the vector from the mean positions of the cells
to the estimated average position of the main apical dendrites was
defined to be the pia direction in the slice. We rotated the original
relative coordinates of pairs in the X, Y plane so this vector pointed in
the positive Y direction. We normalized the vector and defined it as
the original coordinates of the new unit Y vector. The new unit X
vector is the normal direction to the unit Y vector. To calculate the
relative X, Y coordinates of two cells in the new coordinates, we took
the dot product of the relative vector calculated in the original
coordinates and the unit X and Y vectors, also defined in the original
coordinates. The relative Z coordinates were not subject to rotation.
Notice that rotation was done on the relative positions of any two
cells and not on the positions of each individual cell.

A total of 817 cells in 83 triplets and 142 quadruplets were
measured, resulting in a total of 2,202 possible connections. For each
possible connection, the relative position of the target neuron to the
originating neuron was plotted in Figure 3A. If a connection was
present and was involved in a bidirectional connection, the position
was indicated with red. If a connection was present, and the
reciprocal connection was not present, the position was indicated
with blue. If a connection was not present, regardless of the status of
the reciprocal connection, the position was indicated with green.
Most of the cells included in the dataset came from nearby positions
(,50 lm, 82% of pairs), with the remaining 18% of the connections
in the 50 lm–110 lm range (Figure 3B). The densities of red, green,
and blue connections are proportional to each other regardless of the
distance from the soma. The connection probability is mostly
uniform within the range of three-dimensional distances recorded
in the experiments (Figure 3C). However, the connection probability
for all distances (0.013) is slightly higher than that calculated for the
entire dataset (0.0116). This is likely due to less efficient recovery of
unconnected quadruplets, as less care was taken to preserve them.
The connection strengths do not vary with distance systematically
(data not shown), although the distance does seem to have an effect
(p = 0.02, one-way analysis of variance).

To control for cutting artifacts, we have measured the closest cut
ending of the main axons out of the four cells in the quadruplet to
the mean position of the cell bodies. The main axons go toward white
matter to innervate subcortical structures. When the distance is small,
then we might have cut off more portions of the axonal arbor, and
cutting artifact might be a concern. However, since the main axons
start branching approximately 100 lm from the cell bodies [73], the
local connectivity might not be greatly affected (see Figure S3).

We also measured the Z coordinate of the slice surface. From this
coordinate and the coordinate of the cells, we can deduce the depth
of each cell from the slice surface. Cells closer to the surface might
have had larger portions of their axonal arbors cut off, which would
reduce their connectivity. However, the connectivity seems to be
fairly uniform regardless of the depth of either the originating cell or
the target cell (see Figure S3). The caveat is that the measurements we
have taken from the fixed slices are uncorrected for shrinkage, and
differential shrinkage in the Z direction might have randomized a
trend that might otherwise be present.

Supporting Information

Appendix S1. Properties of the Lognormal Distribution
Found at DOI: 10.1371/journal.pbio.0030068.sd001 (39 KB DOC).

Figure S1. Connectivity and Mean Synaptic Strengths of the
Connections Are Uniform for All Distances between a Pair of
Neurons
For the x-axis, positive means the receiving cell is to the right of the
sending cell in the slice. For the y-axis, positive means the receiving

cell is above the sending cell. For the z-axis, positive means the
receiving cell is on top of the sending cell.
(A, D, G, and J) Connection probability for X, Y, and Z and angle
between the vector connecting two neurons and the x-axis separately
(no significant variation; all chi square tests, p . 0.05). Error bars are
95% confidence intervals estimated from binomial distributions.
(B, E ,H , and K) Mean synaptic strengths for X, Y, and Z and angle
separately (no significant variation; all one-way ANOVA tests, p .
0.05). Error bars are standard errors of the mean.
(C, F, I, and L) Histogram of connections for X, Y, and Z and angle
separately.
Found at DOI: 10.1371/journal.pbio.0030068.sg001 (363 KB DOC).

Figure S2. The Overrepresentation of Bidirectionally Connected
Pairs Is Not Due to Inhomogeneous Connection Probabilities for
Neurons of Different Distances
Counts relative to random are shown for neurons of different
distances. The red line indicates the value calculated for pooled data
for neurons of all distances. Notice that the values calculated for
certain distances are very similar to that calculated for pooled data.
However, the ratio calculated for all distances (3.0) is a bit lower than
that calculated for the entire dataset (4.0), probably owing to
increased connection probability (0.013 versus 0.0116) caused
possibly by inefficient recovery of totally unconnected quadruplets.
Error bars are standard deviations from bootstrap.
Found at DOI: 10.1371/journal.pbio.0030068.sg002 (119 KB DOC).

Figure S3. Connection Probability and Mean Synaptic Connection
Strengths Are Not Greatly Modified by Cutting
(A) Connection probability is uniform with regard to the distance to
the closest main axon cut ending (p = 0.077, chi square test). Notable
exception is distances more than 600 lm away, where the connection
probability seems to be slightly increased. However, since there are
relatively few neurons with axon cut distance of more than 600 lm
and the increase in connection probability is not statistically
significant, we do not expect this to fully explain our results.
(B) Mean synaptic connection strength does not vary systematically
with regard to the distance to the closest main axon cut ending
(however, mean strength depends on distance; p = 0.02 by one-way
ANOVA).
(C) Histogram of neurons with certain axon cut distances.
(D) Connection probability is uniform with regard to the depth of
both the neuron sending the connection and the neuron receiving
the connection (p = 0.99, chi square test).
(E) Mean synaptic connection is uniform with regard to the depth of
both the neuron sending the connection and the neuron receiving
the connection (p = 0.2, one-way ANOVA).
(F) Histogram of recorded neurons with certain depth.
Error bars in (A) and (D) are 95% confidence intervals estimated
from binomial distribution. Error bars in (B) and (E) are standard
errors of the mean.
Found at DOI: 10.1371/journal.pbio.0030068.sg003 (244 KB DOC).

Figure S4. EPSP Size and Rate of Connectivity Does Not Significantly
Depend on Animal Age
(A and B) We found no statistically significant difference among EPSP
amplitudes for animals of different ages (one-way ANOVA in log
space, p = 0.36). We note, however, that there is a weak downward
trend, in agreement with the observation of [34] that L5-to-L5
synaptic strength is significantly weaker in P28 animals than in P14
animals. Error bars are standard errors of the mean.
(C) The connectivity rate does not depend on animal age (chi square
test, p = 0.92). Error bars are 95% confidence intervals calculated
from binomial distribution.
Found at DOI: 10.1371/journal.pbio.0030068.sg004 (218 KB DOC).

Figure S5. Main Results of This Paper Are Still Valid for the Subset of
Data from P14–P16 Animals
(A and B) Overrepresentation of bidirectional connections and highly
connected triplets. Numbers on top of bars are actual counts.
(C) Synaptic connection strengths are well fit by the lognormal
distribution. Number on top of dots are actual counts (not shown
when greater than 50).
(D) Probability of significant deviation from random for a given
triplet motif.
(E and F) Increase in overrepresentation of bidirectional connections
and highly connected triplets for increasingly higher connection
strength thresholds.
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Found at DOI: 10.1371/journal.pbio.0030068.sg005 (847 KB DOC).

Figure S6. Quadruplet Catalogue
Found at DOI: 10.1371/journal.pbio.0030068.sg006 (1.2 MB DOC).

Figure S7. Synaptic Strengths of Incoming and Outgoing Connec-
tions Are Weakly Correlated
(A) Scatter plot of incoming synaptic connection strength. A weak
correlation of 0.2 is observed (p = 0.029).
(B) Scatter plot of outgoing synaptic connection strength. A weak
correlation of 0.17 is observed (p = 0.054).
(C) Scatter plot of outgoing and incoming synaptic connection
strength. A weak correlation of 0.13 is observed (p = 0.039). All
correlations calculated using Pearson’s R method in log space.
Found at DOI: 10.1371/journal.pbio.0030068.sg007 (231 KB DOC).

Figure S8. EPSP Standard Deviation Depends Weakly on EPSP
Amplitude
(A) EPSP standard deviation depends weakly on EPSP amplitude.
(B) Coefficient of variation is inversely proportional to the EPSP
amplitude. Note the log–log scale.
Found at DOI: 10.1371/journal.pbio.0030068.sg008 (128 KB DOC).

Table S1. Quadruplet Counts

Quadruplets are numbered according to the catalogue in Figure S1.

Found at DOI: 10.1371/journal.pbio.0030068.st001 (124 KB DOC).
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42. Silver RA, Lübke J, Sakmann B, Feldmeyer D (2003) High-probability
uniquantal transmission at excitatory synapses in barrel cortex. Science
302: 1981–1984.

43. Peters A, Kara DA, Harriman KM (1985) The neuronal composition of area
17 of rat visual cortex. III. Numerical considerations. J Comp Neurol 238:
263–274.

PLoS Biology | www.plosbiology.org March 2005 | Volume 3 | Issue 3 | e680518

Nonrandom Connectivity in Cortex
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Correction: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical 
Circuits
Sen Song, Per Jesper Sjöström, Markus Reigl, Sacha Nelson, Dmitri B. Chklovskii 

DOI: 10.1371/journal.pbio.0030068

In PLoS Biology, volume 3, issue 3.

In the caption for Figure 5A, the formula for the lognormal fi t was given as follows:
p[w] = 0.426exp[−(ln[w] + 0.702)2/(2 × 0.9355)2]/w.

The second squaring exponent should have been inside the parentheses, so it reads as follows:
p[w] = 0.426exp[−(ln[w] + 0.702)2/(2 × 0.93552)]/w.

This correction note may be found online at DOI: 10.1371/journal.pbio.0030350.
Published October 11, 2005
Citation: (2005) Correction: Highly nonrandom features of synaptic connectivity in local cortical circuits. 
PLoS Biol 3(10): e350.

Correction: Directed Migration of Positively Selected Thymocytes Visualized in Real 
Time
Colleen M. Witt, Subhadip Raychaudhuri, Brian Schaefer, Arup K. Chakraborty, Ellen A. Robey

DOI: 10.1371/journal.pbio.0030160

In PLoS Biology, volume 3, issue 6.

The following statement in the last paragraph of the Results contains a factual error: “A total of 34% of cortical thymocytes 
expressing the P14 TCR had motility rates greater than 13 µm/min compared to approximately 2% for wild-type thymocytes 
expressing diverse TCRs.” The sentence should read as follows: “A total of 20% of cortical thymocytes expressing the P14 TCR 
had motility rates greater than 13 µm/min compared to approximately 2% for wild-type thymocytes expressing diverse TCRs.”

The authors apologize for any confusion this error may have caused.

This correction note may be found online at DOI: 10.1371/journal.pbio.0030373.
Published October 11, 2005
Citation: (2005) Correction: Directed migration of positively selected thymocytes visualized in real time. PLoS Biol 
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Correction: Traces of Archaic Mitochondrial Lineages Persist in Austronesian-
Speaking Formosan Populations 
Jean A. Trejaut, Toomas Kivisild, Jun Hun Loo, Chien Liang Lee, Chun Lin He, Chia Jung Hsu, Zheng Yuan Lee, Marie Lin
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In PLoS Biology, volume 3, issue 8.

The seventh author’s name was originally misspelled as Zheng Yuan Li; it should be Zheng Yuan Lee.

The fi rst sentence of the Materials and Methods should read as follows:
“In this study the sequence variation of the mtDNA D-loop HVS-I and HVS-II regions, nps 16006 to 16397 and nps 53 to 
404, respectively, was analyzed in 640 samples drawn from nine Taiwan indigenous mountain tribes representative of most 
languages, cultures, and geographical settlements seen on the island before the last four centuries.”

The fi rst two sentences in the section “Data Sequence Analysis” in the Materials and Methods should read as follows:
“Using primer pairs L15997–H16401 and L048–H408 [59], segments of 404 bps and 360 bps from the D-loop HVS-I and HVS-II, 
respectively, were obtained. Primer pairs 5, 7, 8, 11–14, 19, and 24 F&R described in Rieder et al. [60]….”

This correction note may be found online at DOI: 10.1371/journal.pbio.0030376.
Published October 11, 2005
Citation: (2005) Correction: Traces of archaic mitochondrial lineages persist in Austronesian-speaking Formosan 
populations. PLoS Biol 3(10): e376.


