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Abstract

Using the tools of smooth manifold theory, we propose a generalized frame-
work for olfactory reception, learning, and processing. Inspection of the tan-
gent bundle to a manifold yields vector fields which allow for quantification
of changes. We utilize group actions to discover fibre bundles over the mani-
fold and discover various properties related to learning. Under this paradigm,
we develop a method for categorization as well as analytical tools to model
changes in the category. We end with a quick discussion of searching for data
on the manifold in a way that beats “nearest neighbour.”

Introduction

The current view of scent reception and processing relies mainly on biologi-
cal explanations of neuronal processes and molecular analysis. Little has been
done to explain olfaction through rigorous mathematical analysis different from
statistical methods. In contrast, other modalities, such as vision, have been
extensively analyzed and explored in the most abstract reference frame due
to some convenient properties such as invariants. This exploration will walk
through a theory of the mathematical basis for olfactory reception, learning,
and processing. This will culminate in the construction of a generalized frame-
work for olfactory representation and learning.

No discussion of such a topic can be done without the study of manifolds,
particularly smooth and riemannian manifolds, in the category of differentiable
topological spaces. So, we present the following definitions.1

Definition 2.1. A set X is called a topological space if it is equipped with
a collection of open sets, τ , such that for any arbitrary indexing set I and a
finite indexing set J, and Uk ⊆ X, k ∈ {i, j}

1.
⋃
i∈I Ui ∈ τ

2.
⋂
j∈J Uj ∈ τ

1Additional definitions and various notation can be found in Appendix B and C.
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3. ∅, X ∈ τ

τ is called the topology on X and defines the open sets of X. We denote this
space, (X, τ). If there is no ambiguity about the topology we simply write, X.

Topological spaces are the basic constructions we are interested in. In order
to talk about continuous or differentiable structures we first need a well defined
topology on the space.2 Manifolds are an example of topological spaces which
carry additional properties which make them particularly “nice” to work with.
They will form the basis of the rest of this analysis.

Definition 2.2. A Topological n−manifold is a topological space such that
the following hold:

1. M is Hausdorff

2. M is second countable

3. M is locally Euclidean of dimension n

Definition 2.3. A topological space X, is Hausdorff if and only if for any two
points, x, y ∈ X, there exist, U, V ( X such that x ∈ U, y ∈ V and U ∩V = ∅.

This property allows us to separate any two non-identical points into dis-
joint regions. This becomes key in any identification task as we need a method
of discrimination completely independent of the actual inputs. Suppose we
have two pairs of inputs, P1 and P2. We need a generalizable method to distin-
guish the elements of the pairs as well as the pairs themselves. Furthermore,
we invoke the locally connected property of manifolds of dimension dimM ≥ 1.
This will allow us to define certain metrics on the spaces, giving more concrete
methods of separation and identification.

Notice that this definition alone does not allow for us to do calculus on any
given manifold. To allow for such constructions, we need the idea of a smooth
structure3. With this smooth strucure we can now construct a manifold in
the category of differetiable spaces, called a differetiable manifold, denoted
C∞−manifold.

The differentiable manifolds we will use in this paper are all Riemannian
Manifolds. Before we give the definition of these, we need to define the tangent
space to a manifold.

2See Appendix B
3See section on M-space
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Definition 2.4. Let M be a smooth manifold and Cp = {c : (−ε, ε) →
M |c(0) = p} be the set of all equivlance classes of paths passing through
p ∈M. The Tangent Space, denoted TpM, of M at p is the collection

TpM = {c′(0)|c(t) ∈ Cp}.

That is to say, it is the collection of all velocity vectors of differentiable curves
passing through p.

A classical example of such a construction is the tangent space to the unit
circle, S1 = {eiθ|θ ∈ R} at the point θ = 0. It is obvious that this should just
be the vertical line, x = 1.

Definition 2.5. A Riemannian Manifold, R is a C∞-topological manifold
which has, at each point p ∈ R a well defined inner product

〈·, ·〉p : TpR× TpR→ R

on the tangent space, TpR which varies smoothly from point to point.4

We use Riemannian Manifolds because they arrise naturally when dis-
cussing angles on manifolds. Locally, for any two vectors, the angle between
them will be the same as it is in the tangent space. The inner product opera-
tion, 〈·, ·〉 defines the angle between two vectors in the tangent space.

Furthermore, we will briefly discuss the idea of “sameness”. To a mathe-
matician there are many different types of equivalent objects. To an algebrist,
sameness is the isomorphism. As our investigation is topological in nature,
our definition of “same” is homeomorphism and diffeomorphism.

Definition 2.6. Let X, Y be two manifolds. X and Y are Ck−diffeomorphic

(denoted X
d∼= Y ) if and only if there exists a bijective Ck−function 5 D :

X → Y which has a Ck− inverse.

Homeomorphism is a special (but important) case where k = 0, so the
functions are simply continuous. For example, take the full square,

[
−1

2
, 1

2

]
×[

−1
2
, 1

2

]
it is homeomorphic to a disk, B2

= {(x, y) ∈ R2|x2+y2 ≤ 1}. These two
are not diffeomorphic because the corners of the square are not differentiable.

4Notice that in the definition we assume that the tangent spaces are real vector spaces.
If instead TpR is a complex vector space, we can treat it as a real vector space of dimension
dimR TpR = 2 dimC TpR so the definition is consistent.

5The function differentiable k times
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All of these ideas of sameness become incredibly important as we can rep-
resent both the space of all possible input values (Receptor space, R) and
the abstract space of all output values (Scent Space, S) by smooth manifolds.
The above notions of sameness allow us to relate the two spaces (relatively)
by different continuous and differentiable mappings. This provides insight into
the biological relation between the two spaces as homeomorphism admits an
inverse. This general construction tells us that closed loops exist for olfaction.
Specifically, feedback loops like those seen in standard biology fall out of the
analysis fairly naturally as the inverse functions accompany the rest of the
construction.

One advantage of this apporach allows for learning in the context of direc-
tional generalization. The model can learn to distinguish two stimuli which
normally are generalized. All of this culminates to a theoretical solution for
Blind Sources. Suppose you are placed in a room with no discernible features.
An odor is then introduced, but it is impure. As a result, the brain must
cope with such a situation by referencing what has already been learned. This
problem, from a simulationist perspective, is hard: comparing an input to all
similar(near) scents could rise exponentially as the number of specific receptor
types increases. In our paradigm, we develop a method which relies on cat-
egorization to reduce the time it takes to indentify the input. This however,
is completely dependent on the spaces we are dealing with and not the points
themselves. In total, the model gives us a generalizable framework for which
we can unify olfactor representations and learning whilst the latter transoforms
the former.

R-Space and M-Space

R-Space

Now that we have the basic mathematical structures defined, we can proceed
to construct the space of input or receptor/glomerular values, called R−Space
and denoted R. We know from biology that the number of distinct kinds of
olfactory receptors is equal to the number of glomeruli. Suppose, for any given
organism, that it has n glomeruli/receptor types. Now, suppose some scent,
s∗ is introduced to the receptor sites thus activiting the glomeruli. We can
represent the activation in any glomerulus, gi, as a number xi ∈ (ai, bi) ⊆ R.
Now, notice that this scent s∗ induces a response in each glomerulus so we can
represent it by a point in the manifold constructed by the cartesian product of
all glomeruli. We can think of this as each glomerulus defining a direction or
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degree of freedom which should be interpretted as the construction of a new
dimension.

Definition 3.1. Let gi = (ai, bi) then P =
∏

1≤i≤n gi is the space of all possible
activation values.

Notice that viewing each glomerulus as an interval allows us to shrink and
strech each glomerulus so that they become g∗i = (0, 1), 1 ≤ i ≤ n.

Lemma 3.2 (Lemma/Definition). P ∼=
∏

1≤i≤n g
∗
i =

∏
1≤i≤n(0, 1). This is the

glomerular/receptor space which we will denote, R.

The proof of this lemma is presented in Appendix A.
Returning to the stimulus s∗, we can now represent its image as a point

in this open unit n−cube, R. Due to the environment for which this odor is
percieved and from natural variation, we know that s∗ induces a variance Σ2

which manifests as a structure analagous to a cloud in R. Essentially, it is
uncertainty in the stimulus. Specifically, a stimulus, s∗ has image a connected
open submanifold of R. We will now prove that R itself is a smooth manifold.
To do so, we introduce the idea of charts and atlases.

Definition 3.3. Let M be a manifold and (U, φ) a pair consisting of an open
set U and a bijective map φ : U → φ(U) ⊆ Rn. We call this pair a chart on
M. Two charts (U,ϕ) and (V, ψ) are called compatible if

ψ ◦ ϕ−1 : ϕ(U ∩ V )→ ψ(U ∩ V )

is continuous or U ∩ V = ∅. If ψ ◦ ϕ−1 is smooth, then they are said to be
smoothly compatible.

Definition 3.4. An (smooth) atlas A is a collection of charts on M such that

1.
⋃
U∈A U = M

2. ψ ◦ ϕ−1 are (smoothly) compatible for all ψ, ϕ.

We can now formalize the definition of a smooth manifold. A manifold
endowed with a maximal smooth atlas, denoted (M,A ) is called smooth. A
simple example of this is (Rn, {idRn}).

Theorem 3.5. R is a smooth manifold of dimension n. Specifically, R is an
open submanifold of Rn.
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Proof. As R is a product of intervals, it suffices to show that (0, 1) is an open
submanifold of R. Put, A = {id(0,1)}. This makes (0, 1) a smooth manifold.
Therefore, R is a smooth manifold. To compute the dimension of R, notice
that dim(0, 1) = 1. Therefore,

dimR =
n∑

dim(0, 1) = n

Hence, R is a smooth manifold of dimension n. As a subset of Rn it is an
open submanifold as it is open in the usual topology on R. This completes the
proof.

M-Space structure and actions

For the rest of this paper, we assume, for simplicity, that mitral cells are
uniform within the glomeruli. That is to say, for each glomerulus we have one
mitral cell. Therefore, let n be as above, then we have n mitral cells.

Mitral cells act similar to a vector space. To fit this structure together
with our manifolds, we must first discuss tangent vectors. Let x ∈ R and
c = (U,ϕ) a chart at a on R. Let h ∈ Rn. Consider all triples (c, x, h). We
define two triples, (c1, x1, h1), (c2, x2, h2) to be equivalent, if they have the same
base point and

h2 = D(ϕ2 ◦ ϕ−1
1 )(ϕ1(x))h1

where D(f) is the total derivative or Jacobian of the funciton f.

Definition 3.6. A tangent vector is an equivalence class [c, x, h]. 6

Definition 3.7. The collection of all possible tangent vectors to a (smoooth)
manifold M is called the tangent bundle on M, and is denoted TM.

We can view TM in many different ways. The most convenient for this
paper is that

TM =
∐
x∈M

TxM = {(x, v)|x ∈M, v ∈ TxM}

Now consider R from above. We construct the tangent bundle TR. This space
we have constructed gives a extremely tight model of mitral cells. The tangent
bundle acts a highway to other mathematical objects as it not only encompases
the manifold structure but it combines this with the vector space-like property
we need.

6Notice that this makes TxM the collection of all tangent vectors based at the point x.
This definition is equivalent to the definition given in the introduction.
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Lemma 3.8. Let U be an open submanifold of Rn. Then TU
d∼= U × Rn.7

Therefore, as R is an open submanifold of Rn we can apply Lemma 2.5 to
see that TR is identified with R×Rn. Define mitral cells space or M space to
be M := TR.

The reason this gives us an accurate model of mitral cells is because we
can view a point in M as ”remembering where it came from.” What we mean
by this is that for any point (x, v) ∈M, we have a point from the manifold as
well as a direction vector. As x ∈ R, for any stimulus, we get a cooresponding
subset of the tangent bundle which coorsponds to all possible mitral outputs
given that input.

So, at this point we have an incomplete diagram of the framework.

R R× Rn = TRι

πR

Now, there is another extremely important cell in mid-bulb which works in
tendem with the mitral cells. These granule cells modify, amplify, and hinder
the responses of the mitral cells to the input of the glomeruli. Essentially the
granule cells act on their neighbouring mitral cells. If we think of granule cells
as forming a group, then this action is quite interesting.

Definition 3.9. Let G be a group and S a set. A left action of G on S denoted,
G

�

S is a map A : G × S → S such that A(e, s) = s and A(g, A(h, s)) =
A(gh, s).

When we act on the tangent bundle, we have a choice to make. We can
act on the vector part of an element, the manifold part of the element, or the
entire element. If we only act on the vector portion of the bundle, then we
are essentially acting on vector fields on R. Consider granule cells as group
elements. Denote the group of granule cells by GC. Then we can add to the
diagram above by including GC acting on TR.

R TR 	 GC
ι

πR

We also know that mitral cells influence the granule cells in a way which
is a feedback loop. This implies that we also need a map from TR → GC.
Normally, we do not consider a map from a set back into the group acting on

7Proof of this Lemma is omitted
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it. For this to be defined, we need TR to look like G×R so that G forms the
fibre of the action over TR. We know that

TR = R× Rn

Only because, R is an open submanifold of Rn can we then take the action
of Rn on TR. However, we can canonically identify, Rn with the subgroup of
GLn(R) consisting of diagonal matrices. Therefore, we have a lie group action
G on TR and a map TR → Rn by projection on the second element. This
map is surjective but not injective. We conclude this section by adding this
information to the diagram.

R TR GCι π2

πR Action

S-Space

Now that we have the base spaces, R and M, as well as the action GC, we can
construct our space of interest. Consider the injection R ↪→ Rn+1. Specifically,
consider R embedded in Rn+1 shifted so that its center coincided with the
origin. Let us denote this space also as R. Consider now, the “clouds” from
before. Each cloud will be mapped to an open set in R canonically. As R has
codimension 1 as a submanifold of Rn+1, we can think of it as “flat” in Rn+1

(xn+1 = 0). Therefore, each open set defined by a cloud can be “pulled up”
into the ambient space. This pulling, if done carefully, creates the analogue to
an n−dimensional distribution. Call this space, S.

Define the map ∆ : R → S as the spiking(pull out) of R. This map is a
diffeomorphism trivially. In a system which has not had much learning, we
have that these spikes, or peaks as we will refer to them, will possibly overlap.
The discrimination between two similar stimuli will be discussed later. The
properties of S space are more convenient to deal with than directly in R.

Metrics: An Introduction

Metrics are essential to any exploration of sensory perception as they are the
key to defining the relations amongst elements in a manifold.

Definition 4.1. Let x, y ∈ S be two points. We define the Physical Metric
between the two points, as the Euclidean distance between them in R. In
notation,

dphys(x, y) = |πRn(x)− πRn(y)|
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This metric reflects the physical similarities of the objects in the receptor
space. We will return to this metric later when we discuss learning. For now,
we will define another metric.

Definition 4.2. Let x, y ∈ S. Consider x and y as points. Then let P be the
2−dimensional affine plane defined by the vectors [πRn(y), y] and [πRn(y), x].
Then, let g : [0, 1] → S be the curve defined by S ∩ P between x and y. The
Perceptual Metric,

dper(x, y) =

∫ 1

0

||g′(t)||dt

This metric is incredibly important in the construction of learning. This
metric accounts for the changes in S which are lost in the other metric. Sup-
pose we grow one distribution (peak) further upward. dper will tell us that
the distances have increased between two points while dphys will not tell us
anything has changed. The main function of the two metrics is to track the
changes of S as learning occurs.

Learning, Growing, and Discrimination

Let us revisit s∗. Suppose now, we have multiple instances of s∗ in R. That is,
we reintroduce the same stimulus many times. We observe in bulb that under
these conditions, identification of a certain stumulus becomes more specific.
Therefore, we know that the variance, Σ2 of s∗ will shrink with each trial.
Formally, let U0 ⊆ R be the open subset Σ2. The specification of learning tells
us that at the second exposure, we have a contraction of U0 → U1 such that

U0 ⊇ U1

If we have k instances, we get a chain

U0 ⊇ U1 ⊇ U2 ⊇ ... ⊇ Uk

In theory, this sequence of Ui must converge, and it will converge onto s∗ in R.
We know this because Ui is a monotone decreasing sequence which is bounded
below. In practice however, we see that Uk 6= {p} for any k. Thus, there will
always be variance even in a fully learned system. This is important for the
sake of this model as some Uk being a point would break the continuity of the
space.

Definition 4.3. The sequence {Ui}i≤k of connected open sets is called the
Secondary Learning Sequence of a stimulus.
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For any stimulus, we get a corresponding secondary learning sequence. This
is equivalent to saying that learning a stimulus makes the identification more
accurate. Accompanying this sequence is the Primary Learning Sequence.

Definition 4.4. For any secondary learning sequence, we associate maps,
∆i : Ui → S such that ∆i grows the peaks defined in S upwards further. The
sequence {∆i} is called the Primary Learning Sequence.

The motivation for this definitions comes from the metrics imposed on
S. The primary sequence is defined such that it preserves dphys and changes
only dper. We can interpret these properties as: learning does not change
the physical rleationships between stimuli but does change their perceptual
relation. As we grow upwards, we see that the distance between two points
along the surface of S will increase whilst the angle between them will not.
Additionally, we are using the ∆i to construct an attractor. As we learn the
system better, we can discern more closely related stimuli.

Corollary 4.5. No static model (i.e. a (complicated) fixed tree diagram) will
accurately predict perception, preserve physical data, and learning simulat-
neously.

Proof. Suppose for a contradiction, that a fixed model will suffice. Then, apply
a single round of leanring and growth (take Ui+1 and ∆i+1) and the model will
break as those values are not present.

Discrimination

We now will disucss discriminating between overlapping images in S. Consider
the situation where we have that two peaks which overlap. During the process
of learning, these two will become separated as the respective Ui, Vi become
smaller. However, it is the case that we need disrimination between two like
stimuli. Suppose we have s∗ and t∗ where s∗, t∗ ∈ Uk but s∗ 6= t∗. We need
to split these apart. The most convenient way to do this is with valleys or
depressions.

Definition 4.6. Let s∗ and t∗ be two stimuli which define the same open
neighbourhood, Uk. Let [s∗, t∗] denote the shortest path along the surface of S
between them. Let m be its midpoint. Define, ∆ρ

i : [s∗, t∗] → S which takes
the path and pulls the midpoints down (ρxn+1 < xn+1) by a factor ρ.

This map acts to lengthen the perceptual metric dper between two similar
points, all the while keeping their physical separation equal.
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So now we have, R,M,GC, S. We can now complete the main diagram
from above.

R TR GC

S

ι

∆

π2

πR Action

Note that although this diagram looks ststic, it is actually constantly being
modified.

Search and Identification

We take a quick aside to discuss quotients and quotient spaces. Let X be a
set.

Definition 5.1. We define a relation ∼ on X, such that the following prop-
erties hold

1. ∀x ∈ X, x ∼ x

2. a ∼ b ⇐⇒ b ∼ a

3. a ∼ b and b ∼ c =⇒ a ∼ c

These three conditions are reflexivity, symmetry, and transitivity respectively.

A trivial example on the real numbers is a ∼ b ⇐⇒ a = b. Notice that ∼
will partition X into sets where every element is equal to every other element
in the set.

Definition 5.2. Let X be as above and ∼ an equivalence relation. Define

[x] = {y ∈ X|y ∼ x}

This is called the equivalence class of X.

Lemma 5.3. Let X be a set and ∼ an equivalence relation. Let x, y ∈ X.
Then either [x] = [y] or [x] ∩ [y] = ∅.

Proof. See Appendix A.
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We can look at how X gets split by the relation by taking the space of
equivalence classes, denoted

X/ ∼

This is the quotient space of X under ∼ and can be thought of as what is left
over after glueing the equivalent elements together. An interesting example of
this is R under the equivalence relation a ∼ b ⇐⇒ a − b ∈ Z. Under this
relation, we get that

R/ ∼= R/Z ∼= S1

This relation compactifies R to the interval [0, 1] and then glues 0 to 1.
We need the notion of a quotient space to discuss a method for identification

in S. We first view each peak as a continuous categorization for that stimulus
(This is the image of a fully learned system). For instance we may have a peak
defined for “oranges”. As we move up the peak we refine the categorization.
Here refinement means entering a subcategory. From the discussion above we
know that the peak will be parsed into a variety of sub-peaks which correspond
to physically similar but perceptually different types of orange. Pictured below
is a complex of categories, ordered by inclusion

Citrus Fruit ⊇ Oranges ⊇ Ripe Oranges ⊇ Ripe Valencia Oranges

We can use the quotient operation to recover a coarse ordering for the
categories in any given peak. Suppose P is a peak, determined by s∗, with
several subpeaks {pi}i∈I . Then, as each sub-peak has a boundary, we can
define the minimum value of pi to be the point in pi with the smallest xn+1

coordinate (denoted min pi), put

m1 = min{min pi|i ∈ I} = min pi1 , and mi = min{min pi|i ∈ I \ {ij}j≤i}

Further, let m0 = 0. Then, for all points in P with xn+1 coordinate greater than
m0, we set ∼0 to be the relation which identifies these elements as equivalent.
In general, this will not work as the peak P may subdivide as we traverse
upwards. So, let V be another copy of Rn not containing the origin. We will
use V to divide the peak cleanly.

To do this, let V be such that it is parallel to S and xn+1 < 0 for all
x ∈ V . We shall begin to increase this coordinate until V intersects S non-
trivially. Suppose that xn+1 = mi for all x ∈ V. At this point, we compute the
intersection, V ∩ S. This gives us finitely many connected components within
P. Now, let ∼i be the relation which identifies all points x ∈ P, such that xn+1

is greater than or equal to mi and which are contained in the same connected
component. So an equivalence class in P/ ∼i looks like [x]i,j where j denotes
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inclusion to the j − th connected component of the quotient. This gives us a
discretization DP of the smooth peak as well as a partial ordering � on DP .
That is, a categorization based on equivalence classes at each level as desired.

Discussion

Our method prioritizes the construction of a categorization out of an unordered
space. To go the other direction (that is-to build a space out of a categoriza-
tion) is more difficult and involves making choices along the way. This has
been attempted by researchers and proven to be difficult. In a recent paper, by
Sharpee et. al, they claim that there is a natural identification of the olfactory
space with a hyperbolic geometric framework.[1] This follows from the choice
of categorization of the space and the choice of representation as a tree.[2]
To conclude from the data provided that the olfactory space is hyperbolic in
structure does not follow from the data provided. As a corollary of what we
have shown above, a fixed tree will not suffice to explain the dynamic nature
of the space. We know this because for any fixed finite tree, the act of learn-
ing is not well defined as we need a non-isometric tranformation of the space
as well as the ability to branch the diagram freely. For a fixed system, the
choice of representing the system in hyperbolic space is perfectly acceptable
but uninformative. Also, the model is dependent on the interpretation that
there is a tree-like heirarchy in the perceptual space. Just because we think
of the odors categorized locally in a simple tree, does not imply that they
are globally organized in a tree. We also note the authors mention that their
random data points, when plotted, approxiamted a sphere, S2 = ∂H2. This
is to be expected as there is a natural identification of R with a half sphere.
Additoinally, as presented in [2], the models of Hn and Sn−1 are equivalent.

Further, the hyperbolic model does not take into consideration the biol-
ogy of the system. It is wholly concerned with the “perceptual” piece of the
“olfactory space.” The main issue with this view is that we know perceptions
dependends on the number of glomeruli and mitral cells. So to claim that the
space depends solely on the categorization is false. A more accurate description
of the olfactor space would need to include such considerations as presented
above. Essentially, the paper attempted to investigate the opposite direction
of what we have presented above, that is build a space out of a categorization
and did provide sufficient evidence for such.
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Conclusion

Future Projects

Appendix A: Proofs of Key Ideas

Proof of Lemma 2.2

Proof. It suffices to show that (ai, bi) is diffeomorphic to (0, 1) for a single
i ≤ n. Let λ : (ai, bi)→ (0, 1) be defined by

λi(x) =
x− ai
bi − ai

This function is bijective trivially. Additionally it is smooth and has inverse

λ−1(y) = (bi − ai)y + ai

which is also smooth. Hence they are diffeomorphic. This implies that (ai, bi)
d∼=

(0, 1)∀i ≤ n. So
∏
λi is a diffeomorphism and P

d∼= R.

Proof of Lemma 4.3

Proof. Suppose we have a set X and an equivalence relation ∼ . Let [x], [y]
be two equivalence classes under the relation such that [x] ∩ [y] 6= ∅. Then,
as the intersection is non-empty, pick z ∈ [x] ∩ [y]. As z must be in both
equivalence classes, we know that x ∼ z and y ∼ z. By the transitive axiom
of an equivalence relation, this implies that x ∼ y. Then, [x] = [y]. Hence,

[x] ∩ [y] = [x] = [y]

For completion, if [x] ∩ [y] = ∅ then the two sets are disjoint. This completes
the proof.

Appendix B: Definitions

Definition 10.1. Let G be a set and µ : G × G → G be a binary operation
on G. We call G a group if for all a, b, c ∈ G

1. µ(a, µ(b, c)) = µ(µ(a, b), c)

2. ∃e ∈ G with µ(e, a) = µ(a, e) = a

3. ∃a∗ ∈ G with µ(a, a∗) = µ(a∗, a) = e. We denote this element a−1.
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Definition 10.2. Let X, Y be topological spaces. A function f : X → Y is
continuous if and only if for any V ⊂ Y open, f−1(V ) is open in X.

Definition 10.3. A diffeomorphism is is a function f : X → Y between
smooth manifolds such that f is a smoth bijection with a smooth inverse.

Definition 10.4. A small category C is a pair (Obj(C),Hom(C)) of objects
and morphisms satisfying the following

1. If A,B,C ∈ Obj(C) then HomC(A,B) is a set and there exists an asso-
ciative map

M : HomC(A,B)× HomC(B,C)→ HomC(A,C)

2. idA = 1A ∈ Hom(A,A)

Definition 10.5. The small category C∞ consists of the set of smooth man-
ifolds, and HomF (C∞,) consisting of smooth maps. The isomorphism is this
category is a diffeomorphism.

Appendix C: Notation

⊆, a subset. A ⊆ B =⇒ a ∈ A then a ∈ B.
A→ B, denotes a mapping from the set A to the set B.
f : A→ B, a mapping from A to B by the function f.
◦, composition
∈, element of
∪, union (A ∪B = {c|c ∈ A or B})
∩, intersection (A ∩B = {c|c ∈ A and B})
C, the set of complex numbers.
R, the set of real numbers.
Rn, the set of all n-tuples of real numbers
En n-dimensional euclidean space (affine)
Q, the set of rational numbers.
Z, the set of integers.
N := Z+, the set of natural numbers (non-negative integers)
GL(n,R), the general linear group of all n× n invertible matrices.
⇔, if and only if.
det(A), the determinant of A.∏
, product∑
, sum

dimkA, the dimension of a vector space or manifold over the field k.
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