
Neuron, Vol. 36, 1183–1194, December 19, 2002, Copyright 2002 by Cell Press

Memory of Sequential Experience
in the Hippocampus during Slow Wave Sleep

time (Mishkin et al., 1998). A rodent hippocampal CA1
pyramidal cell (place cell) fires selectively when the ani-
mal is in a particular location (the cell’s place field) of
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an environment (O’Keefe and Dostrovsky, 1971). SinceDepartment of Brain and Cognitive Sciences
different place cells fire selectively in different locations,Massachusetts Institute of Technology
a rat’s experience in moving from one location to anotherCambridge, Massachusetts 02139
can be represented by the resulting sequence of place
fields traversed. Such a sequence may also be a good
model for the temporal order of events experienced by
humans. We tested whether repetitive experience of aSummary
particular spatial sequence resulted in detectable mem-
ory traces of that sequence during SWS immediatelyRats repeatedly ran through a sequence of spatial re-
afterwards.ceptive fields of hippocampal CA1 place cells in a fixed

A major reason for analyzing neural activity duringtemporal order. A novel combinatorial decoding
sleep is that, because of the clear absence of ongoingmethod reveals that these neurons repeatedly fired in
spatial behavior, the effect of previous spatial experi-precisely this order in long sequences involving four or
ence may be more easily identified. Specifically, by com-more cells during slow wave sleep (SWS) immediately
paring the activity in sleep before and after a task, onefollowing, but not preceding, the experience. The SWS
may identify experience-dependent changes that couldsequences occurred intermittently in brief (�100 ms)
correspond to learning. Here, we find recurring se-bursts, each compressing the behavioral sequence in
quences during SWS that involve four or more cells andtime by approximately 20-fold. This rapid encoding of
match the rat’s immediately preceding spatial experi-sequential experience is consistent with evidence that
ence. In contrast, there is no indication of any matchingthe hippocampus is crucial for spatial learning in ro-
sequential structure in SWS immediately before the ex-dents and the formation of long-term memories of
perience. Together with additional analyses, this pro-events in time in humans.
vides direct neural evidence of the rapid encoding of
extended spatial sequences.Introduction

ResultsInformation processing in the brain is believed to require
coordinated activity across many neurons. However, the

Adult rats (n � 3) ran back and forth (23–35 round tripsexact nature of this code is still largely unknown and
in 20–25 min) along linear tracks (180 cm straight or 450remains a fundamental problem in neuroscience. With
cm U shaped) for chocolate reward at each end. Thethe recent development of methods to simultaneously
behavior consisted of running in one direction (POS,record the spiking activity of large numbers of individual
�5 s), followed by eating at one track end (�10 s), thenneurons, the search for complex firing patterns across
running in the other direction (NEG, �5 s), followed bymultiple cells that could directly address this issue has
eating at the other track end (�10 s), then back to abecome possible (Abeles and Gerstein, 1988; Aertsen
POS lap, and so on. Both immediately before (PRE) andet al., 1989; Abeles, 1991; Meister et al., 1991; Abeles
after (POST) this behavior (RUN), the rats slept in a smallet al., 1993; Wilson and McNaughton, 1993, 1994;
enclosure located away from the track. During all three

Skaggs and McNaughton, 1996; Kudrimoti et al., 1999;
periods (PRE, RUN, and POST), we continuously re-

Nádasdy et al., 1999; Wessberg et al., 2000; Louie and
corded each rat’s position and head direction, the spik-

Wilson, 2001). Here, we present a novel method to ana- ing activity of many individual hippocampal CA1 pyrami-
lyze sequential firing patterns involving an arbitrary num- dal cells (Figure 1), and the local field potentials (local
ber of neurons and use it to decode the activity of a EEG) in the region around these cells. (See Experimental
population of rat hippocampal neurons during slow Procedures for details and Table 1 for information on
wave sleep (SWS). each rat.)

The hippocampus has been a target of particular inter- Each rat’s spatial experience during RUN was divided
est due to its involvement in the formation of long-term into two separate place field sequences (POS, NEG),
memories of events in time in humans (Scoville and one for each direction along the track. These sequences
Milner, 1957; Milner, 1966; Zola-Morgan et al., 1986) and (each lasting about 5 s) were determined by ordering
spatial memory (O’Keefe and Nadel, 1978; Morris et al., the peaks of the cells’ smoothed firing rate fields (Fig-
1982) as well as more general sequence memory (Kesner ures 2A, 2B, and 2G). In linear environments, a large
et al., 2002; Fortin et al., 2002) in rodents. It sits atop a fraction of place cells fire in only one direction; thus,
neuroanatomical hierarchy, receiving highly processed the two sequences generally consist of different sets
information from many areas of the brain, and is thus of cells. Some cells fired in both directions and thus
in an ideal position to link events across space and participated in both sequences. Place fields of such

cells were determined separately for each direction. The
average number of cells per sequence was 8.5 � 2.1.1Correspondence: albert@cortical.mit.edu (A.K.L.), wilson@ai.mit.

edu (M.A.W.) (See Experimental Procedures for details.)
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Figure 1. Recording of Spike Data from Individual CA1 Neurons

(A–C) Example of raw data from one tetrode (of RAT1) from which the spikes of several individual CA1 neurons are then clustered. Each point
represents the peak amplitude (in microvolts) of a triggered waveform on two of the four tetrode channels (each tetrode consists of four
electrodes bundled closely together). All triggered points shown; no noise has been filtered out yet. (D)–(F) shows clusters from (A)–(C),
respectively. Clustering is done using waveforms from all four channels. Clarity and stability of clusters across the nearly 4 hr of PRE (A and
D, 78 min), RUN (B and E, 23 min), and POST (C and F, 112 min) allow unambiguous identification of the spikes of individual neurons across
these three periods. Arrow points to cell 6 in Figures 2A–2F.

Figure 3A illustrates the characteristic activity of a order to the activity of a set of cells in SWS. First, for
each cell, each set of consecutive spikes with interspikepopulation of CA1 pyramidal neurons during SWS (in

this case from POST): short bursts of spikes from several intervals less than max_isi (ms) was grouped into a single
event (represented by a single letter identifying that cell)cells with adjacent bursts separated by larger gaps with

little firing. Closer inspection of one burst (Figure 2C) occurring at the time of the first spike. Each isolated
spike (i.e. a spike separated by at least max_isi fromreveals that six cells (2,5,7,8,9, and 10) fired in the same

order as during RUN (Figure 2B) and were highly com- any other spike of that cell) also produced a letter. Then,
the letters from all the cells were merged to form apressed in time relative to RUN (2.4 s in RUN behavior

becomes 120 ms in SWS). Note that the order matches single, time-ordered string. This string was then broken
between every pair of adjacent letters separated byonly if we count the first spike from each cell, with the

later spikes representing a continuing burst of activity more than max_gap (ms) into a set of shorter strings
(words). Each word thus represents the relative orderrelated (but not limited) to complex spiking of CA1 pyra-

midal cells (Ranck, 1973). POST SWS contains many of cell activity within an SWS population burst. We
parsed the SWS activity of the cells from the POS andsuch examples of short bursts which closely match the

order of their place field peaks in RUN (Figures 2C–2F NEG place field sequences separately—the SWS activity
of the cells active in the POS behavioral sequence gavematch Figure 2B, Figures 2H–2J match Figure 2G).

To quantify these sequential patterns, we developed one set of words (to be tested for matches to the POS
experience), and those from NEG another set (to bea two-step decoding procedure. First, each SWS popu-

lation burst of cells from a given RUN sequence was tested for matches to the NEG experience).
To quantify the degree of matching between (PRE orparsed into a single word representing only the relative

firing order of the cells within that burst. Then, we com- POST) SWS activity and a given RUN sequence, we
classified the words parsed from SWS into three differ-puted the probability that the relative firing order within

each word would by chance alone match the RUN se- ent groups based on their complexity—pairs, two-letter
words with two distinct letters; triplets, three-letterquence as well as it actually did. We computed the

overall degree of matching between the RUN sequence words with three distinct letters; and low-probability
trials, defined precisely below, but generally consistingand (PRE or POST) SWS activity by considering the

probabilities from all the words. The details of this proce- of words with four or more distinct letters as well as any
additional repeated letters. Sequence matching withindure are as follows.

To extract the individual population bursts, our pars- each group was evaluated separately. For pairs, we
computed the ratio of the number of pairs in which theing procedure consisted of two parameters applied in
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Table 1. Individual Data for Each of the Three Sessions (One for Each of Three Rats)

RAT1 RAT2 RAT3

Recording duration (min)
PRE 78 55 37
RUN 23 24 19
POST 112 51 31

Amount of sleep (min)
PRE 16 45 24
POST 50 36 20

Amount of SWS (min)
PRE 15 35 22
POST 47 33 19

Track length (cm) 450 180 180
Number of POS laps 30 23 35
Number of NEG laps 29 23 36
Number of cells in POS seq 10 8 5
Number of cells in NEG seq 11 9 8
PRE SWS PA � T � LP trials/min 16.1 32.4 15.6
POST SWS PA � T � LP trials/min 10.9 32.9 9.7
PRE SWS Z scores

Pair 0.1 �1.5 �1.2
Triplet �1.9 �1.0 �0.7
Low-probability �0.9 �0.1 �0.3

POST SWS Z scores
Pair 0.0 1.3 1.4
Triplet 0.9 1.4 3.4
Low-probability 4.4 4.8 4.7

POST SWS low-probability p value �3E�4 �6E�5 �4E�3

All of the pair (PA), triplet (T), and low-probability (LP) trial results are for the case of max_isi � 50 ms and max_gap � 100 ms. Maximum
interval between PRE, RUN, and POST was 3 min.

two letters matched their order in the RUN sequence Thus, the probability of getting a (6,0) match or better
by chance is very small: (12 � 1) / 7! � 0.0026 (Figure(pair matches) to the total number of pairs regardless

of letter order (pair trials). The ratio’s significance is the 3B). This method provides a unified way of comput-
ing the probabilities of different matches in words withnumber of standard errors above the expected ratio

(1/2), assuming either ordering of letters was equally differing lengths and letter compositions, including
matches with interruptions (e.g., the (6,1) match inlikely, i.e., a Z score. The same was done for triplets,

where the expected ratio of three-letter matches (all 246579A, Figure 2E) and matches in words with repeated
letters (e.g., the (5,0) match in 22569A8, Figure 2D). (Seethree letters in order) to all triplets is 1/6, assuming each

of the 3! � six possible orderings of three letters was Experimental Procedures for more details.)
The precise definition of a low-probability trial is aequally likely.

The most important group was the low-probability word for which the best possible sequence match pro-
duced by optimally rearranging its letters (in general,trials, since it potentially contained long, very low proba-

bility matches (four or more letters in order) to the RUN a (K,0) match for a word with K distinct letters) has
probability �P of occurring (assuming all permutationssequence. To analyze this group, we developed a novel

combinatorial method that allowed us to quantify the are equally likely), i.e., a word which could have con-
tained a match of probability P or rarer based on itsdegree of matching between the RUN sequence and the

relative order of letters in words of arbitrary length and constituent letters. A word is a low-probability match if
the probability of getting the best match actually foundletter composition. The method involves identifying the

best match within a word to the given RUN sequence, in that word or better is �P. The expected match/trial
ratio is P, with significance determined as before. Wethen computing the probability that this word would

contain such a match or better, assuming all possible chose P � 1/24 � 1/4!, the probability of a perfect four-
letter match. Thus, pairs cover two-letter matches; trip-permutations of its constituent letters were equally

likely. Thus, the probability indicates how likely it is by lets, three-letter matches; and low-probability trials, n
letter matches for n � 4. However, P could be any lowchance that the order of letters in a word matches the

RUN sequence as well as it does. For example, given value (e.g., P � 0.01 focuses on n-letter matches for
n � 5). Therefore, our match probability method canthe RUN sequence 123456789A (where A represents cell

10) (Figure 2B), the best match found in the seven-letter analyze sequential firing patterns involving any number
of neurons. It is general and can be applied to otherword 325789A (Figure 2C) is a (6,0) match (six letters in

order with zero interruptions—here 25789A). Out of the types of neural data. It differs from Abeles’ method by
analyzing the relative ordering of activity as opposed to7! � 5040 possible permutations of the seven letters,

there are 12 permutations whose best match is a (6,0) patterns defined by a set of specific interspike intervals
(Abeles and Gerstein, 1988; Abeles, 1991; Abeles et al.,match (not necessarily 25789A), and one permutation

with a better match, the perfect (7,0) match 235789A. 1993).



Neuron
1186

Figure 2. Example Sequences from Behavior
(RUN) and Subsequent Sleep (POST)

(A–B) Determination of POS spatial sequence
experienced by RAT1 in RUN. (A) Lap-by-lap
rasters of all ten cells that had place fields in
POS direction laps (i.e., rat running in direc-
tion of increasing position values). For each
cell, laps 1–30 are stacked from bottom to
top. (B) Smoothed place fields (colored lines)
of these ten cells. Vertical bars mark the posi-
tions of the peaks of the smoothed fields.
Smoothed firing rate (Hz) at these peaks
shown to the right. Nonuniform time axis be-
low shows time within average lap when
above positions were passed. (C) A popula-
tion burst from RAT1 POST SWS, showing six
cells in a row firing in the same order as the
POS sequence from RUN (B). Note difference
in timescale. (D–F) More examples of RAT1
POST SWS population bursts that match the
RUN POS sequence. (G) Same as (B), except
for RAT2 POS (rat running in direction of in-
creasing position values). (H–J) RAT2 POST
SWS population bursts that match the RUN
POS sequence (G). Words extracted from ac-
tivity in (C)–(F) and (H)–(J) using max_isi � 50
ms and max_gap � 100 ms in upper left cor-
ner of each panel (with cell 10 represented in
words by the letter A). Bar � 50 ms.

The final results consist of a match/trial ratio and Z probability matches (the exception is max_isi � 0. It
results in very little POST low-probability matching be-score for pairs, triplets, and low-probability words in

PRE and POST SWS. This analysis was repeated for a cause if multispike bursts from individual cells are
treated as multiple letters, they tend to interrupt se-range of max_isi and max_gap values (with the con-

straint that max_isi � max_gap, since max_isi � quence matches). The peak low-probability match/trial
ratio for POST (35/270 � 0.13, i.e., 35 matches out ofmax_gap would have allowed a single letter to represent

activity that extended into the following word) (Figure 270 words that could have had a low-probability match
compared to 270/24 � 11 expected matches, Z � 7.2,4) (note that Z � 0 [Z � 0]) corresponds to fewer [more]

matches than expected based on chance). PRE SWS p � 4E�9, Figure 4B) occurs around max_isi � 50 ms
and max_gap � 100 ms, suggesting that these may beactivity shows no significant similarity to RUN se-

quences for all parameter values, while POST SWS ac- the best values for decoding CA1 pyramidal cell activity
in SWS. These values parse the activity into words suchtivity shows significant similarity for a wide range of

values. This suggests that the sequential spatial experi- that the resulting mean interword interval is 804 ms, a
number consistent with the hippocampal EEG sharp-ence was encoded during RUN. Furthermore, the most

significant matching in POST occurs for longer, lower- wave/ripple occurrence rate of approximately 0.5–1 Hz
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Figure 3. Parsing and Match Probability
Method

(A) POST SWS activity of the ten cells from
RAT1 RUN POS sequence (Figure 2B). This
illustrates the characteristic activity of CA1
pyramidal cells in SWS: short population
bursts separated by larger gaps with little ac-
tivity. Words extracted using max_isi � 50
ms and max_gap � 100 ms shown above
each burst. The activity below “325789A” is
shown at an expanded time scale in Figure
2C. (B) Example probability calculation for
matching of word 325789A (Figure 2C) to RUN
sequence 123456789A (Figure 2B). Letters in
matches are in red.

during SWS. Significant POST low-probability matching, structure within real population activity. In particular,
the POST low-probability Z score of 7.2 produced byas well as the other trends of Figure 4, are present in

the individual rats (Table 1). All results that follow are our method agrees with the Z score of 7.9 determined
from the POST shuffle distribution (POST shuffle distri-pooled over all six RUN sequences of the three rats (two

sequences per rat: POS, NEG), using max_isi � 50 ms bution mean Z score � �0.38, standard deviation 0.96;
thus the POST Z score of 7.2 is (7.2 � (�0.38)) / 0.96 �and max_gap � 100 ms.

Figure 5A shows the match/trial ratios for pairs, trip- 7.9 standard deviations above the shuffle mean) and
likewise for PRE (PRE shuffle distribution mean Zlets, and low-probability trials. The most dramatic devia-

tion from expected occurs for POST low-probability tri- score � �0.31, standard deviation 0.84; thus the PRE
Z score of �0.5 is 0.2 standard deviations below theals: the actual ratio of 0.13 is triple the expected ratio

1/24 (� 0.042) (Z � 7.2, p � 4E�9), while the actual ratio shuffle mean). Furthermore, the PRE and POST shuffle
distributions closely match the distributions predictedfor pairs is only 0.52 compared to the expected ratio 0.5

(Z � 1.6, p � 0.05). Histograms of all words containing by a model in which each low-probability trial is an
independent trial with equally likely permutations (Figurematches of probability � 0.1 (Figure 5B) show that POST

has many events of probability far less than 1/24 (and 5C). A similar analysis of triplets gives the same result.
Thus, the real data are consistent with the equally likelythus the lower bound Z of 7.2 is an even greater underes-

timate), while PRE shows no evidence of RUN sequence permutation model on which our match probability (and
resulting match significance) calculations are based. Astructure. Considering even lower probability events

(P � 0.01 instead of 1/24 [� 0.042]) yields an even greater nonparametric comparison which uses only match rank-
ings and does not deal with permutations or match prob-deviation from the expected match/trial ratio in POST

(11 matches out of 140 trials, 140 	 0.01 � 1.4 expected, abilities confirms that POST matches RUN sequences
more than PRE does (p � 0.01, K-S test).p � 3E�7).

We performed several control analyses to investigate Second, we checked that the long sequence (low
probability) matching effect in POST was not simply duewhat might be responsible for the high occurrence of

long sequences in POST that match the place field se- to a tendency for cells with nearby place fields to fire
together regardless of order (Wilson and McNaughton,quences from RUN.

First, we computed the significance for low-probabil- 1994). If this were the case, then we would also expect
significant matching in POST to the reverse RUN placeity trials with respect to randomly shuffled versions of

the actual RUN sequences. Figure 5C shows that POST field sequences (e.g., A987654321 from Figure 2B), but
this was not so (Z � 1.1, p � 0.16).specifically matches the determined RUN sequences

and not other random sequences. If general non- Third, we recomputed the probabilities for POST low-
probability trials, this time assuming that all permuta-RUN-sequence effects were responsible for significant

matching between POST and the RUN sequences, sig- tions were not equally likely, but rather were weighted
by the actual pair ratio in POST (which, at 0.52, wasnificant matching should also have occurred for shuffled

sequences, but it did not. Thus, the RUN sequence is slightly biased in favor of the RUN sequence) (see Exper-
imental Procedures). The idea was to test whether thea special sequence for POST SWS. This shuffle analysis

also allows us to test the validity of our match probability observed tendency for pairs of letters in POST to occur
in the same order as in the RUN sequence could alonemethod. It shows that our match probability method

produces a statistic (i.e., the low-probability Z score) explain the unexpectedly large number of low-probabil-
ity matches. The significance was reduced (as expected)that accurately assesses the significance of sequence
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cells. For every manipulation, the remaining spikes still
contained highly significant low-probability matching in
POST (Figure 5D).

Thus, none of these potential causes can account for
the high occurrence of long RUN sequence matches in
POST.

Furthermore, we computed the significance for low-
probability trials with respect to RUN sequences that
bridge the 10 s break between POS and NEG direction
laps. These wraparound sequences (two per rat) were
constructed by adding the first half of the NEG sequence
to the end of the last half of the POS sequence (giving
one sequence) and by adding the first half of the POS
sequence to the end of the last half of the NEG sequence
(giving the other sequence). The lack of matching in
POST (Z � �1.2, p � 0.9) supports the idea that the
POS and NEG sequences represent distinct bursts of
experience that are encoded separately. Cells which
participate in both POS and NEG sequences do in fact
appear in the appropriate positions in both POS- and
NEG-like SWS sequences (e.g., RAT1 POS cells 5, 9, 10
in Figures 2C–2F correspond to RAT1 NEG cells 7, 4, 5,
respectively, in Figure 6C).

For one rat (RAT2), RUN constituted the first exposure
to that environment, while the other two rats had some
previous training in their respective RUN environments
(though all three rats had been trained before on various
linear tracks in other rooms). In both cases (novel, famil-

Figure 4. Significance (Z Score) of Matching of PRE and POST SWS iar), PRE SWS has no sequence structure related to
Activity to RUN Spatial Sequences as a Function of the Two Parsing RUN, while POST does (low-probability trials, novel: PRE
Parameters Max_isi and Max_gap, Pooled over All Three Rats

Z � �0.1, p � 0.6, POST Z � 4.8, p � 6E�5; familiar:
These results show that PRE SWS bursts have no similarity to the PRE Z � �0.9, p � 0.9, POST Z � 5.5, p � 2E�5; also
RUN sequences for all parsing parameter values, while POST SWS

see Table 1). This suggests that long sequences can bebursts exhibit significant similarity to the RUN sequences. This sug-
encoded in a single RUN session and that the mecha-gests that the sequential spatial experience was encoded during
nisms leading to expression of RUN sequences in SWSRUN. POST similarity is most significant in the longer bursts (i.e.,

low-probability trials), and this is the case for a wide range of param- (possibly including modified synaptic connections) are
eter values. Absence of sequence similarity in POST for max_isi � 0 reset sometime after POST but before the next exposure
shows that it is necessary to treat multispike bursts of a cell as (which occurred at least a day later; see Experimental
single events in order to decode sequential activity in SWS. White

Procedures). Similar resetting of other experience-box in (B) indicates maximum POST low-probability match/trial ratio
dependent changes in the hippocampus has been ob-and Z score. This occurs at max_isi � 50 ms and max_gap � 100 ms.
served before (Mehta et al., 1997, 2000).

Figure 6A shows the distribution of durations (time
but still highly significant (actual match/trial ratio � 0.11, between first and last letters) of all PRE and POST low-
expected ratio � 0.054, Z � 4.2, p � 2E�4). Thus, pair probability trials (mean 154 � 84 ms), as well as all POST
biases cannot account for the high occurrence of long, low-probability matches (time between first and last let-
low-probability sequence matches. ters in match) (mean 106 � 38 ms). The population bursts

Fourth, since the parsing method makes it harder for that constitute the low-probability trials tend to occur in
repeated (versus distinct) letters to appear close to- periods with heightened high-frequency ripple (100–250
gether in a given word, we recomputed the match proba- Hz, 25–100 ms duration events) activity (Figures 6B and
bilities to account for this. In particular, we did not count 6C), a prominent feature of hippocampal EEG during
permutations in which repeated letters occurred closer SWS. This is not surprising, since it is known that overall
together than in the observed word, while the remaining CA1 pyramidal cell activity in SWS is greatly increased
permutations were assumed equally likely. Results were during such ripple events.
unchanged (low-probability trials: PRE Z � �0.07, p � As seen in Figure 2, POST SWS sequence matches
0.6, POST Z � 7.5, p � 2E�9). are compressed in time relative to the experienced RUN

Fifth, to specifically control for artifactual sequence sequence. We estimated the approximate compression
effects that could result from imperfect clustering (Quirk factor (CF) by comparing the times of the letters in each
and Wilson, 1999), we reparsed and recomputed the POST low-probability match to the times of their place
results after each of the following manipulations. We field peaks in the RUN sequence (e.g., Figures 2B and
first eliminated a given fraction of spikes from either the 2G) (see Experimental Procedures). The median of 19.7
outer border or the low-amplitude tail of each cell’s (Figure 7A) indicates that sequences in POST SWS oc-
cluster, then either stopped there or further eliminated curred approximately 20 times faster than the original
all remaining spikes that potentially could still be part of experience. To verify this using a different method, we

computed the average overlap between the POST low-a single complex-spike incorrectly split across multiple
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Figure 6. Low-Probability Trials and Ripple Events

(A) Duration of all low-probability trials (line) in PRE and POST SWS,
and matches (solid) in POST SWS. (B) Timing of ripples (midpoint)
with respect to PRE and POST SWS low-probability trials (center
of mass time of letters) (for RAT1 and RAT2 only). Binsize � 20 ms.
(C) Example showing timing of ripples about a POST SWS low-
probability match (from RAT1 NEG).

probability matches and various time-compressed tem-
plates of the overall place field activity in RUN (e.g., the
smoothed firing rates in Figures 2B and 2G as a function
of time) (see Experimental Procedures). The template
overlap method detects broadly matching temporal ac-
tivity patterns at any selected time scale (CF) despite
numerous extra spikes and imperfect ordering. The peak
occurs around CF � 16 (Figure 7B), in agreement withFigure 5. Results Pooled from All Three Rats Using Parameter Val-
the first method.ues Max_isi � 50 ms and Max_gap � 100 ms

Finally, we looked for evidence of any additional RUN(A) Actual (bars) versus expected (horizontal lines) match/trial ratio
sequence structure at any time scale (CF) in POST SWSfor pairs, triplets, and low-probability trials for PRE (left, red) and

POST (right, black) SWS. Vertical lines: �1 standard error. Z scores besides that detected using the parsing and match
above. Actual match/trial numbers (PRE, POST): pairs (654/1371,
655/1255), triplets (32/255, 57/259), low-probability trials (3/95, 35/
270). (B) All PRE and POST SWS matches to RUN sequence of
probability �0.1. Log scale on abscissa. (C) Distributions of PRE tions. (D) Control for robustness of POST SWS low-probability se-
(below, red) and POST (above, black) SWS low-probability Z scores quence matching effect with respect to imperfect clustering. Match/
with respect to randomly shuffled RUN sequences. Thus, high Z trial ratios �1 standard error after systematic elimination of particu-
scores do not occur by chance. Vertical lines: PRE (red) and POST lar spikes (see text). Solid and dotted horizontal lines represent
(black) Z scores for actual RUN sequences. Predicted distributions original and expected (1/24) POST low-probability match/trial ratios,
for PRE (below, blue) and POST (above, green) assuming each low- respectively. Sequence effect highly significant under every manipu-
probability trial is an independent trial with equally likely permuta- lation.
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probability method. We again used the template method
because of its ability to detect broadly matching activity
at any time scale. For each POS and NEG RUN template,
we computed the overlap as a function of time for many
different CFs (Figure 7C). Figure 7D shows the overlap
averaged over all of PRE SWS, all of POST SWS, and
all of POST SWS except for those times immediately
around sequence matches detected using our parsing
and match probability method (see Experimental Proce-
dures). We find no evidence of any sequence structure
in PRE SWS. POST SWS has sequence structure with
a single peak around CF � 20, and this peak disappears
when the small fraction of overlap scores around
matches of probability �1/6 (i.e., triplet matches or
longer) is eliminated. Thus, the sequences found with
our decoding method (using max_isi � 50 ms and
max_gap � 100 ms) likely represent all the RUN se-
quence structure present in POST SWS (though there
could be additional non-RUN-sequence structure in
PRE and/or POST SWS).

Discussion

In general, not all differences between PRE and POST
can be attributed to learning. RUN may result in many
changes (e.g., increases in firing rate) that are not related
to the particular spatial sequences experienced. How-
ever, we demonstrate that random sequences do not
result in POST matching (Figure 5C). Thus, the observed
matching between POST and the actual RUN sequences
cannot simply be explained by phenomena such as gen-
eral changes in firing rates (which would have affected
random sequences similarly). Furthermore, we demon-
strate that reverse RUN sequences do not result in POST
matching. Thus, the matching between POST and the
RUN sequences cannot be explained by non-sequence-
specific increases in the coactivity of cells with nearby
place fields. Therefore, RUN sequence structure is spe-
cifically present in POST. Moreover, we demonstrate
that the longer sequences in POST cannot be accounted
for by the occasional, random chaining together of
shorter pair sequences. In contrast, PRE shows no evi-
dence of RUN sequence structure of any length (from
pairs to longer sequences) or at any time scale beyond
that expected by chance (whether chance is based on
the assumption of equally likely permutations or on the
distribution of matching of random sequences to PRE)
(Figures 4, 5A–5C, and 7D). Therefore, we conclude that
long spatial sequences experienced during behavior
(i.e., the separate POS and NEG place field sequences)
are indeed encoded precisely (i.e., preserve relative fir-
ing order) and rapidly (i.e., within a single RUN session).

Figure 7. Time Compression of Sequences

(A and B) CF of POST SWS low-probability match sequences with
respect to RUN behavioral sequences (e.g., Figures 2B and 2G in
terms of time). CF � 1 means SWS sequences are compressed in occurs intermittently. Note that (D) is essentially created by collaps-
time relative to behavioral sequences. (A) Distribution of CFs for ing these results (plus all of the other SWS data) vertically. (D) Over-
individual POST low-probability matches; median CF � 19.7. (B) lap as function of CF averaged over all of PRE SWS, all of POST
Average overlap between behavioral sequences and POST low- SWS, and POSTX (all of POST SWS except for those times immedi-
probability matches as a function of CF; peak occurs around CF � ately around matches of probability �1/6). This shows that the only
16. (C) Example showing overlap between POS sequence behavioral significant RUN sequence structure found in PRE or POST SWS
template (Figure 2G in terms of time) and segment of POST SWS occurs in POST at CFs of around 20 and that this structure can be
for RAT2 as a function of time. Unlike in (B), the overlap here is fully accounted for by the sequences found using our parsing and
computed continuously in time, not just around low-probability match probability method. All matches referred to in this figure
matches. Red horizontal lines indicate significant matching which extracted using max_isi � 50 ms and max_gap � 100 ms.
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These memories can be decoded by applying our two- What could be the mechanisms by which these RUN
sequences are encoded? Known plasticity rules requireparameter parsing and match probability method to the

population activity of CA1 pyramidal neurons during precisely ordered activity occurring within short time
windows (Levy and Steward, 1983; Gustafsson et al.,SWS. Proper decoding requires that the activity of

multispike bursts from individual neurons be treated as 1987; Markram et al., 1997; Bi and Poo, 1998). Presynap-
tic activity must precede postsynaptic activity by lesssingle events. (Thus, our results suggest that these first

spikes, determined with max_isis as large as 50 ms, than approximately 20 ms to yield strengthening of con-
nections, while the reverse order yields weakening. Tomight be particularly important for indicating information

about temporal order.) The intermittent, time-com- encode spatial sequences experienced at the behavioral
timescale (1 s) using plasticity mechanisms that operatepressed sequences found with this method likely repre-

sent all the RUN sequence structure present in POST SWS at this shorter timescale (10 ms), hippocampal phase
precession has been proposed as a possible bridging(Figure 7D).

Our combinatorial match probability method for ana- mechanism (O’Keefe and Recce, 1993; Blum and Ab-
bott, 1996; Skaggs et al., 1996; Mehta et al., 2002). Con-lyzing relative firing order among an arbitrary number

of neurons is general and can be applied to other types nections may be modified within the hippocampal CA3
network (Blum and Abbott, 1996; Wallenstein and Has-of neural data (and it is not just limited to spike data,

e.g., it can be applied to EEG events from multiple loca- selmo, 1997), with encoded sequences being replayed
by triggering a cascade of activity (August and Levy,tions). All that is necessary is a preliminary parsing step

appropriate for each type of data. Here, since hippocam- 1999). Alternatively, the same changes in the CA3-CA1
feedforward network that produce asymmetric placepal CA1 pyramidal cell activity in SWS consists of brief,

intermittent population bursts, each burst naturally pro- fields (Mehta et al., 2000) may be involved. Asymmetric
drive translated into latency could both encode (Mehtavided a word. In the case of an experiment which con-

sists of a series of trials, each trial might provide a word. et al., 2002) and replay RUN sequences. There is evi-
dence that the sharp-wave/ripple events, which gener-Previous work has shown traces of hippocampal ac-

tivity from RUN in sleep using various methods (Pavlides ally accompany SWS population bursts (Figures 6B and
6C), are generated by the hippocampus itself (Buzsákiand Winson, 1989; Wilson and McNaughton, 1994;

Skaggs and McNaughton, 1996; Kudrimoti et al., 1999; et al., 1983). If so, the SWS sequences we observe might
predominantly reflect the intrinsic connectivity of theNádasdy et al., 1999; Louie and Wilson, 2001). Skaggs

and McNaughton, whose analysis was limited to pair hippocampus, thus suggesting the sequential experi-
ence was indeed encoded within the hippocampus (ver-interactions, showed a tendency for the average firing

order between pairs of cells to be conserved from RUN sus in external structures only).
Recently, long stretches (up to 2 min) of RUN sequen-to POST and also (but less so) from PRE to RUN, al-

though they did not discuss possible timescale differ- tial structure have been observed during rapid eye
movement (REM) sleep at timescales similar to the origi-ences between RUN and sleep (Skaggs and McNaugh-

ton, 1996). Here, we find that the POST pairwise nal experience (CF � 0.7) (Louie and Wilson, 2001). While
the highly compressed, 100 ms timescale SWS se-sequence effect is small (0.52 versus an expected 0.5,

which is similar in magnitude to that found using their quences could be replayed via intrinsic hippocampal
mechanisms, the extended replay in REM likely involvesmethod) and that it cannot explain the much stronger

effect (�3 times expected) of the high occurrence of activation of a broader network that can sustain regular
activity for several minutes. Unlike the SWS sequences,longer sequences. Using a nonspatial running wheel

task, Nádasdy et al. (1999) showed that many triplet REM replay was prominent in PRE, representing spatial
experience encoded at least a day before. The SWSspike sequences were common to PRE, RUN, and POST.

Unlike our place field sequences, their RUN spike se- sequences we find immediately after only one RUN ses-
sion may represent rapid learning of discrete episodesquences were not clearly related to any specific behav-

ioral events. Furthermore, while they noted that their (POS, NEG) by the hippocampus, while REM replay
could represent a later stage of memory processingsleep sequences generally occurred at a faster time-

scale than the RUN sequences, no compression factor involving longer stretches of experience and additional
brain areas.was computed. Our work differs from both of these

studies by analyzing longer sequences (i.e., lengths of Sleep may play an important role in learning (Buzsáki,
1989; Pavlides and Winson, 1989; Wilson and McNaugh-four and more versus pairs and triplets). In addition, we

demonstrate that the specific sequences experienced ton, 1994; Skaggs and McNaughton, 1996; Kudrimoti et
al., 1999; Nádasdy et al., 1999; Dave and Margoliash,in RUN are strongly present in POST but completely

absent (i.e., match/trial ratios below expected based on 2000; Stickgold et al., 2000; Frank et al., 2001; Louie
and Wilson, 2001). In addition to revealing asymmetricchance, i.e., Z scores � 0, Figure 5A) in PRE, thus im-

plying the RUN sequences were rapidly encoded during modifications to the hippocampal synaptic weight ma-
trix, replay of sequences learned in behavior may indi-that RUN itself. In contrast, the other studies reported

either a smaller POST effect along with a small amount cate a process of memory consolidation. The occur-
rence of low-probability matches cannot be accountedof RUN structure in PRE (Skaggs and McNaughton,

1996) or a larger POST effect along with a larger amount for by pairwise biases in firing order, indicating that
hippocampal replay consists of brief bursts of long se-of RUN structure in PRE (Nádasdy et al., 1999). Strong,

specific matching in POST combined with no matching quences that occur intermittently rather than a more
continuous replay of pairwise biases. These intermittent,in PRE makes it unlikely that we are merely observing

intrinsic features of the network conserved across PRE- time-compressed sequences may represent discrete
packets of learned information being broadcast by theRUN-POST and unrelated to learning in RUN.
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the number of these cells in the POS and NEG sequences of each rat.hippocampus to modify target structures elsewhere in
The POS and NEG sequences of a rat were generally not reversedthe brain (Buzsáki, 1989; Pavlides and Winson, 1989;
versions of each other because many cells had place fields in onlyWilson and McNaughton, 1994; Skaggs and McNaugh-
one direction and because those cells with place fields in both

ton, 1996; Siapas and Wilson, 1998; Kudrimoti et al., directions did not necessarily have both fields in the same location.
1999; Nádasdy et al., 1999), with the precise ordering
and timescale (10 ms) required by plasticity mechanisms

Identification of SWS
(Levy and Steward, 1983; Gustafsson et al., 1987; Mark- Sleep, identified based on visual assessment (through videotape)
ram et al., 1997; Bi and Poo, 1998). of rat posture during PRE and POST, was partitioned into SWS and

REM as follows. REM was identified as periods with an elevated
Experimental Procedures ratio (averaged every 1 s) of hippocampal EEG power in the theta

band (5–12 Hz) to overall power (1–475 Hz). The remainder was
Electrophysiology classified as SWS. All SWS from PRE and POST was used in our
Spikes from many individual CA1 pyramidal neurons (RAT1, 57 cells; analyses.
RAT2, 49 cells; RAT3, 26 cells) were recorded simultaneously from
each rat (adult male Long Evans) using a microdrive array containing

Match Probability Analysisfour to eight independently adjustable tetrodes and placed above
A word, W (which may have repeated letters), contains a (x,y) matchthe right dorsal hippocampus (3.6 mm posterior, 2.4 mm lateral with
to a given sequence, S (which cannot have repeated letters), if thererespect to bregma). Tetrodes were first lowered over 1–2 weeks to
exists x � y consecutive letters in W of which at least x letters arethe CA1 pyramidal cell layer. Then fine adjustments to maximize
in strictly increasing order in S (but not necessarily consecutive inthe number of isolatable pyramidal cells on each tetrode were made
S). For example, if S � 123456789, the word 11377 does not containwith net movement limited to 20–120 
m per day. For stability,
a (5,0) match but does contain a (3,0) match, and the word 13436892recordings were made no less than 12 hr after the last adjustment.
contains a (6,1) match. We construct an ordered list, L, of matchesIndividual cells were isolated from each tetrode (Figure 1) via spike
to S (best to worst) as follows. The list starts with (K,0) as the bestwaveform clustering using XCLUST (M.A.W.) (Wilson and McNaugh-
match, where K � the length of S. Next are (x,y) such that x � y �ton, 1993). Spike times were recorded with precision 0.1 ms. Rat
K � 1, ordered by decreasing x. Thus (K,1) is the second best andhead position (resolution 0.8 cm) and head direction were sampled
(K � 1,0) the third best match. Next are (x,y) such that x � y � K � 2,at 30 Hz. Hippocampal CA1 pyramidal cell layer EEG (filtered be-
ordered again by decreasing x. This continues for x � y � 2. Thustween 1–475 Hz and sampled at 1.5 kHz) was recorded from each
(2,0) is the last match in the list. Matches with x � y � 2 are nottetrode. All procedures were performed in accordance with institu-
considered. This ordering obeys the obvious constraints that (x,y) �tional guidelines.
(x � 1,y) � (x � 2,y) � . . . and (x,y) � (x,y � 1) � (x,y � 2) � . . .
(where “�” means “better than”) and, more generally, obeys theBehavioral Details
constraint that a word which contains a given match does not neces-For several days before recording, rats were trained on various linear
sarily contain a match better than it. This ordering also balancestracks to run back and forth (without stopping in the middle of the
rewarding larger x (longer matches) with penalties for larger y (moretrack) for chocolate reward at each end. The last training session
interruptions). The best match to S found in a given word W is theoccurred no less than 1 day before recording. For the novel rat
best match in L that is found in W. For a given word W of length n(RAT2), RUN constituted the first exposure to that enviroment. Of
letters (not necessarily all distinct), the probability of getting a giventhe two familiar rats, for RAT1 the immediately preceding exposure
match (x,y) from L or better is the fraction of the n! permutations ofto the RUN environment occurred 5 days before (with no intervening
the letters of W that contain a match (x,y) or better according to L.training in any environment), while for RAT3 it occurred 1 day before
This provides a unified way of computing the probabilities of differ-(along with an intervening training session in a different environment
ent matches in words with differing lengths and letter compositions,on that same preceding day). For PRE and POST, rats were left in
including matches with interruptions and matches in words witha 50(l) 	 50(w) 	 75(h) (cm) black box, open at the top and lighted
repeated letters. (A different L in which for any two matches (x1,y1) �from above. Rats were placed on a 20 cm diameter padded circular
(x2,y2) if (a) x1 � x2 or if (b) x1 � x2 and y1 � y2 gives similar results,dish centered and raised 40 cm above the box floor so that move-
e.g., for max_isi � 50 ms and max_gap � 100 ms: low-probabilityment was restricted and the side walls could not be reached. There
PRE Z � �0.5, p � 0.4; POST Z � 7.8, p � 3E�10. This suggeststhe rats’ behavior consisted of sleeping, grooming, or remaining still
that our results do not depend on the minute details of how matcheswhile awake. After PRE, the rat was immediately moved to the track
are ordered.)for RUN, then immediately returned to the box for POST.

The reason for computing the probability that a word would con-
tain a match as good as or better than the best match found in that

Determination of RUN Place Field Sequences word, assuming all possible permutations of its constituent letters
Only a fraction of CA1 pyramidal cells have place fields in any given were equally likely, is this: it is exactly analogous to the statistical
environment (e.g., a track). To select the cells used to determine procedure of determining a p value, such as in computing the proba-
the POS and NEG direction place field sequences, we applied a set bility that one would observe 80 heads in 100 tosses of a coin,
of criteria to each cell twice, once for each direction. Thus, each assuming the coin is fair. To evaluate how unlikely this is by chance,
cell could be in 0, 1, or both sequences. Specifically, to determine one computes the probability of getting 80 or more heads assuming
which cells would be included in a given direction’s sequence, we the null hypothesis of a fair coin. Here, 80 heads corresponds to
first eliminated all spikes fired at the track ends (because of variable the best match found in a word, while more than 80 heads corre-
behavior and behavioral state there) or when the rat stopped moving sponds to the better matches.
in the middle of the track (which was very infrequent). With the
remaining spikes, we took all pyramidal cells firing �1 spike/lap
(mean) in that direction, then eliminated those cells that either exhib- Determination of Significance

Given M pair matches out of N pair trials, the normal approximationited double-peaked place fields within that direction (thus no unique
position in sequence) or which stopped firing in that direction for of the binomial distribution gives Z score � (M � NP) / sqrt(NP(1 �

P)) where P � 1/2. The same formula applies to triplets (with P �the middle or last 1/3 of the RUN session (indicating unreliable firing).
We then computed the smoothed one-dimensional directional firing 1/6), and low-probability trials (with P � 1/24). For low-probability

trials, we computed a lower bound Z for POST and upper bound Zrate field of the remaining spikes of each remaining cell. The order
of peaks was the same whether smoothing with a Gaussian of � � for PRE, i.e., we were most conservative in testing for matching in

POST and nonmatching in PRE. To calculate p values, we used the5, 10, or 15 cm. For the six directions in the three rats, a total of 64
cells (46 of them distinct) fired �1 spike/lap, of which four had normal approximation for pairs (since the deviations from expected

values were small) and the exact binomial distribution for low-pro-double-peaked fields and nine stopped firing for the middle and/or
last 1/3 of the session, leaving 51 cells (40 distinct). Table 1 shows bablility trials (since the deviations were often very large).
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Control for Pair Bias (POST) SWS for that CF was the mean Z score of all valid groups
in PRE (POST) SWS. The overlap for all of POST SWS (for a givenTo correct for pair bias, we recomputed match probabilities as fol-

lows. Instead of weighting each permutation equally, we weighted CF) except for the times around a set of matches M was the mean
Z score of all valid groups in POST SWS except for a small fractioneach n letter permutation of a word by treating each of its n(n �

1) / 2 letter pairs as an independent trial with bias B � 0.52 � the of groups: if the window with maximum overlap for a valid group
covered the center of mass time of letters of a match from M, thenobserved POST pair match/trial ratio. That is, we weighted each

permutation of a word by Bf(1 � B)r / H, where f � the total number that group’s Z score was excluded.
of letter pairs in the permutation that were in the same order as in
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